forked from OSSInnovation/mindspore
!3864 fix fp16 init func bug && enable arm32 assembly code
Merge pull request !3864 from fuzhiye/mindspore
This commit is contained in:
commit
4edcce367d
|
@ -19,12 +19,6 @@
|
|||
|
||||
using mindspore::schema::Format;
|
||||
namespace mindspore::kernel {
|
||||
#ifdef ENABLE_FP16
|
||||
LayoutConvertor LayoutTransformFp16(schema::Format src_format, schema::Format dst_format) {
|
||||
// todo
|
||||
return nullptr;
|
||||
}
|
||||
#endif
|
||||
LayoutConvertor LayoutTransformFp32(schema::Format src_format, schema::Format dst_format) {
|
||||
// todo
|
||||
if (src_format == schema::Format_NHWC && dst_format == schema::Format_NC4HW4) {
|
||||
|
@ -58,10 +52,6 @@ LayoutConvertor LayoutTransform(TypeId data_type, schema::Format src_format, sch
|
|||
switch (data_type) {
|
||||
case kNumberTypeInt8:
|
||||
return LayoutTransformInt8(src_format, dst_format);
|
||||
#ifdef ENABLE_FP16
|
||||
case kNumberTypeFloat16:
|
||||
return LayoutTransformFp16(src_format, dst_format);
|
||||
#endif
|
||||
case kNumberTypeFloat32:
|
||||
return LayoutTransformFp32(src_format, dst_format);
|
||||
default:
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
#include "src/runtime/kernel/arm/opclib/fp16/conv_fp16.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp16/winograd_transform_fp16.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp16/pack_fp16.h"
|
||||
#include "src/runtime/kernel/arm/base/layout_transform.h"
|
||||
#include "src/runtime/kernel/arm/fp16/layout_transform_fp16.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "include/errorcode.h"
|
||||
|
@ -159,9 +159,11 @@ void Convolution3x3FP16CPUKernel::ConfigInputOutput() {
|
|||
auto output_tensor = outputs_.at(kOutputIndex);
|
||||
output_tensor->SetFormat(schema::Format_NHWC);
|
||||
auto input_tensor = inputs_.at(kInputIndex);
|
||||
auto ret = CheckLayout(input_tensor);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Check layout failed.";
|
||||
auto input_format = input_tensor->GetFormat();
|
||||
schema::Format execute_format = schema::Format_NHWC4;
|
||||
convert_func_ = LayoutTransformFp16(input_format, execute_format);
|
||||
if (convert_func_ == nullptr) {
|
||||
MS_LOG(ERROR) << "layout convert func is nullptr.";
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
#include "src/runtime/kernel/arm/fp16/convolution_3x3_fp16.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp16/conv_fp16.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp16/pack_fp16.h"
|
||||
#include "src/runtime/kernel/arm/base/layout_transform.h"
|
||||
#include "src/runtime/kernel/arm/fp16/layout_transform_fp16.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "include/errorcode.h"
|
||||
|
@ -130,9 +130,11 @@ int ConvolutionFP16CPUKernel::InitTmpBuffer() {
|
|||
|
||||
void ConvolutionFP16CPUKernel::ConfigInputOutput() {
|
||||
auto input_tensor = inputs_.at(kInputIndex);
|
||||
auto ret = CheckLayout(input_tensor);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Check layout failed.";
|
||||
auto input_format = input_tensor->GetFormat();
|
||||
schema::Format execute_format = schema::Format_NHWC4;
|
||||
convert_func_ = LayoutTransformFp16(input_format, execute_format);
|
||||
if (convert_func_ == nullptr) {
|
||||
MS_LOG(ERROR) << "layout convert func is nullptr.";
|
||||
return;
|
||||
}
|
||||
auto output_tensor = outputs_.at(kOutputIndex);
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/runtime/kernel/arm/fp16/layout_transform_fp16.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp16/pack_fp16.h"
|
||||
#include "schema/ops_generated.h"
|
||||
#include "mindspore/core/utils/log_adapter.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
LayoutConvertor LayoutTransformFp16(schema::Format src_format, schema::Format dst_format) {
|
||||
if (src_format == schema::Format_NHWC && dst_format == schema::Format_NC4HW4) {
|
||||
return PackNHWCToNC4HW4Fp16;
|
||||
} else if (src_format == schema::Format_NHWC && dst_format == schema::Format_NHWC4) {
|
||||
return PackNHWCToNHWC4Fp16;
|
||||
} else if (src_format == schema::Format_NC4HW4 && dst_format == schema::Format_NHWC4) {
|
||||
return PackNC4HW4ToNHWC4Fp16;
|
||||
} else if (src_format == schema::Format_NCHW && dst_format == schema::Format_NC4HW4) {
|
||||
return PackNCHWToNC4HW4Fp16;
|
||||
