forked from OSSInnovation/mindspore
!3513 Add parameter server mode_zoo case and CI test cases.
Merge pull request !3513 from ZPaC/master-add-ps-test-cases
This commit is contained in:
commit
9c461f5565
|
@ -344,6 +344,7 @@ void ParameterServer<T>::InitOptimInputsShape(const Keys &keys, const Values &va
|
|||
|
||||
template <typename T>
|
||||
void ParameterServer<T>::InitWeight(const Key &key, const WeightPtr &weight) {
|
||||
MS_LOG(INFO) << "Initializing weight for key " << key;
|
||||
if (weights_.count(key) == 0) {
|
||||
weights_[key] = weight;
|
||||
}
|
||||
|
@ -360,7 +361,7 @@ void ParameterServer<T>::InitGrad(const Key &key, const GradPtr &grad) {
|
|||
template <typename T>
|
||||
void ParameterServer<T>::InitEmbeddingTable(
|
||||
const Key &key, const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes) {
|
||||
// Init embedding lookup kernel
|
||||
MS_LOG(INFO) << "Initializing embedding table for key " << key;
|
||||
std::shared_ptr<PServerKernel> lookup = std::make_shared<kernel::ps::EmbeddingLookUpPSKernel>(rank_id_, pserver_num_);
|
||||
lookup->InitKernel(shapes);
|
||||
embedding_lookup_ops_[key] = lookup;
|
||||
|
|
|
@ -24,22 +24,24 @@ The common used benchmark datasets are used for model training and evaluation.
|
|||
The entire code structure is as following:
|
||||
```
|
||||
|--- wide_and_deep/
|
||||
train_and_eval.py "Entrance of Wide&Deep model training and evaluation"
|
||||
eval.py "Entrance of Wide&Deep model evaluation"
|
||||
train.py "Entrance of Wide&Deep model training"
|
||||
train_and_eval_multinpu.py "Entrance of Wide&Deep model data parallel training and evaluation"
|
||||
train_and_eval.py "Entrance of Wide&Deep model training and evaluation"
|
||||
eval.py "Entrance of Wide&Deep model evaluation"
|
||||
train.py "Entrance of Wide&Deep model training"
|
||||
train_and_eval_multinpu.py "Entrance of Wide&Deep model data parallel training and evaluation"
|
||||
train_and_eval_auto_parallel.py
|
||||
|--- src/ "Entrance of training and evaluation"
|
||||
config.py "Parameters configuration"
|
||||
dataset.py "Dataset loader class"
|
||||
process_data.py "Process dataset"
|
||||
preprocess_data.py "Pre_process dataset"
|
||||
wide_and_deep.py "Model structure"
|
||||
callbacks.py "Callback class for training and evaluation"
|
||||
metrics.py "Metric class"
|
||||
|--- script/ "Run shell dir"
|
||||
run_multinpu_train.sh "Run data parallel"
|
||||
run_auto_parallel_train.sh "Run auto parallel"
|
||||
train_and_eval_parameter_server.py "Entrance of Wide&Deep model parameter server training and evaluation"
|
||||
|--- src/ "Entrance of training and evaluation"
|
||||
config.py "Parameters configuration"
|
||||
dataset.py "Dataset loader class"
|
||||
process_data.py "Process dataset"
|
||||
preprocess_data.py "Pre_process dataset"
|
||||
wide_and_deep.py "Model structure"
|
||||
callbacks.py "Callback class for training and evaluation"
|
||||
metrics.py "Metric class"
|
||||
|--- script/ "Run shell dir"
|
||||
run_multinpu_train.sh "Run data parallel"
|
||||
run_auto_parallel_train.sh "Run auto parallel"
|
||||
run_parameter_server_train.sh "Run parameter server"
|
||||
```
|
||||
|
||||
### Train and evaluate model
|
||||
|
@ -110,6 +112,15 @@ bash start_cluster.sh CLUSTER_CONFIG_PATH EPOCH_SIZE VOCAB_SIZE EMB_DIM
|
|||
DATASET ENV_SH RANK_TABLE_FILE MODE
|
||||
```
|
||||
|
||||
To train and evaluate the model in parameter server mode, command as follows:'''
