forked from OSSInnovation/mindspore
Decouple ir::Tensor class from python
This commit is contained in:
parent
363a232cbc
commit
43e0967024
|
@ -27,6 +27,7 @@
|
|||
#include "utils/symbolic.h"
|
||||
#include "ir/meta_func_graph.h"
|
||||
#include "ir/param_value_py.h"
|
||||
#include "ir/tensor_py.h"
|
||||
#include "pipeline/parse/python_adapter.h"
|
||||
#include "pipeline/parse/resolve.h"
|
||||
#include "operator/composite/composite.h"
|
||||
|
@ -39,6 +40,8 @@
|
|||
#include "utils/context/ms_context.h"
|
||||
#include "operator/ops.h"
|
||||
|
||||
using mindspore::tensor::TensorPy;
|
||||
|
||||
namespace mindspore {
|
||||
// max number of elements in sequence
|
||||
const int NUM_MAX_SEQUENCE_ELEMS = 0x00FFFFFF;
|
||||
|
@ -399,7 +402,7 @@ std::string AnfExporter::GetValueText(const FuncGraphPtr &func_graph, const Valu
|
|||
oss << value->DumpText();
|
||||
} else if (value->isa<tensor::Tensor>()) {
|
||||
auto tensor_ptr = dyn_cast<tensor::Tensor>(value);
|
||||
oss << value->DumpText() << "@" << DumpObject(tensor_ptr->data(), "T");
|
||||
oss << value->DumpText() << "@" << DumpObject(TensorPy::AsNumpy(*tensor_ptr), "T");
|
||||
} else if (value->isa<parse::Symbol>() || value->isa<None>() || value->isa<NullObj>()) {
|
||||
oss << value->DumpText();
|
||||
} else if (value->isa<ValueSequeue>()) {
|
||||
|
@ -1813,7 +1816,7 @@ class IrParser {
|
|||
if (tensor_data == nullptr) {
|
||||
return TOK_ERROR;
|
||||
}
|
||||
*val_ptr = std::make_shared<tensor::Tensor>(tensor_data, TypeIdToType(type));
|
||||
*val_ptr = TensorPy::MakeTensor(tensor_data, TypeIdToType(type));
|
||||
|
||||
return lexer_.GetNextToken();
|
||||
}
|
||||
|
|
|
@ -117,7 +117,7 @@ void DebugServices::check_watchpoints(std::vector<std::string> *name, std::vecto
|
|||
continue;
|
||||
}
|
||||
|
||||
float *start_addr = reinterpret_cast<float *>(tensor_ptr->data_c(false));
|
||||
float *start_addr = reinterpret_cast<float *>(tensor_ptr->data_c());
|
||||
unsigned int num_elements = (tensor_ptr->data().nbytes()) / sizeof(float);
|
||||
|
||||
std::unordered_map<unsigned int, watchpoint_t>::iterator it_w_table_check;
|
||||
|
@ -144,7 +144,7 @@ void DebugServices::check_watchpoints(std::vector<std::string> *name, std::vecto
|
|||
name->push_back(name_no_slot);
|
||||
|
||||
slot->push_back(std::to_string(tensor_list[i]->GetSlot()));
|
||||
data_ptr->push_back(reinterpret_cast<char *>(tensor_ptr->data_c(false)));
|
||||
data_ptr->push_back(reinterpret_cast<char *>(tensor_ptr->data_c()));
|
||||
data_size->push_back(tensor_ptr->data().nbytes());
|
||||
|
||||
int condition_item = -1;
|
||||
|
@ -182,7 +182,7 @@ void DebugServices::read_nodes_tensors(std::vector<std::string> name, std::vecto
|
|||
continue;
|
||||
}
|
||||
ret_name->push_back(std::get<0>(result));
|
||||
data_ptr->push_back(reinterpret_cast<char *>(std::get<1>(result)->GetTensor()->data_c(false)));
|
||||
data_ptr->push_back(reinterpret_cast<char *>(std::get<1>(result)->GetTensor()->data_c()));
|
||||