} else if (src_format == schema::Format_NC4HW4 && dst_format == schema::Format_NHWC) {
|
||||
return PackNC4HW4ToNHWCFp16;
|
||||
} else {
|
||||
MS_LOG(ERROR) << "Unsupported transform from " << schema::EnumNameFormat(src_format) << " to "
|
||||
<< schema::EnumNameFormat(dst_format);
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
} // namespace mindspore::kernel
|
|
@ -0,0 +1,27 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_LAYOUT_TRANSFORM_FP16_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_LAYOUT_TRANSFORM_FP16_H_
|
||||
|
||||
#include "src/runtime/kernel/arm/base/layout_transform.h"
|
||||
#include "schema/ops_generated.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
LayoutConvertor LayoutTransformFp16(schema::Format src_format, schema::Format dst_format);
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_LAYOUT_TRANSFORM_FP16_H_
|
|
@ -19,6 +19,7 @@
|
|||
#include "src/runtime/kernel/arm/fp32/convolution_3x3.h"
|
||||
#include "src/runtime/kernel/arm/fp32/convolution_winograd.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp32/conv.h"
|
||||
#include "src/runtime/kernel/arm/opclib/common_func.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_factory.h"
|
||||
#include "include/errorcode.h"
|
||||
|
@ -56,7 +57,7 @@ int ConvolutionCPUKernel::InitWeightBias() {
|
|||
return RET_ERROR;
|
||||
}
|
||||
memset(packed_weight_, 0, pack_weight_size * sizeof(float));
|
||||
PackWeightFp32(origin_weight, conv_param_, packed_weight_);
|
||||
PackWeightFp32(origin_weight, conv_param_, packed_weight_, oc_block, oc_block_num);
|
||||
|
||||
// init bias
|
||||
bias_data_ = reinterpret_cast<float *>(malloc(oc_block_num * oc_block * sizeof(float)));
|
||||
|
@ -125,6 +126,11 @@ void ConvolutionCPUKernel::ConfigInputOutput() {
|
|||
MS_LOG(ERROR) << "Check layout failed.";
|
||||
return;
|
||||
}
|
||||
#ifdef ENABLE_ARM32
|
||||
gemm_func_ = IndirectGemmFp32_8x4;
|
||||
#else
|
||||
gemm_func_ = IndirectGemmFp32_8x8;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ConvolutionCPUKernel::Init() {
|
||||
|
@ -175,9 +181,13 @@ int ConvolutionCPUKernel::ReSize() {
|
|||
}
|
||||
|
||||
int ConvolutionCPUKernel::RunImpl(int task_id) {
|
||||
if (gemm_func_ == nullptr) {
|
||||
MS_LOG(ERROR) << "gemm_func is nullptr.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto output_addr = reinterpret_cast<float *>(outputs_.at(kOutputIndex)->Data());
|
||||
ConvFp32(reinterpret_cast<float *>(nhwc4_input_), packed_input_, packed_weight_,
|
||||
reinterpret_cast<float *>(bias_data_), tmp_output_block_, output_addr, task_id, conv_param_);
|
||||
reinterpret_cast<float *>(bias_data_), tmp_output_block_, output_addr, task_id, conv_param_, gemm_func_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include "src/lite_kernel.h"
|
||||
#include "src/runtime/kernel/arm/opclib/op_base.h"
|
||||
#include "src/runtime/kernel/arm/base/convolution_base.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp32/conv.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class ConvolutionCPUKernel : public ConvolutionBaseCPUKernel {
|
||||
|
@ -52,8 +53,8 @@ class ConvolutionCPUKernel : public ConvolutionBaseCPUKernel {
|
|||
float *packed_input_;
|
||||
float *packed_weight_;
|
||||
float *tmp_output_block_;
|
||||
GEMM_FUNC_FP32 gemm_func_ = nullptr;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CONVOLUTION_H_
|
||||
|
||||
|
|
|
@ -29,14 +29,13 @@ using mindspore::lite::RET_OK;
|
|||
using mindspore::schema::PrimitiveType_Conv2D;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
void ProcessFilter(float *origin_weight, float *dst_weight, ConvParameter *conv_param) {
|
||||
void ProcessFilter(float *origin_weight, float *dst_weight, ConvParameter *conv_param, int oc_block, int oc_block_num) {
|
||||
auto input_channel = conv_param->input_channel_;
|
||||
auto output_channel = conv_param->output_channel_;
|
||||
auto kernel_plane = conv_param->kernel_w_ * conv_param->kernel_h_;
|
||||
int iC4 = UP_DIV(input_channel, C4NUM);
|
||||
int oc8 = UP_DIV(output_channel, C8NUM);
|
||||
|
||||
size_t tmp_size = oc8 * C8NUM * iC4 * C4NUM * kernel_plane * sizeof(float);
|
||||
size_t tmp_size = oc_block_num * oc_block * iC4 * C4NUM * kernel_plane * sizeof(float);
|
||||
auto tmp_addr = reinterpret_cast<float *>(malloc(tmp_size));
|
||||
if (tmp_addr == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc tmp_addr failed.";