|
||||
```
|
||||
# SERVER_NUM is the number of parameter servers for this task.
|
||||
# SCHED_HOST is the IP address of scheduler.
|
||||
# SCHED_PORT is the port of scheduler.
|
||||
# The number of workers is the same as RANK_SIZE.
|
||||
bash run_parameter_server_train.sh RANK_SIZE EPOCHS DATASET RANK_TABLE_FILE SERVER_NUM SCHED_HOST SCHED_PORT
|
||||
```
|
||||
|
||||
To evaluate the model, command as follows:
|
||||
```
|
||||
python eval.py
|
||||
|
|
|
@ -0,0 +1,64 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
execute_path=$(pwd)
|
||||
script_self=$(readlink -f "$0")
|
||||
self_path=$(dirname "${script_self}")
|
||||
export RANK_SIZE=$1
|
||||
export EPOCH_SIZE=$2
|
||||
export DATASET=$3
|
||||
export RANK_TABLE_FILE=$4
|
||||
export MINDSPORE_HCCL_CONFIG_PATH=$4
|
||||
|
||||
export MS_COMM_TYPE=zmq
|
||||
export MS_SCHED_NUM=1
|
||||
export MS_WORKER_NUM=$RANK_SIZE
|
||||
export MS_SERVER_NUM=$5
|
||||
export MS_SCHED_HOST=$6
|
||||
export MS_SCHED_PORT=$7
|
||||
|
||||
export MS_ROLE=MS_SCHED
|
||||
for((i=0;i<1;i++));
|
||||
do
|
||||
rm -rf ${execute_path}/sched_$i/
|
||||
mkdir ${execute_path}/sched_$i/
|
||||
cd ${execute_path}/sched_$i/ || exit
|
||||
export RANK_ID=$i
|
||||
export DEVICE_ID=$i
|
||||
python -s ${self_path}/../train_and_eval_parameter_server.py --data_path=$DATASET --epochs=$EPOCH_SIZE --parameter_server=1 >sched_$i.log 2>&1 &
|
||||
done
|
||||
|
||||
export MS_ROLE=MS_PSERVER
|
||||
for((i=0;i<$MS_SERVER_NUM;i++));
|
||||
do
|
||||
rm -rf ${execute_path}/server_$i/
|
||||
mkdir ${execute_path}/server_$i/
|
||||
cd ${execute_path}/server_$i/ || exit
|
||||
export RANK_ID=$i
|
||||
export DEVICE_ID=$i
|
||||
python -s ${self_path}/../train_and_eval_parameter_server.py --data_path=$DATASET --epochs=$EPOCH_SIZE --parameter_server=1 >server_$i.log 2>&1 &
|
||||
done
|
||||
|
||||
export MS_ROLE=MS_WORKER
|
||||
for((i=0;i<$MS_WORKER_NUM;i++));
|
||||
do
|
||||
rm -rf ${execute_path}/worker_$i/
|
||||
mkdir ${execute_path}/worker_$i/
|
||||
cd ${execute_path}/worker_$i/ || exit
|
||||
export RANK_ID=$i
|
||||
export DEVICE_ID=$i
|
||||
python -s ${self_path}/../train_and_eval_parameter_server.py --data_path=$DATASET --epochs=$EPOCH_SIZE --parameter_server=1 >worker_$i.log 2>&1 &
|
||||
done
|
|
@ -40,6 +40,7 @@ def argparse_init():
|
|||
parser.add_argument("--loss_file_name", type=str, default="loss.log")
|
||||
parser.add_argument("--host_device_mix", type=int, default=0)
|
||||
parser.add_argument("--dataset_type", type=str, default="tfrecord")
|
||||
parser.add_argument("--parameter_server", type=int, default=0)
|
||||
return parser
|
||||
|
||||
|
||||
|
@ -72,6 +73,7 @@ class WideDeepConfig():
|
|||
self.ckpt_path = "./checkpoints/"
|
||||
self.host_device_mix = 0
|
||||
self.dataset_type = "tfrecord"
|
||||
self.parameter_server = 0
|
||||
|
||||
def argparse_init(self):
|
||||
"""
|
||||
|
@ -103,3 +105,4 @@ class WideDeepConfig():
|
|||
self.ckpt_path = args.ckpt_path