data_size->push_back(std::get<1>(result)->GetTensor()->data().nbytes());
|
||||
dtype->push_back(std::get<1>(result)->GetTensor()->Dtype());
|
||||
shape->push_back(std::get<1>(result)->GetTensor()->shape());
|
||||
|
|
|
@ -329,12 +329,12 @@ bool AscendDeviceAddress::DumpMemToFile(bool trans_flag, const std::string &file
|
|||
MS_LOG(INFO) << "E2E Dump path is " << path;
|
||||
mindspore::tensor::TensorPtr out_tensor = std::make_shared<tensor::Tensor>(host_type, host_shape);
|
||||
size_t host_size = out_tensor->data().nbytes();
|
||||
ret = SyncDeviceToHost(host_shape, host_size, host_type, out_tensor->data_c(true));
|
||||
ret = SyncDeviceToHost(host_shape, host_size, host_type, out_tensor->data_c());
|
||||
if (!ret) {
|
||||
MS_LOG(ERROR) << "Copy device mem to host failed";
|
||||
return ret;
|
||||
}
|
||||
ret = mindspore::Dump::DumpToFile(path, out_tensor->data_c(false), host_size);
|
||||
ret = mindspore::Dump::DumpToFile(path, out_tensor->data_c(), host_size);
|
||||
} else {
|
||||
auto host_tmp = std::vector<uint8_t>(size_);
|
||||
auto ret_rt_memcpy = rtMemcpy(host_tmp.data(), size_, ptr_, size_, RT_MEMCPY_DEVICE_TO_HOST);
|
||||
|
@ -364,7 +364,7 @@ bool AscendDeviceAddress::LoadMemToHost(bool trans_flag, const std::string &tens
|
|||
MS_LOG(INFO) << "E2E tensor name is " << tensor_name;
|
||||
mindspore::tensor::TensorPtr out_tensor = std::make_shared<tensor::Tensor>(host_type, host_shape);
|
||||
size_t host_size = out_tensor->data().nbytes();
|
||||
ret = SyncDeviceToHost(host_shape, host_size, host_type, out_tensor->data_c(true));
|
||||
ret = SyncDeviceToHost(host_shape, host_size, host_type, out_tensor->data_c());
|
||||
if (!ret) {
|
||||
MS_LOG(ERROR) << "Copy device mem to host failed";
|
||||
return ret;
|
||||
|
@ -379,7 +379,7 @@ bool AscendDeviceAddress::LoadMemToHost(bool trans_flag, const std::string &tens
|
|||
} else {
|
||||
mindspore::tensor::TensorPtr out_tensor = std::make_shared<tensor::Tensor>(type_id_, host_shape);
|
||||
size_t host_size = out_tensor->data().nbytes();
|
||||
auto ret_rt_memcpy = rtMemcpy(out_tensor->data_c(true), host_size, ptr_, host_size, RT_MEMCPY_DEVICE_TO_HOST);
|
||||
auto ret_rt_memcpy = rtMemcpy(out_tensor->data_c(), host_size, ptr_, host_size, RT_MEMCPY_DEVICE_TO_HOST);
|
||||
|
||||
auto tensor_data = std::make_shared<mindspore::TensorData>();
|
||||
tensor_data->SetName(tensor_name);
|
||||
|
|
|
@ -80,11 +80,11 @@ void CPUKernelRuntime::AssignValueNodeAddress(session::KernelGraph *kernel_graph
|
|||
size_t tensor_size = std::accumulate(data_shape.begin(), data_shape.end(), type_size, std::multiplies<size_t>());
|
||||
DeviceAddressPtr address = CreateDeviceAddress(nullptr, tensor_size, kOpFormat_DEFAULT, kNumberTypeFloat32);
|
||||
if (tensor->data_type() == kNumberTypeFloat32 || tensor->data_type() == kNumberTypeInt32) {
|
||||
address->ptr_ = tensor->data_c(false);
|
||||
address->ptr_ = tensor->data_c();
|
||||
} else {
|
||||
address->ptr_ = resource_manager_.MemMalloc(tensor_size);
|
||||