|
||||
|
@ -45,8 +44,7 @@ void ProcessFilter(float *origin_weight, float *dst_weight, ConvParameter *conv_
|
|||
memset(tmp_addr, 0, tmp_size);
|
||||
|
||||
PackNHWCToNC4HW4Fp32(origin_weight, tmp_addr, output_channel, kernel_plane, input_channel);
|
||||
Conv3x3Fp32FilterTransform(tmp_addr, dst_weight, iC4, output_channel, kernel_plane);
|
||||
|
||||
Conv3x3Fp32FilterTransform(tmp_addr, dst_weight, iC4, output_channel, kernel_plane, oc_block);
|
||||
free(tmp_addr);
|
||||
}
|
||||
|
||||
|
@ -55,10 +53,17 @@ int Convolution3x3CPUKernel::InitWeightBias() {
|
|||
auto output_channel = conv_param_->output_channel_;
|
||||
int iC4 = UP_DIV(input_channel, C4NUM);
|
||||
int oC4 = UP_DIV(output_channel, C4NUM);
|
||||
int oC8 = UP_DIV(output_channel, C8NUM);
|
||||
int oc_block, oc_block_num;
|
||||
#ifdef ENABLE_ARM32
|
||||
oc_block = C4NUM;
|
||||
oc_block_num = UP_DIV(output_channel, C4NUM);
|
||||
#else
|
||||
oc_block = C8NUM;
|
||||
oc_block_num = UP_DIV(output_channel, C8NUM);
|
||||
#endif
|
||||
int k_plane = 16;
|
||||
// init weight
|
||||
size_t transformed_size = iC4 * C4NUM * oC8 * C8NUM * k_plane * sizeof(float);
|
||||
size_t transformed_size = iC4 * C4NUM * oc_block_num * oc_block * k_plane * sizeof(float);
|
||||
transformed_filter_addr_ = reinterpret_cast<float *>(malloc(transformed_size));
|
||||
if (transformed_filter_addr_ == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc transformed filter addr failed.";
|
||||
|
@ -66,7 +71,7 @@ int Convolution3x3CPUKernel::InitWeightBias() {
|
|||
}
|
||||
memset(transformed_filter_addr_, 0, transformed_size);
|
||||
auto weight_data = reinterpret_cast<float *>(inputs_.at(kWeightIndex)->Data());
|
||||
ProcessFilter(weight_data, transformed_filter_addr_, conv_param_);
|
||||
ProcessFilter(weight_data, transformed_filter_addr_, conv_param_, oc_block, oc_block_num);
|
||||
|
||||
// init bias
|
||||
size_t new_bias_size = oC4 * C4NUM * sizeof(float);
|
||||
|
@ -89,7 +94,6 @@ int Convolution3x3CPUKernel::InitTmpBuffer() {
|
|||
int iC4 = UP_DIV(conv_param_->input_channel_, C4NUM);
|
||||
int oC4 = UP_DIV(conv_param_->output_channel_, C4NUM);
|
||||
int k_plane = 16;
|
||||
// todo
|
||||
size_t tile_buffer_size = thread_count_ * TILE_NUM * k_plane * iC4 * C4NUM * sizeof(float);
|
||||
tile_buffer_ = reinterpret_cast<float *>(malloc(tile_buffer_size));
|
||||
if (tile_buffer_ == nullptr) {
|
||||
|
@ -148,6 +152,11 @@ void Convolution3x3CPUKernel::ConfigInputOutput() {
|
|||
MS_LOG(ERROR) << "Check layout failed.";
|
||||
return;
|
||||
}
|
||||
#ifdef ENABLE_ARM32
|
||||
gemm_func_ = IndirectGemmFp32_8x4;
|
||||
#else
|
||||
gemm_func_ = IndirectGemmFp32_8x8;
|
||||
#endif
|
||||
}
|
||||
|
||||
int Convolution3x3CPUKernel::Init() {
|
||||
|
@ -201,9 +210,13 @@ int Convolution3x3CPUKernel::ReSize() {
|
|||
}
|
||||
|
||||
int Convolution3x3CPUKernel::RunImpl(int task_id) {
|
||||
if (gemm_func_ == nullptr) {
|
||||
MS_LOG(ERROR) << "gemm_func is nullptr.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto output_addr = reinterpret_cast<float *>(outputs_.at(kOutputIndex)->Data());
|
||||
Conv3x3Fp32(reinterpret_cast<float *>(nhwc4_input_), transformed_filter_addr_, reinterpret_cast<float *>(bias_data_),
|
||||
output_addr, tmp_buffer_address_list_, task_id, conv_param_);
|
||||
output_addr, tmp_buffer_address_list_, task_id, conv_param_, gemm_func_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
@ -234,4 +247,3 @@ int Convolution3x3CPUKernel::Run() {
|
|||
return RET_OK;
|
||||
}
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -19,7 +19,6 @@
|
|||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
|
||||
#include "src/runtime/kernel/arm/base/convolution_base.h"
|
||||
#include "src/runtime/kernel/arm/opclib/winograd_transform.h"
|
||||
|
||||
|
@ -62,9 +61,9 @@ class Convolution3x3CPUKernel : public ConvolutionBaseCPUKernel {
|
|||
float *tmp_dst_buffer_;
|
||||
float *nc4hw4_out_;
|
||||
TmpBufferAddress tmp_buffer_address_list_[4];
|
||||
GEMM_FUNC_FP32 gemm_func_ = nullptr;
|
||||
};
|
||||
void ProcessFilter(float *origin_weight, float *dst_weight, ConvParameter *conv_param);
|
||||
void ProcessFilter(float *origin_weight, float *dst_weight, ConvParameter *conv_param, int oc_block, int oc_block_num);
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CONVOLUTION_3X3_H_
|
||||
|
||||
|
|
|