|
||||
self.host_device_mix = args.host_device_mix
|
||||
self.dataset_type = args.dataset_type
|
||||
self.parameter_server = args.parameter_server
|
||||
|
|
|
@ -108,6 +108,9 @@ class DenseLayer(nn.Cell):
|
|||
return act_func
|
||||
|
||||
def construct(self, x):
|
||||
'''
|
||||
Construct Dense layer
|
||||
'''
|
||||
if self.training and self.drop_out:
|
||||
x = self.dropout(x)
|
||||
if self.convert_dtype:
|
||||
|
@ -138,6 +141,7 @@ class WideDeepModel(nn.Cell):
|
|||
super(WideDeepModel, self).__init__()
|
||||
self.batch_size = config.batch_size
|
||||
host_device_mix = bool(config.host_device_mix)
|
||||
parameter_server = bool(config.parameter_server)
|
||||
parallel_mode = _get_parallel_mode()
|
||||
is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
|
||||
if is_auto_parallel:
|
||||
|
@ -164,6 +168,9 @@ class WideDeepModel(nn.Cell):
|
|||
self.wide_w = var_map["Wide_w"]
|
||||
self.wide_b = var_map["Wide_b"]
|
||||
self.embedding_table = var_map["V_l2"]
|
||||
if parameter_server:
|
||||
self.wide_w.set_param_ps()
|
||||
self.embedding_table.set_param_ps()
|
||||
self.dense_layer_1 = DenseLayer(self.all_dim_list[0],
|
||||
self.all_dim_list[1],
|
||||
self.weight_bias_init,
|
||||
|
@ -209,6 +216,9 @@ class WideDeepModel(nn.Cell):
|
|||
self.deep_mul.set_strategy(((1, 1, get_group_size()), (1, 1, 1)))
|
||||
self.deep_reshape.add_prim_attr("skip_redistribution", True)
|
||||
self.reduce_sum.add_prim_attr("cross_batch", True)
|
||||
elif parameter_server:
|
||||
self.deep_embeddinglookup = nn.EmbeddingLookup()
|
||||
self.wide_embeddinglookup = nn.EmbeddingLookup()
|
||||
else:
|
||||
self.deep_embeddinglookup = nn.EmbeddingLookup(target='DEVICE')
|
||||
self.wide_embeddinglookup = nn.EmbeddingLookup(target='DEVICE')
|
||||
|
@ -249,9 +259,10 @@ class NetWithLossClass(nn.Cell):
|
|||
def __init__(self, network, config):
|
||||
super(NetWithLossClass, self).__init__(auto_prefix=False)
|
||||
host_device_mix = bool(config.host_device_mix)
|
||||
parameter_server = bool(config.parameter_server)
|
||||
parallel_mode = _get_parallel_mode()
|
||||
is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
|
||||
self.no_l2loss = host_device_mix and is_auto_parallel
|
||||
self.no_l2loss = (is_auto_parallel if host_device_mix else parameter_server)
|
||||
self.network = network
|
||||
self.l2_coef = config.l2_coef
|
||||
self.loss = P.SigmoidCrossEntropyWithLogits()
|
||||
|
@ -262,6 +273,9 @@ class NetWithLossClass(nn.Cell):
|
|||
self.reduceSum_false = P.ReduceSum(keep_dims=False)
|
||||
|
||||
def construct(self, batch_ids, batch_wts, label):
|
||||
'''
|
||||
Construct NetWithLossClass
|
||||
'''
|
||||
predict, embedding_table = self.network(batch_ids, batch_wts)
|
||||
log_loss = self.loss(predict, label)
|
||||
wide_loss = self.reduceMean_false(log_loss)
|
||||
|
@ -294,9 +308,10 @@ class TrainStepWrap(nn.Cell):
|
|||
network (Cell): The training network. Note that loss function should have been added.