if (!address->SyncHostToDevice(data_shape, LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
||||
tensor->data_c(false))) {
|
||||
tensor->data_c())) {
|
||||
MS_LOG(EXCEPTION) << "Value node sync host to device failed!";
|
||||
}
|
||||
}
|
||||
|
@ -177,7 +177,7 @@ BaseRef CPUKernelRuntime::CreatTensorForOutput(const session::KernelWithIndex &k
|
|||
tensor->set_device_address(address);
|
||||
need_sync_outputs->emplace_back(tensor);
|
||||
} else {
|
||||
address->ptr_ = tensor->data_c(true);
|
||||
address->ptr_ = tensor->data_c();
|
||||
address->ref_count_ = INIT_NODE_REF;
|
||||
(void)bound_addresses->insert(address);
|
||||
}
|
||||
|
@ -220,11 +220,11 @@ void CPUKernelRuntime::BindInputOutput(const session::KernelGraph *kernel_graph,
|
|||
size_t tensor_size =
|
||||
std::accumulate(data_shape.begin(), data_shape.end(), sizeof(float), std::multiplies<size_t>());
|
||||
if (tensor->data_type() == kNumberTypeFloat32 || tensor->data_type() == kNumberTypeInt32) {
|
||||
address->ptr_ = tensor->data_c(false);
|
||||
address->ptr_ = tensor->data_c();
|
||||
} else {
|
||||
address->ptr_ = resource_manager_.MemMalloc(tensor_size);
|
||||
if (!address->SyncHostToDevice(data_shape, LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
||||
tensor->data_c(false))) {
|
||||
tensor->data_c())) {
|
||||
MS_LOG(EXCEPTION) << "Parameter node sync host to device failed!";
|
||||
}
|
||||
tensor->set_dirty(true);
|
||||
|
|
|
@ -390,7 +390,7 @@ bool KernelAdjust::StepLoadCtrlInputs(const std::shared_ptr<session::KernelGraph
|
|||
tensor->set_device_address(device_address);
|
||||
if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0),
|
||||
LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
||||
tensor->data_c(false))) {
|
||||
tensor->data_c())) {
|
||||
MS_LOG(INFO) << "SyncHostToDevice failed.";
|
||||
return false;
|
||||
}
|
||||
|
@ -407,14 +407,14 @@ void KernelAdjust::LoadSwitchInputs(std::vector<tensor::TensorPtr> *inputs) {
|
|||
tensor::TensorPtr loop_count_tensor = std::make_shared<tensor::Tensor>(kInt32->type_id(), shp);
|
||||
MS_EXCEPTION_IF_NULL(loop_count_tensor);
|
||||
int32_t *val = nullptr;
|
||||
val = static_cast<int32_t *>(loop_count_tensor->data_c(true));
|
||||
val = static_cast<int32_t *>(loop_count_tensor->data_c());
|
||||
MS_EXCEPTION_IF_NULL(val);
|
||||
*val = 0;
|
||||
inputs->push_back(loop_count_tensor);
|
||||
|
||||
tensor::TensorPtr iter_loop_tensor = std::make_shared<tensor::Tensor>(kInt32->type_id(), shp);
|
||||
MS_EXCEPTION_IF_NULL(iter_loop_tensor);
|
||||
val = static_cast<int32_t *>(iter_loop_tensor->data_c(true));
|
||||
val = static_cast<int32_t *>(iter_loop_tensor->data_c());
|
||||
MS_EXCEPTION_IF_NULL(val);
|
||||
*val = SizeToInt(LongToSize(ConfigManager::GetInstance().iter_num()));
|
||||
MS_LOG(INFO) << "iter_loop_tensor = " << *val;
|
||||
|
@ -422,14 +422,14 @@ void KernelAdjust::LoadSwitchInputs(std::vector<tensor::TensorPtr> *inputs) {
|
|||
|
||||
tensor::TensorPtr zero_tensor = std::make_shared<tensor::Tensor>(kInt32->type_id(), shp);