@ -29,7 +29,7 @@ using mindspore::schema::PrimitiveType_Conv2D;
|
|||
|
||||
namespace mindspore::kernel {
|
||||
void WinogradFilterTransform(const float *weight_data, Matrix *trans_weight, int kernel_unit, int input_unit,
|
||||
ConvParameter *conv_param) {
|
||||
ConvParameter *conv_param, int oc_block) {
|
||||
// original weight format : ohwi
|
||||
auto channel_in = conv_param->input_channel_;
|
||||
auto channel_out = conv_param->output_channel_;
|
||||
|
@ -53,10 +53,10 @@ void WinogradFilterTransform(const float *weight_data, Matrix *trans_weight, int
|
|||
|
||||
int kernel_plane_stride = channel_in;
|
||||
for (int i = 0; i < channel_out; i++) {
|
||||
int oc8_block = i / C8NUM;
|
||||
int oc8_res = i % C8NUM;
|
||||
int out_c_block = i / oc_block;
|
||||
int out_c_res = i % oc_block;
|
||||
int input_oz_offset = i * kernel_unit * kernel_unit * channel_in;
|
||||
int output_oz_offset = oc8_block * strides[1] * input_unit * input_unit + oc8_res;
|
||||
int output_oz_offset = out_c_block * strides[1] * input_unit * input_unit + out_c_res;
|
||||
for (int j = 0; j < channel_in; j++) {
|
||||
int ic4_block = j / C4NUM;
|
||||
int ic4_res = j % C4NUM;
|
||||
|
@ -88,16 +88,24 @@ void WinogradFilterTransform(const float *weight_data, Matrix *trans_weight, int
|
|||
int ConvolutionWinogradCPUKernel::InitWeightBias() {
|
||||
int output_channel = conv_param_->output_channel_;
|
||||
int oc4 = UP_DIV(output_channel, C4NUM);
|
||||
int oc_block, oc_block_num;
|
||||
#ifdef ENABLE_ARM32
|
||||
oc_block = C4NUM;
|
||||
oc_block_num = UP_DIV(output_channel, C4NUM);
|
||||
#else
|
||||
oc_block = C8NUM;
|
||||
oc_block_num = UP_DIV(output_channel, C8NUM);
|
||||
#endif
|
||||
|
||||
// init weight
|
||||
auto ret = MallocFilterMatrix();
|
||||
auto ret = MallocFilterMatrix(oc_block, oc_block_num);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Malloc filter matrix failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto weight_tensor = inputs_.at(kWeightIndex);
|
||||
auto weight_data = reinterpret_cast<float *>(weight_tensor->Data());
|
||||
WinogradFilterTransform(weight_data, trans_weight_, kernel_unit_, input_unit_, conv_param_);
|
||||
WinogradFilterTransform(weight_data, trans_weight_, kernel_unit_, input_unit_, conv_param_, oc_block);
|
||||
|
||||
// init bias
|
||||
size_t new_bias_size = oc4 * C4NUM * sizeof(float);
|
||||
|
@ -112,14 +120,12 @@ int ConvolutionWinogradCPUKernel::InitWeightBias() {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
int ConvolutionWinogradCPUKernel::MallocFilterMatrix() {
|
||||
int ConvolutionWinogradCPUKernel::MallocFilterMatrix(int oc_block, int oc_block_num) {
|
||||
int channel_in = conv_param_->input_channel_;
|
||||
int channel_out = conv_param_->output_channel_;
|
||||
int ic4 = UP_DIV(channel_in, BLOCK);
|
||||
int oc8 = UP_DIV(channel_out, C8NUM);
|
||||
|
||||
// set data
|
||||
auto trans_matrix_data_size = input_unit_ * input_unit_ * ic4 * oc8 * C4NUM * C8NUM * sizeof(float);
|
||||
auto trans_matrix_data_size = input_unit_ * input_unit_ * ic4 * C4NUM * oc_block_num * oc_block * sizeof(float);
|
||||
auto matrix_buffer = malloc(trans_matrix_data_size);
|
||||
if (matrix_buffer == nullptr) {
|
||||
MS_LOG(ERROR) << "malloc matrix_buffer failed.";
|
||||
|
@ -134,10 +140,10 @@ int ConvolutionWinogradCPUKernel::MallocFilterMatrix() {
|
|||
std::vector<int> strides;
|
||||
// set shape
|
||||
shapes.push_back(input_unit_ * input_unit_);
|
||||
shapes.push_back(oc8);
|
||||
shapes.push_back(oc_block_num);
|
||||
shapes.push_back(ic4);
|
||||
shapes.push_back(C4NUM);
|
||||
shapes.push_back(C8NUM);
|
||||
shapes.push_back(oc_block);
|
||||
// set stride
|
||||
for (int i = 0; i < 4; i++) {
|
||||
int stride = 1;
|
||||
|
@ -227,6 +233,11 @@ int ConvolutionWinogradCPUKernel::ConfigInputOutput() {
|
|||
MS_LOG(ERROR) << "Get output_trans_func_ failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
#ifdef ENABLE_ARM32
|
||||
gemm_func_ = IndirectGemmFp32_8x4;
|
||||
#else
|
||||
gemm_func_ = IndirectGemmFp32_8x8;
|
||||
#endif
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
@ -301,10 +312,14 @@ int ConvolutionWinogradCPUKernel::ReSize() {
|
|||
}
|
||||
|
||||
int ConvolutionWinogradCPUKernel::RunImpl(int task_id) {
|
||||
if (gemm_func_ == nullptr) {
|
||||
MS_LOG(ERROR) << "gemm_func is nullptr.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto output_addr = reinterpret_cast<float *>(outputs_.at(kOutputIndex)->Data());