|
||||
sens (Number): The adjust parameter. Default: 1024.0
|
||||
host_device_mix (Bool): Whether run in host and device mix mode. Default: False
|
||||
parameter_server (Bool): Whether run in parameter server mode. Default: False
|
||||
"""
|
||||
|
||||
def __init__(self, network, sens=1024.0, host_device_mix=False):
|
||||
def __init__(self, network, sens=1024.0, host_device_mix=False, parameter_server=False):
|
||||
super(TrainStepWrap, self).__init__()
|
||||
parallel_mode = _get_parallel_mode()
|
||||
is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
|
||||
|
@ -320,6 +335,13 @@ class TrainStepWrap(nn.Cell):
|
|||
l1=1e-8, l2=1e-8, initial_accum=1.0, loss_scale=sens)
|
||||
self.optimizer_w.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
self.optimizer_d.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
elif parameter_server:
|
||||
self.optimizer_d = Adam(
|
||||
self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens)
|
||||
self.optimizer_w = FTRL(learning_rate=5e-2, params=self.weights_w,
|
||||
l1=1e-8, l2=1e-8, initial_accum=1.0, loss_scale=sens)
|
||||
self.optimizer_w.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
self.optimizer_d.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
else:
|
||||
self.optimizer_d = Adam(
|
||||
self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens)
|
||||
|
@ -347,6 +369,9 @@ class TrainStepWrap(nn.Cell):
|
|||
self.grad_reducer_d = DistributedGradReducer(self.optimizer_d.parameters, mean, degree)
|
||||
|
||||
def construct(self, batch_ids, batch_wts, label):
|
||||
'''
|
||||
Construct wide and deep model
|
||||
'''
|
||||
weights_w = self.weights_w
|
||||
weights_d = self.weights_d
|
||||
loss_w, loss_d = self.network(batch_ids, batch_wts, label)
|
||||
|
|
|
@ -0,0 +1,129 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""train_multinpu."""
|
||||
|
||||
|
||||
import os
|
||||
import sys
|
||||
import numpy as np
|
||||
from mindspore import Model, context
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
|
||||
from mindspore.train import ParallelMode
|
||||
from mindspore.communication.management import get_rank, get_group_size, init
|
||||
|
||||
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
|
||||
from src.callbacks import LossCallBack, EvalCallBack
|
||||
from src.datasets import create_dataset, DataType
|
||||
from src.metrics import AUCMetric
|
||||
from src.config import WideDeepConfig
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
context.set_context(enable_sparse=True)
|
||||
|
||||
|
||||
def get_WideDeep_net(config):
|
||||
"""
|
||||
Get network of wide&deep model.
|
||||
"""
|
||||
WideDeep_net = WideDeepModel(config)
|
||||
loss_net = NetWithLossClass(WideDeep_net, config)
|
||||
train_net = TrainStepWrap(loss_net, parameter_server=bool(config.parameter_server))
|
||||
eval_net = PredictWithSigmoid(WideDeep_net)
|
||||
return train_net, eval_net
|
||||
|
||||
|
||||
class ModelBuilder():
|
||||
"""
|
||||
ModelBuilder
|
||||
"""
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def get_hook(self):
|
||||
pass
|
||||
|
||||
def get_train_hook(self):
|
||||
hooks = []
|
||||
callback = LossCallBack()
|
||||
hooks.append(callback)
|
||||
if int(os.getenv('DEVICE_ID')) == 0:
|
||||
pass
|
||||
return hooks
|
||||
|
||||
def get_net(self, config):
|
||||
return get_WideDeep_net(config)
|
||||
|
||||
|
||||
def train_and_eval(config):
|
||||
"""
|
||||
test_train_eval
|
||||
"""
|
||||
np.random.seed(1000)
|
||||
data_path = config.data_path
|
||||
batch_size = config.batch_size
|
||||
epochs = config.epochs
|
||||
if config.dataset_type == "tfrecord":
|
||||