|
||||
MS_EXCEPTION_IF_NULL(zero_tensor);
|
||||
val = static_cast<int32_t *>(zero_tensor->data_c(true));
|
||||
val = static_cast<int32_t *>(zero_tensor->data_c());
|
||||
MS_EXCEPTION_IF_NULL(val);
|
||||
*val = 0;
|
||||
inputs->push_back(zero_tensor);
|
||||
|
||||
tensor::TensorPtr one_tensor = std::make_shared<tensor::Tensor>(kInt32->type_id(), shp);
|
||||
MS_EXCEPTION_IF_NULL(one_tensor);
|
||||
val = static_cast<int32_t *>(one_tensor->data_c(true));
|
||||
val = static_cast<int32_t *>(one_tensor->data_c());
|
||||
MS_EXCEPTION_IF_NULL(val);
|
||||
*val = 1;
|
||||
inputs->push_back(one_tensor);
|
||||
|
|
|
@ -543,7 +543,7 @@ void KernelRuntime::AssignValueNodeTensor(const ValueNodePtr &value_node, const
|
|||
}
|
||||
AnfAlgo::SetOutputAddr(address, output_idx, value_node.get());
|
||||
if (!address->SyncHostToDevice(trans::GetRuntimePaddingShape(value_node, 0), tensor_size, tensor->data_type(),
|
||||
tensor->data_c(false))) {
|
||||
tensor->data_c())) {
|
||||
MS_EXCEPTION(NotExistsError) << "ValueNode SyncHostToDevice fail!" << value_node->DebugString() << "node format is"
|
||||
<< AnfAlgo::GetOutputFormat(value_node, output_idx) << "node dtype is "
|
||||
<< AnfAlgo::GetOutputInferDataType(value_node, output_idx);
|
||||
|
|
|
@ -115,7 +115,7 @@ class MetaTensor : public Value {
|
|||
// order it represents.
|
||||
//
|
||||
// return A const vector<int> which represents the shape of the tensor.
|
||||
std::vector<int> shape() const { return shape_; }
|
||||
const std::vector<int> &shape() const { return shape_; }
|
||||
|
||||
// brief Sets the shape of a tensor.
|
||||
//
|
||||
|
|
|
@ -16,319 +16,261 @@
|
|||
|
||||
#include "ir/tensor.h"
|
||||
|
||||
#include <atomic>
|
||||
#include <functional>
|
||||
#include <numeric>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
#include "device/device_address.h"
|
||||
#include "pybind_api/api_register.h"
|
||||
#include "pybind_api/export_flags.h"
|
||||
#include "pipeline/static_analysis/abstract_value.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace tensor {
|
||||
static uint64_t count = 0;
|
||||
void DataBuf2Contiguous(const py::array &src, py::array *const dest) {
|
||||
if (dest == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "Failed to copy data to a contiguous buffer as dest is nullptr!";
|
||||
}
|
||||
|
||||
Py_buffer pybuf_src;
|
||||
if (PyObject_GetBuffer(src.ptr(), &pybuf_src, PyBUF_ANY_CONTIGUOUS)) {
|
||||
MS_LOG(EXCEPTION) << "Failed to get buffer info from the src!";
|
||||
}
|
||||
using Bool = unsigned char;
|
||||
|
||||
if (!PyBuffer_IsContiguous(&pybuf_src, 'C')) {
|
||||
if (PyBuffer_ToContiguous(dest->request(true).ptr, &pybuf_src, pybuf_src.len, 'C')) {
|
||||
MS_LOG(EXCEPTION) << "Can't copy numpy.ndarray to a contiguous buffer.";
|
||||
}
|
||||
} else {
|
||||
*dest = src;
|
||||
}
|
||||
|
||||
PyBuffer_Release(&pybuf_src);
|
||||
static std::string MakeId() {
|
||||
// Use atomic to make id generator thread safe.