|
||||
ConvWinogardFp32(reinterpret_cast<float *>(nhwc4_input_), reinterpret_cast<float *>(trans_weight_->GetData()),
|
||||
reinterpret_cast<const float *>(bias_data_), output_addr, tmp_buffer_address_list_, task_id,
|
||||
conv_param_, input_trans_func_, output_trans_func_);
|
||||
conv_param_, input_trans_func_, output_trans_func_, gemm_func_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
@ -335,4 +350,3 @@ int ConvolutionWinogradCPUKernel::Run() {
|
|||
return RET_OK;
|
||||
}
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -50,7 +50,7 @@ class ConvolutionWinogradCPUKernel : public ConvolutionBaseCPUKernel {
|
|||
int Run() override;
|
||||
int RunImpl(int task_id);
|
||||
int InitWeightBias();
|
||||
int MallocFilterMatrix();
|
||||
int MallocFilterMatrix(int oc_block, int oc_block_num);
|
||||
int InitTmpBuffer();
|
||||
int ConfigInputOutput();
|
||||
|
||||
|
@ -66,9 +66,9 @@ class ConvolutionWinogradCPUKernel : public ConvolutionBaseCPUKernel {
|
|||
InputTransformUnitFunc input_trans_func_;
|
||||
OutputTransformUnitFunc output_trans_func_;
|
||||
TmpBufferAddress tmp_buffer_address_list_[5];
|
||||
GEMM_FUNC_FP32 gemm_func_ = nullptr;
|
||||
};
|
||||
void WinogradFilterTransform(const float *weight_data, Matrix *trans_weight, int kernel_unit, int input_unit,
|
||||
ConvParameter *conv_param);
|
||||
ConvParameter *conv_param, int oc_block);
|
||||
} // namespace mindspore::kernel
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_CONVOLUTION_WINOGRAD_H_
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
#include "src/runtime/kernel/arm/opclib/common_func.h"
|
||||
#include "src/runtime/kernel/arm/opclib/quantization/fixed_point.h"
|
||||
|
||||
#ifndef __aarch64__
|
||||
#ifndef ENABLE_ARM64
|
||||
void IndirectGemmFp32(float *output, const float *input, const float *weight, const float *bias, size_t step, int ic4,
|
||||
int output_channel, size_t offset, size_t relu, size_t relu6) {
|
||||
for (int i = 0; i < TILE_NUM; i++) {
|
||||
|
@ -102,6 +102,11 @@ void IndirectGemmFp32_8x8(float *output, const float *input, const float *weight
|
|||
}
|
||||
}
|
||||
#endif
|
||||
#ifndef ENABLE_ARM32
|
||||
void IndirectGemmFp32_8x4(float *output, const float *input, const float *weight, const float *bias, size_t step,
|
||||
size_t ic4, size_t output_channel, size_t offset, size_t mode, size_t writeC4, size_t relu,
|
||||
size_t relu6) {}
|
||||
#endif
|
||||
|
||||
int8_t MinInt8(int8_t a, int8_t b) { return b ^ ((a ^ b) & -(a < b)); }
|
||||
|
||||
|
|
|
@ -36,6 +36,9 @@ void PostFuncInt8(const int *in, const int *bias, int8_t *out, int oc, int plane
|
|||
void IndirectGemmFp32_8x8(float *output, const float *input, const float *weight, const float *bias, size_t step,
|
||||
size_t ic4, size_t output_channel, size_t offset, size_t mode, size_t writeC4, size_t relu,
|
||||
size_t relu6);
|
||||
void IndirectGemmFp32_8x4(float *output, const float *input, const float *weight, const float *bias, size_t step,
|
||||
size_t ic4, size_t output_channel, size_t offset, size_t mode, size_t writeC4, size_t relu,
|
||||
size_t relu6);
|
||||
void IndirectGemmFp32_Comm(float *output, const float *input, const float *weight, size_t ic4, size_t hw, size_t oc,
|
||||
size_t offset);
|
||||
void IndirectGemmFp32(float *output, const float *input, const float *weight, const float *bias, size_t step, int ic4,
|
||||
|
|
|
@ -20,7 +20,8 @@
|
|||
|
||||
// fp32 conv common
|
||||
void ConvFp32(float *input_data, float *packed_input, float *packed_weight, const float *bias_data,
|
||||
float *tmp_out_block, float *output_data, int task_id, ConvParameter *conv_param) {
|
||||
float *tmp_out_block, float *output_data, int task_id, ConvParameter *conv_param,
|
||||
GEMM_FUNC_FP32 gemm_func) {
|
||||
int kernel_h = conv_param->kernel_h_;
|
||||
int kernel_w = conv_param->kernel_w_;
|
||||
int in_batch = conv_param->input_batch_;
|
||||
|
@ -57,12 +58,12 @@ void ConvFp32(float *input_data, float *packed_input, float *packed_weight, cons
|
|||
int out_offset = thread_id * TILE_NUM * out_channel + out_batch_offset;
|
||||
if (real_cal_num == TILE_NUM) {
|
||||
float *gemm_output = output_data + out_offset;
|
||||
IndirectGemmFp32_8x8(gemm_output, gemm_input, packed_weight, bias_data, conv_depth, ic4, out_channel,