dataset_type = DataType.TFRECORD
|
||||
elif config.dataset_type == "mindrecord":
|
||||
dataset_type = DataType.MINDRECORD
|
||||
else:
|
||||
dataset_type = DataType.H5
|
||||
parameter_server = bool(config.parameter_server)
|
||||
print("epochs is {}".format(epochs))
|
||||
ds_train = create_dataset(data_path, train_mode=True, epochs=1,
|
||||
batch_size=batch_size, rank_id=get_rank(),
|
||||
rank_size=get_group_size(), data_type=dataset_type)
|
||||
ds_eval = create_dataset(data_path, train_mode=False, epochs=1,
|
||||
batch_size=batch_size, rank_id=get_rank(),
|
||||
rank_size=get_group_size(), data_type=dataset_type)
|
||||
print("ds_train.size: {}".format(ds_train.get_dataset_size()))
|
||||
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
|
||||
|
||||
net_builder = ModelBuilder()
|
||||
|
||||
train_net, eval_net = net_builder.get_net(config)
|
||||
train_net.set_train()
|
||||
auc_metric = AUCMetric()
|
||||
|
||||
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
|
||||
|
||||
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
|
||||
|
||||
callback = LossCallBack(config=config)
|
||||
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5)
|
||||
if config.device_target == "Ascend":
|
||||
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train',
|
||||
directory=config.ckpt_path, config=ckptconfig)
|
||||
elif config.device_target == "GPU":
|
||||
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train_' + str(get_rank()),
|
||||
directory=config.ckpt_path, config=ckptconfig)
|
||||
model.train(epochs, ds_train,
|
||||
callbacks=[TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback, ckpoint_cb],
|
||||
dataset_sink_mode=(not parameter_server))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
wide_deep_config = WideDeepConfig()
|
||||
wide_deep_config.argparse_init()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=wide_deep_config.device_target)
|
||||
if wide_deep_config.device_target == "Ascend":
|
||||
init("hccl")
|
||||
elif wide_deep_config.device_target == "GPU":
|
||||
init("nccl")
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
|
||||
device_num=get_group_size())
|
||||
|
||||
train_and_eval(wide_deep_config)
|
|
@ -0,0 +1,61 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
execute_path=$(pwd)
|
||||
self_path=$(dirname "${script_self}")
|
||||
export MS_COMM_TYPE=zmq
|
||||
export MS_SCHED_NUM=1
|
||||
DEVICE_TARGET=$1
|
||||
export MS_WORKER_NUM=$2
|
||||
export MS_SERVER_NUM=$3
|
||||
export MS_SCHED_HOST=$4
|
||||
export MS_SCHED_PORT=$5
|
||||
|
||||
export MS_ROLE=MS_SCHED
|
||||
for((i=0;i<1;i++));
|
||||
do
|
||||
rm -rf ${execute_path}/sched_$i/
|
||||
mkdir ${execute_path}/sched_$i/
|
||||
cd ${execute_path}/sched_$i/ || exit
|
||||
export RANK_ID=$i
|
||||
export DEVICE_ID=$i
|
||||
python -s ${self_path}/../test_full_ps_lenet.py --device_target=$DEVICE_TARGET &
|
||||
done
|
||||
|
||||
export MS_ROLE=MS_PSERVER
|
||||
for((i=0;i<$MS_SERVER_NUM;i++));
|
||||
do
|
||||
rm -rf ${execute_path}/server_$i/
|
||||
mkdir ${execute_path}/server_$i/
|
||||
cd ${execute_path}/server_$i/ || exit
|
||||
export RANK_ID=$i
|
||||
export DEVICE_ID=$i
|
||||
python -s ${self_path}/../test_full_ps_lenet.py --device_target=$DEVICE_TARGET &
|
||||
done
|
||||
|
||||
export MS_ROLE=MS_WORKER
|
||||
for((i=0;i<$MS_WORKER_NUM;i++));
|
||||
do
|
||||
rm -rf ${execute_path}/worker_$i/
|
||||
mkdir ${execute_path}/worker_$i/
|
||||
cd ${execute_path}/worker_$i/ || exit
|
||||
export RANK_ID=$i
|
||||
export DEVICE_ID=$i
|
||||
python -s ${self_path}/../test_full_ps_lenet.py --device_target=$DEVICE_TARGET &
|
||||
done
|
||||
|
||||
wait $!
|
||||
exit $?