|
||||
static std::atomic<uint64_t> last_id{1};
|
||||
return std::to_string(last_id.fetch_add(1, std::memory_order_relaxed));
|
||||
}
|
||||
|
||||
Tensor::Tensor(const TypePtr &type_ptr, const py::tuple &shape) {
|
||||
TypeId data_type = TypeId::kTypeUnknown;
|
||||
if (type_ptr != nullptr) {
|
||||
data_type = type_ptr->type_id();
|
||||
}
|
||||
data_type_ = data_type;
|
||||
shape_.resize(shape.size());
|
||||
for (size_t i = 0; i < shape.size(); ++i) {
|
||||
shape_[i] = py::int_(shape[i]);
|
||||
}
|
||||
init(data_type_, shape_, &data_);
|
||||
static TypeId TypeIdOf(const TypePtr &data_type, TypeId defaultTypeId) {
|
||||
return data_type ? data_type->type_id() : defaultTypeId;
|
||||
}
|
||||
|
||||
Tensor::Tensor(TypeId data_type, const std::vector<int> &shape) { init(data_type, shape, &data_); }
|
||||
|
||||
Tensor::Tensor(const py::array &input, const TypePtr &data_type) { init(input, data_type); }
|
||||
|
||||
Tensor::Tensor(const py::list &input, const TypePtr &data_type) { init(py::array(input), data_type); }
|
||||
|
||||
Tensor::Tensor(const py::tuple &input, const TypePtr &data_type) { init(py::array(input), data_type); }
|
||||
|
||||
Tensor::Tensor(const py::float_ &input, const TypePtr &data_type) { init(py::array(input), data_type); }
|
||||
|
||||
Tensor::Tensor(const py::int_ &input, const TypePtr &data_type) { init(py::array(input), data_type); }
|
||||
|
||||
Tensor::Tensor(const Tensor &tensor, const TypePtr &data_type)
|
||||
: MetaTensor(tensor), device_address_(tensor.device_address_) {
|
||||
init(tensor.data_, data_type);
|
||||
dirty_ = tensor.is_dirty();
|
||||
id_ = tensor.id();
|
||||
static size_t SizeOf(const std::vector<int> &shape) {
|
||||
return std::accumulate(shape.begin(), shape.end(), size_t(1), std::multiplies<size_t>());
|
||||
}
|
||||
|
||||
Tensor &Tensor::operator=(const Tensor &tensor) {
|
||||
if (this != &tensor) {
|
||||
MetaTensor::operator=(tensor);
|
||||
dirty_ = tensor.is_dirty();
|
||||
device_address_ = tensor.device_address();
|
||||
data_ = tensor.data_;
|
||||
id_ = tensor.id();
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
Tensor &Tensor::AssignValue(const Tensor &tensor) {
|
||||
*this = tensor;
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool Tensor::operator==(const Tensor &tensor) const {
|
||||
return (MetaTensor::operator==(tensor) && data_ == tensor.data_);
|
||||
}
|
||||
|
||||
bool Tensor::ValueEqual(const Tensor &other) const {
|
||||
auto equal = [&other, this]() -> bool {
|
||||
auto np = py::module::import("numpy");
|
||||
auto equal = np.attr("equal")(data_, other.data_);
|
||||
auto all_equal = np.attr("all")(equal);
|
||||
return all_equal.cast<bool>();
|
||||
};
|
||||
return (MetaTensor::operator==(other) && (data_.is(other.data_) || equal()));
|
||||
}
|
||||
|
||||
py::tuple Tensor::GetPyTupleShape() const {
|
||||
std::vector<int> shape = this->shape();
|
||||
py::tuple dims(shape.size());
|
||||
for (size_t i = 0; i < dims.size(); ++i) {
|
||||
dims[i] = py::int_(shape[i]);
|
||||
}
|
||||
return dims;
|
||||
}
|
||||
|
||||
int Tensor::DataDim() const { return static_cast<int>(data_.ndim()); }
|
||||
|
||||
int Tensor::DataSize() const { return static_cast<int>(data_.size()); }
|
||||
|
||||
py::array Tensor::data() const { return data_; }
|
||||
|
||||
int Tensor::data_type_c() const { return static_cast<int>(data_type_); }
|
||||
|
||||
std::vector<int> Tensor::shape_c(void) const { return shape(); }
|
||||
|
||||
void *Tensor::data_c(bool writable) {
|
||||
// operand of bit operation should be unsigned int.