|
||||
output_offset, 0, 0, conv_param->is_relu_, conv_param->is_relu6_);
|
||||
gemm_func(gemm_output, gemm_input, packed_weight, bias_data, conv_depth, ic4, out_channel, output_offset, 0, 0,
|
||||
conv_param->is_relu_, conv_param->is_relu6_);
|
||||
} else {
|
||||
// res part
|
||||
IndirectGemmFp32_8x8(tmp_out_block, gemm_input, packed_weight, bias_data, conv_depth, ic4, out_channel,
|
||||
output_offset, 0, 0, conv_param->is_relu_, conv_param->is_relu6_);
|
||||
gemm_func(tmp_out_block, gemm_input, packed_weight, bias_data, conv_depth, ic4, out_channel, output_offset, 0,
|
||||
0, conv_param->is_relu_, conv_param->is_relu6_);
|
||||
memcpy(output_data + out_offset, tmp_out_block, real_cal_num * out_channel * sizeof(float));
|
||||
}
|
||||
}
|
||||
|
@ -78,7 +79,8 @@ int Conv1x1Fp32(const float *input_data, const float *weight_data, float *output
|
|||
// fp32 conv winograd
|
||||
void ConvWinogardFp32(float *input_data, float *trans_weight, const float *bias_data, float *output_data,
|
||||
TmpBufferAddress *buffer_list, int task_id, ConvParameter *conv_param,
|
||||
InputTransformUnitFunc input_trans_func, OutputTransformUnitFunc output_trans_func) {
|
||||
InputTransformUnitFunc input_trans_func, OutputTransformUnitFunc output_trans_func,
|
||||
GEMM_FUNC_FP32 gemm_func) {
|
||||
int thread_num = conv_param->thread_num_;
|
||||
int input_unit = conv_param->input_unit_;
|
||||
int in_batch = conv_param->input_batch_;
|
||||
|
@ -111,8 +113,8 @@ void ConvWinogardFp32(float *input_data, float *trans_weight, const float *bias_
|
|||
WinogradInputTransform(input_data, trans_input, tmp_data, cal_num, out_tile_index, out_w_block, conv_param,
|
||||
input_trans_func);
|
||||
// step 3 : gemm
|
||||
IndirectGemmFp32_8x8(gemm_out, trans_input, trans_weight, nullptr, input_unit_square, ic4, oc4 * C4NUM,
|
||||
output_offset, 1, 1, 0, 0);
|
||||
gemm_func(gemm_out, trans_input, trans_weight, nullptr, input_unit_square, ic4, oc4 * C4NUM, output_offset, 1, 1,
|
||||
0, 0);
|
||||
|
||||
// step 4 : output transform
|
||||
WinogradOutputTransform(gemm_out, tmp_out_data, bias_data, cal_num, out_tile_index, out_w_block, conv_param,
|
||||
|
@ -173,7 +175,7 @@ void UnPackWinogradOutput(const float *src, float *dst, int batch, int height, i
|
|||
|
||||
// fp32 conv3x3
|
||||
void Conv3x3Fp32(float *input_data, float *transed_weight, const float *bias_data, float *output_data,
|
||||
TmpBufferAddress *buffer_list, int task_id, ConvParameter *conv_param) {
|
||||
TmpBufferAddress *buffer_list, int task_id, ConvParameter *conv_param, GEMM_FUNC_FP32 gemm_func) {
|
||||
int thread_count = conv_param->thread_num_;
|
||||
int ic4 = UP_DIV(conv_param->input_channel_, C4NUM);
|
||||
int output_channel = conv_param->output_channel_;
|
||||
|
@ -198,8 +200,8 @@ void Conv3x3Fp32(float *input_data, float *transed_weight, const float *bias_dat
|
|||
Conv3x3Fp32InputTransform(input_data, tile_buffer, block_unit_buffer, start_index, real_cal_num, out_w_block,
|
||||
conv_param);
|
||||
|
||||
IndirectGemmFp32_8x8(tmp_dst_buffer, tile_buffer, transed_weight, nullptr, input_unit_square, ic4, oc4 * C4NUM,
|
||||
oc4 * C4NUM * input_unit_square * sizeof(float), 1, 1, 0, 0);
|
||||
gemm_func(tmp_dst_buffer, tile_buffer, transed_weight, nullptr, input_unit_square, ic4, oc4 * C4NUM,
|
||||
oc4 * C4NUM * input_unit_square * sizeof(float), 1, 1, 0, 0);
|
||||
|
||||
Conv3x3Fp32OutputTransform(tmp_dst_buffer, nc4hw4_out, bias_data, start_index, real_cal_num, out_w_block,
|
||||
conv_param);
|
||||
|
|
|
@ -28,10 +28,14 @@
|
|||
#include "src/runtime/kernel/arm/opclib/winograd_utils.h"
|
||||
|
||||
using TmpBufferAddress = float *;
|
||||
typedef void (*GEMM_FUNC_FP32)(float *output, const float *input, const float *weight, const float *bias, size_t step,
|
||||
size_t ic4, size_t output_channel, size_t offset, size_t mode, size_t writeC4,
|
||||
size_t relu, size_t relu6);
|
||||
|
||||
// fp32 convolution common (im2col+gemm)
|
||||
void ConvFp32(float *input_data, float *packed_input, float *packed_weight, const float *bias_data,
|
||||
float *tmp_out_block, float *output_data, int task_id, ConvParameter *conv_param);
|
||||
float *tmp_out_block, float *output_data, int task_id, ConvParameter *conv_param,
|
||||
GEMM_FUNC_FP32 gemm_func);
|
||||
|
||||
// fp32 conv1x1 strassen matmul
|
||||