|
|
@ -0,0 +1,137 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
import argparse
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
import mindspore.dataset.transforms.vision.c_transforms as CV
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.dataset.transforms.vision import Inter
|
||||
from mindspore.nn.metrics import Accuracy
|
||||
from mindspore.train import Model
|
||||
from mindspore.train.callback import LossMonitor
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
|
||||
parser = argparse.ArgumentParser(description='test_ps_lenet')
|
||||
parser.add_argument("--device_target", type=str, default="Ascend")
|
||||
parser.add_argument("--dataset_path", type=str, default="/home/workspace/mindspore_dataset/mnist")
|
||||
args, _ = parser.parse_known_args()
|
||||
device_target = args.device_target
|
||||
dataset_path = args.dataset_path
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
|
||||
|
||||
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
||||
"""weight initial for conv layer"""
|
||||
weight = weight_variable()
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=kernel_size, stride=stride, padding=padding,
|
||||
weight_init=weight, has_bias=False, pad_mode="valid")
|
||||
|
||||
|
||||
def fc_with_initialize(input_channels, out_channels):
|
||||
"""weight initial for fc layer"""
|
||||
weight = weight_variable()
|
||||
bias = weight_variable()
|
||||
return nn.Dense(input_channels, out_channels, weight, bias)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
def __init__(self, num_class=10, channel=1):
|
||||
super(LeNet5, self).__init__()
|
||||
self.num_class = num_class
|
||||
self.conv1 = conv(channel, 6, 5)
|
||||
self.conv2 = conv(6, 16, 5)
|
||||
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
||||
self.fc2 = fc_with_initialize(120, 84)
|
||||
self.fc3 = fc_with_initialize(84, self.num_class)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
def create_dataset(data_path, batch_size=32, repeat_size=1,
|
||||
num_parallel_workers=1):
|
||||
"""
|
||||
create dataset for train or test
|
||||
"""
|
||||
# define dataset
|
||||
mnist_ds = ds.MnistDataset(data_path)
|
||||
|
||||
resize_height, resize_width = 32, 32
|
||||
rescale = 1.0 / 255.0
|
||||
shift = 0.0
|
||||
rescale_nml = 1 / 0.3081
|
||||
shift_nml = -1 * 0.1307 / 0.3081
|
||||
|
||||
# define map operations
|
||||
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
||||
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
||||
rescale_op = CV.Rescale(rescale, shift)
|
||||
hwc2chw_op = CV.HWC2CHW()
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
|
||||
# apply map operations on images
|
||||
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
|
||||
|
||||
# apply DatasetOps
|
||||
buffer_size = 10000
|
||||
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
|
||||
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
||||
mnist_ds = mnist_ds.repeat(repeat_size)
|
||||
|
||||
return mnist_ds
|
||||
|
||||
if __name__ == "__main__":
|
||||
network = LeNet5(10)
|
||||
network.set_param_ps()
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
||||
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
|
||||
ds_train = create_dataset(os.path.join(dataset_path, "train"), 32, 1)
|
||||
model.train(1, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=False)
|
||||
|
||||
ds_eval = create_dataset(os.path.join(dataset_path, "test"), 32, 1)
|
||||
acc = model.eval(ds_eval, dataset_sink_mode=False)
|
||||
|
||||
print("Accuracy:", acc['Accuracy'])
|
||||
assert acc['Accuracy'] > 0.93
|
|
@ -0,0 +1,30 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
|
||||
# @pytest.mark.level0
|
||||
# @pytest.mark.platform_arm_ascend_training
|
||||
# @pytest.mark.platform_x86_ascend_training
|
||||
# @pytest.mark.env_onecard
|
||||
def test_full_ps_ascend_lenet():
|
||||
return_code = os.system("bash run_full_ps_lenet.sh Ascend 1 1 127.0.0.1 8088")
|
||||
assert return_code == 0
|
||||
|
||||
# @pytest.mark.level0
|
||||
# @pytest.mark.platform_x86_gpu_training
|
||||
# @pytest.mark.env_onecard
|
||||
def test_full_ps_gpu_lenet():
|
||||
return_code = os.system("bash run_full_ps_lenet.sh GPU 1 1 127.0.0.1 8088")
|
||||
assert return_code == 0
|
Loading…
Reference in New Issue