|
||||
unsigned int flags = ((unsigned int)data_.flags()) & pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_;
|
||||
bool is_c_contiguous = (flags != 0) ? true : false;
|
||||
if (!is_c_contiguous) {
|
||||
py::array data_c;
|
||||
init(data_type_, shape_, &data_c);
|
||||
DataBuf2Contiguous(data_, &data_c);
|
||||
data_ = data_c;
|
||||
}
|
||||
return data_.request(writable).ptr;
|
||||
}
|
||||
|
||||
TypeId Tensor::GetDataType(const py::buffer_info &buf) const {
|
||||
TypeId data_type = TypeId::kTypeUnknown;
|
||||
if (buf.format.compare("e") == 0) {
|
||||
data_type = TypeId::kNumberTypeFloat16;
|
||||
} else if (buf.format.compare("f") == 0) {
|
||||
data_type = TypeId::kNumberTypeFloat32;
|
||||
} else if (buf.format.compare("d") == 0) {
|
||||
data_type = TypeId::kNumberTypeFloat64;
|
||||
} else if (buf.format.compare("B") == 0) {
|
||||
data_type = TypeId::kNumberTypeUInt8;
|
||||
} else if (buf.format.compare("H") == 0) {
|
||||
data_type = TypeId::kNumberTypeUInt16;
|
||||
} else if (buf.format.compare("I") == 0) {
|
||||
data_type = TypeId::kNumberTypeUInt32;
|
||||
} else if (buf.format.compare("L") == 0 || buf.format.compare("Q") == 0) {
|
||||
data_type = TypeId::kNumberTypeUInt64;
|
||||
} else if (buf.format.compare("b") == 0) {
|
||||
data_type = TypeId::kNumberTypeInt8;
|
||||
} else if (buf.format.compare("h") == 0) {
|
||||
data_type = TypeId::kNumberTypeInt16;
|
||||
} else if (buf.format.compare("i") == 0) {
|
||||
data_type = TypeId::kNumberTypeInt32;
|
||||
} else if (buf.format.compare("l") == 0 || buf.format.compare("q") == 0) {
|
||||
data_type = TypeId::kNumberTypeInt64;
|
||||
} else if (buf.format.compare("?") == 0) {
|
||||
data_type = TypeId::kNumberTypeBool;
|
||||
} else {
|
||||
MS_LOG(WARNING) << "Get unsupported DataType " << buf.format << ".";
|
||||
}
|
||||
return data_type;
|
||||
}
|
||||
|
||||
void Tensor::init(const py::array &input, const TypePtr &type_ptr) {
|
||||
TypeId data_type = TypeId::kTypeUnknown;
|
||||
if (type_ptr != nullptr) {
|
||||
data_type = type_ptr->type_id();
|
||||
}
|
||||
init(input, data_type);
|
||||
}
|
||||
|
||||
void Tensor::init(const py::array &input, const TypeId &data_type) {
|
||||
py::buffer_info buf = input.request();
|
||||
|
||||
data_type_ = GetDataType(buf);
|
||||
if (TypeId::kTypeUnknown == data_type && TypeId::kTypeUnknown == data_type_) {
|
||||
MS_LOG(EXCEPTION) << "Unsupported tensor type!";
|
||||
}
|
||||
|
||||
std::vector<ssize_t> tm = buf.shape;
|
||||
size_t len = tm.size();
|
||||
std::vector<int> dims(len);
|
||||
for (size_t i = 0; i < len; ++i) {
|
||||
dims[i] = static_cast<int>(tm[i]);
|
||||
}
|
||||
(void)set_shape(dims);
|
||||
|
||||
if (TypeId::kTypeUnknown != data_type && TypeId::kTypeUnknown != data_type_ && data_type_ != data_type) {
|
||||
// If user defined data type is not same as GetDataType from the data
|
||||
bool success = convert_data(input, data_type_, &data_, data_type);
|
||||
if (success) {
|
||||
data_type_ = data_type;
|
||||
} else {
|
||||
data_type_ = TypeId::kTypeUnknown;
|
||||