int Conv1x1Fp32(const float *input_data, const float *weight_data, float *output_data, float *tmp_ptr,
|
||||
|
@ -40,12 +44,13 @@ int Conv1x1Fp32(const float *input_data, const float *weight_data, float *output
|
|||
// fp32 convolution winograd
|
||||
void ConvWinogardFp32(float *input_data, float *trans_weight, const float *bias_data, float *output_data,
|
||||
TmpBufferAddress *buffer_list, int task_id, ConvParameter *conv_param,
|
||||
InputTransformUnitFunc input_trans_func, OutputTransformUnitFunc output_trans_func);
|
||||
InputTransformUnitFunc input_trans_func, OutputTransformUnitFunc output_trans_func,
|
||||
GEMM_FUNC_FP32 gemm_func);
|
||||
|
||||
void UnPackWinogradOutput(const float *src, float *dst, int batch, int height, int width, int channel, int output_unit);
|
||||
|
||||
// fp32 conv3x3
|
||||
void Conv3x3Fp32(float *input_data, float *transed_weight, const float *bias_data, float *output_data,
|
||||
TmpBufferAddress *buffer_list, int task_id, ConvParameter *conv_param);
|
||||
TmpBufferAddress *buffer_list, int task_id, ConvParameter *conv_param, GEMM_FUNC_FP32 gemm_func);
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_FP32_CONV_H_
|
||||
|
|
|
@ -49,7 +49,9 @@ void IndirectGemmInt8(int8_t *dst, int32_t *tmp_dst, const int8_t *src, const in
|
|||
#ifdef __aarch64__
|
||||
IndirectGemmInt8_4x4(dst, src, weight, bias, kernel_plane, ic4, output_channel, output_channel * sizeof(int8_t),
|
||||
input_sum, act_min, act_max, out_zp, out_multiplier, shift_before, shift_after);
|
||||
// todo arm32
|
||||
#elif defined(ENABLE_ARM32)
|
||||
IndirectGemmInt8_2x4(dst, src, weight, bias, kernel_plane, ic4, output_channel, output_channel * sizeof(int8_t),
|
||||
input_sum, act_min, act_max, out_zp, out_multiplier, shift_before, shift_after);
|
||||
#else
|
||||
int tile_num = conv_param->tile_num_;
|
||||
int plane_c4 = UP_DIV(kernel_plane, C4NUM);
|
||||
|
|
|
@ -58,10 +58,10 @@ class OptimizeModule {
|
|||
if ((!support_optimize_ops) && (!support_fp16)) {
|
||||
return;
|
||||
}
|
||||
// optimized_op_handler_ = dlopen(OPTIMIZE_SHARED_LIBRARY_PATH, RTLD_LAZY);
|
||||
// if (optimized_op_handler_ == nullptr) {
|
||||
// printf("Open optimize shared library failed.\n");
|
||||
// }
|
||||
optimized_op_handler_ = dlopen(OPTIMIZE_SHARED_LIBRARY_PATH, RTLD_LAZY);
|
||||
if (optimized_op_handler_ == nullptr) {
|
||||
printf("Open optimize shared library failed.\n");
|
||||
}
|
||||
}
|
||||
|
||||
~OptimizeModule() = default;
|
||||
|
|
|
@ -18,20 +18,19 @@
|
|||
#include <cstring>
|
||||
#include <cstdlib>
|
||||
|
||||
void PackWeightFp32(float *weight_data, ConvParameter *conv_param, float *packed_weight) {
|
||||
void PackWeightFp32(float *weight_data, ConvParameter *conv_param, float *packed_weight, int oc_block,
|
||||
int oc_block_num) {
|
||||
// original weight format : ohwi
|
||||
// todo pack weight for arm32 platform
|
||||
int kernel_h = conv_param->kernel_h_;
|
||||
int kernel_w = conv_param->kernel_w_;
|
||||
int in_channel = conv_param->input_channel_;
|
||||
int out_channel = conv_param->output_channel_;
|
||||
int oc8 = UP_DIV(out_channel, C8NUM);
|
||||
int ic4 = UP_DIV(in_channel, C4NUM);
|
||||
int kernel_plane = kernel_h * kernel_w;
|
||||
int pack_weight_size = oc8 * C8NUM * ic4 * C4NUM * kernel_plane;
|
||||
int pack_weight_size = oc_block * oc_block_num * ic4 * C4NUM * kernel_plane;
|
||||
|
||||
int unit_size = C8NUM * C4NUM;
|
||||
int block_size = pack_weight_size / oc8;
|
||||
int unit_size = oc_block * C4NUM;
|
||||
int block_size = pack_weight_size / oc_block_num;
|
||||
|
||||
for (int m = 0; m < kernel_plane; m++) {
|
||||
int kernel_plane_stride = m * in_channel;
|
||||
|
@ -43,12 +42,12 @@ void PackWeightFp32(float *weight_data, ConvParameter *conv_param, float *packed
|
|||
int real_ic_num = ic_remainder < C4NUM ? ic_remainder : C4NUM;
|
||||
for (int h = 0; h < real_ic_num; h++) {
|
||||
int block_stride = channel_block_stride + h;
|
||||
int packed_block_stride = packed_channel_block_size + h * C8NUM;
|
||||
for (int j = 0; j < oc8; j++) {
|
||||
int kernel_block_stride = block_stride + j * C8NUM * kernel_plane * in_channel;
|
||||
int packed_block_stride = packed_channel_block_size + h * oc_block;
|
||||
for (int j = 0; j < oc_block_num; j++) {
|
||||
int kernel_block_stride = block_stride + j * oc_block * kernel_plane * in_channel;
|
||||
int packed_kernel_block_size = packed_block_stride + j * block_size;
|
||||
int oc_remainder = out_channel - j * C8NUM;
|
||||
int real_oc_num = oc_remainder < C8NUM ? oc_remainder : C8NUM;
|
||||
int oc_remainder = out_channel - j * oc_block;
|
||||
int real_oc_num = oc_remainder < oc_block ? oc_remainder : oc_block;
|
||||
for (int k = 0; k < real_oc_num; k++) {
|
||||
float *origin_data_ptr = weight_data + kernel_block_stride + k * kernel_plane * in_channel;
|
||||
float *packed_data_ptr = packed_weight + packed_kernel_block_size + k;
|
||||
|
|
|
@ -40,7 +40,8 @@ void MatrixPack(const float *src, float *dst, int row, int ic4, int stride);
|
|||
|
||||
void PackInputToC8Int8(const int8_t *input_data, int16_t *packed_input, ConvParameter *conv_param);
|
||||
|
||||
void PackWeightFp32(float *weight_data, ConvParameter *conv_param, float *packed_weight);
|
||||
void PackWeightFp32(float *weight_data, ConvParameter *conv_param, float *packed_weight, int oc_block,
|
||||
int oc_block_num);
|
||||
|
||||
void PackWeightInt8(int8_t *weight_data, ConvParameter *conv_param, int8_t *packed_weight, int32_t *weight_sum);
|
||||
|
||||
|
|
|
@ -326,18 +326,18 @@ void Conv3x3Fp32InputTransform(const float *input_data, float *trans_input, floa
|
|||
}
|
||||
}
|
||||
|
||||
void Conv3x3Fp32FilterTransform(float *weight_data, float *trans_weight, int iC4, int output_channel,
|
||||
int kernel_plane) {
|
||||
void Conv3x3Fp32FilterTransform(float *weight_data, float *trans_weight, int iC4, int output_channel, int kernel_plane,
|
||||
int oc_block) {
|
||||
int input_unit = 4;
|
||||
int dst_step = iC4 * C4NUM * C8NUM;
|
||||
int dst_step = iC4 * C4NUM * oc_block;
|
||||
for (int o = 0; o < output_channel; o++) {
|
||||
int oc8_block_num = o / C8NUM;
|
||||
int oc8_block_rem = o % C8NUM;
|
||||
int oc_block_num = o / oc_block;
|
||||
int oc_block_rem = o % oc_block;
|
||||
int src_oc_offset = o * iC4 * C4NUM * kernel_plane;
|
||||
int dst_oc_offset = oc8_block_num * C8NUM * iC4 * C4NUM * input_unit * input_unit + oc8_block_rem;
|
||||
int dst_oc_offset = oc_block_num * oc_block * iC4 * C4NUM * input_unit * input_unit + oc_block_rem;
|
||||
for (int i = 0; i < iC4; i++) {
|
||||
float *src_ic4_ptr = weight_data + src_oc_offset + i * kernel_plane * C4NUM;
|
||||
float *dst_ic4_ptr = trans_weight + dst_oc_offset + i * C8NUM * C4NUM;
|
||||
float *dst_ic4_ptr = trans_weight + dst_oc_offset + i * oc_block * C4NUM;
|
||||
#ifdef ENABLE_ARM
|
||||
float32x4_t g00 = vld1q_f32(src_ic4_ptr);
|
||||
float32x4_t g01 = vld1q_f32(src_ic4_ptr + 4);
|
||||
|
@ -1368,4 +1368,3 @@ void Conv3x3Uint8OutputTransform(const int32_t *gemm_out, int8_t *out_data, cons
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -43,7 +43,8 @@ void Conv3x3Fp32InputUnit(const float *tmp_data, float *trans_input_data, size_t
|
|||
void Conv3x3Fp32InputTransform(const float *input_data, float *trans_input, float *tmp_data, int start_index,
|
||||
int real_cal_num, int out_w_block, ConvParameter *conv_param);
|
||||
|
||||
void Conv3x3Fp32FilterTransform(float *weight_data, float *trans_weight, int iC4, int output_channel, int kernel_plane);
|
||||
void Conv3x3Fp32FilterTransform(float *weight_data, float *trans_weight, int iC4, int output_channel, int kernel_plane,
|
||||
int oc_block);
|
||||
|
||||
void Conv3x3Fp32OutputUnit(const float *gemm_out, const float *bias_data, float *output_data, bool h_not_bound,
|
||||
bool w_not_bound, int output_w);
|
||||
|
@ -67,4 +68,3 @@ void Conv3x3Uint8OutputTransform(const int32_t *gemm_out, int8_t *out_data, cons
|
|||
int real_cal_num, int out_w_block, ConvParameter *conv_param);
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_WINOGRAD_TRANSFORM_H_
|
||||
|
||||
|
|
|
@ -122,7 +122,7 @@ TEST_F(TestPack, PackWeightFp32) {
|
|||
std::string weight_path = "./test_data/conv/convfp32_weight_32_3_3_3.bin";
|
||||
auto weight_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(weight_path.c_str(), &weight_size));
|
||||
auto packed_weight = reinterpret_cast<float *>(malloc(k_h * k_w * ic4 * C4NUM * oc8 * C8NUM * sizeof(float)));
|
||||
PackWeightFp32(weight_data, conv_param, packed_weight);
|
||||
PackWeightFp32(weight_data, conv_param, packed_weight, C8NUM, oc8);
|
||||
|
||||
printf("==================output data=================\n");
|
||||
for (int i = 0; i < 20; i++) {
|
||||
|
|
Loading…
Reference in New Issue