MS_LOG(EXCEPTION) << "Convert data from " << data_type_ << " to " << data_type << " failed!";
|
||||
}
|
||||
} else {
|
||||
data_ = input;
|
||||
}
|
||||
dirty_ = true;
|
||||
id_ = std::to_string((uintptr_t)(this)) + std::to_string(count++);
|
||||
}
|
||||
|
||||
void Tensor::init(TypeId data_type, const std::vector<int> &shape, py::array *const data) {
|
||||
data_type_ = data_type;
|
||||
shape_ = shape;
|
||||
template <typename T>
|
||||
std::vector<T> CopyData(const std::vector<int> &shape, void *data, TypeId data_type) {
|
||||
const size_t count = SizeOf(shape);
|
||||
switch (data_type) {
|
||||
case kNumberTypeBool:
|
||||
*data = py::array_t<bool, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeInt8:
|
||||
*data = py::array_t<int8_t, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeInt16:
|
||||
*data = py::array_t<int16_t, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeInt32:
|
||||
*data = py::array_t<int32_t, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeInt64:
|
||||
*data = py::array_t<int64_t, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeUInt8:
|
||||
*data = py::array_t<uint8_t, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeUInt16:
|
||||
*data = py::array_t<uint16_t, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeUInt32:
|
||||
*data = py::array_t<uint32_t, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeUInt64:
|
||||
*data = py::array_t<uint64_t, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeFloat16:
|
||||
*data = py::array_t<float16, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeFloat32:
|
||||
*data = py::array_t<float, py::array::c_style>(shape);
|
||||
break;
|
||||
case kNumberTypeFloat64:
|
||||
*data = py::array_t<double, py::array::c_style>(shape);
|
||||
break;
|
||||
default:
|
||||
MS_LOG(EXCEPTION) << "Cannot construct Tensor because of unsupported data type: " << data_type << ".";
|
||||
break;
|
||||
}
|
||||
id_ = std::to_string((uintptr_t)(this)) + std::to_string(count++);
|
||||
}
|
||||
|
||||
TypePtr Tensor::SetDtype(const TypePtr type_ptr) {
|
||||
MS_EXCEPTION_IF_NULL(type_ptr);
|
||||
(void)set_data_type(type_ptr->type_id());
|
||||
return type_ptr;
|
||||
}
|
||||
|
||||
TypeId Tensor::set_data_type(const TypeId data_type) {
|
||||
if (data_.size() > 0 && data_type_ != data_type) {
|
||||
bool success = convert_data(data_, data_type_, &data_, data_type);
|
||||
if (success) {
|
||||
data_type_ = data_type;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Convert data from " << data_type_ << " to " << data_type << " failed!";
|
||||
case kNumberTypeBool: {
|
||||
auto buf = static_cast<Bool *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
} else if (data_.size() == 0) {
|
||||
data_type_ = data_type;
|
||||
case kNumberTypeUInt8: {
|
||||
auto buf = static_cast<uint8_t *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
case kNumberTypeInt8: {
|
||||
auto buf = static_cast<int8_t *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
case kNumberTypeInt16: {
|
||||
auto buf = static_cast<int16_t *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
case kNumberTypeInt32: {
|
||||
auto buf = static_cast<int32_t *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
case kNumberTypeInt64: {
|
||||
auto buf = static_cast<int64_t *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
case kNumberTypeUInt16: {
|
||||
auto buf = static_cast<uint16_t *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
case kNumberTypeUInt32: {
|
||||
auto buf = static_cast<uint32_t *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
case kNumberTypeUInt64: {
|
||||
auto buf = static_cast<uint64_t *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
case kNumberTypeFloat16: {
|
||||
auto buf = static_cast<float16 *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
case kNumberTypeFloat32: {
|
||||
const float *buf = static_cast<float *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
case kNumberTypeFloat64: {
|
||||
auto buf = static_cast<double *>(data);
|
||||
return std::vector<T>(buf, buf + count);
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return data_type_;
|
||||
MS_LOG(EXCEPTION) << "Cannot construct Tensor because of unsupported data type: " << data_type << ".";
|
||||
}
|
||||
|
||||
bool Tensor::is_init() { return init_flag_; }
|
||||
// Convert to bool is not allowed.
|
||||
template <>
|
||||
std::vector<Bool> CopyData<Bool>(const std::vector<int> &shape, void *data, TypeId data_type) {
|
||||
MS_LOG(EXCEPTION) << "Cannot convert from " << TypeIdLabel(data_type) << " to " << TypeIdLabel(kNumberTypeBool)
|
||||
<< ".";
|
||||
return {};
|
||||
}
|
||||
|
||||
void Tensor::set_init_flag(bool flag) { init_flag_ = flag; }
|
||||
template <typename T>
|
||||
std::vector<T> CopyData(const std::vector<int> &shape, void *data, size_t data_len) {
|
||||
size_t size = SizeOf(shape);
|
||||
if (size * sizeof(T) != data_len) {
|
||||
MS_LOG(EXCEPTION) << "Incorrect tensor input data length " << data_len << ", expect " << size * sizeof(T)
|
||||
<< " item size " << sizeof(T);
|
||||
}
|
||||
auto buf = static_cast<T *>(data);
|
||||
return {buf, buf + size};
|
||||
}
|
||||
|
||||
bool Tensor::convert_data(const py::array &in, const TypeId in_data_type, py::array *const out,
|
||||
const TypeId out_data_type) {
|
||||
if (out == nullptr) {
|
||||
// Tensor data implementation.
|
||||
template <typename T>
|
||||
class TensorDataImpl : public TensorData {
|
||||
public:
|
||||
explicit TensorDataImpl(const std::vector<int> &shape) : shape_(shape), data_(SizeOf(shape)) {}
|
||||
|
||||
TensorDataImpl(const std::vector<int> &shape, void *data, size_t data_len)
|
||||
: shape_(shape), data_(CopyData<T>(shape, data, data_len)) {}
|
||||
|
||||
TensorDataImpl(const std::vector<int> &shape, void *data, TypeId data_type)
|
||||
: shape_(shape), data_(CopyData<T>(shape, data, data_type)) {}
|
||||
|
||||
template <typename InputIt>
|
||||
TensorDataImpl(const std::vector<int> &shape, InputIt first, InputIt last) : shape_(shape), data_(first, last) {}
|
||||
|
||||
template <typename Scalar>
|
||||
TensorDataImpl(const std::vector<int> &shape, Scalar scalar) : shape_(shape), data_({static_cast<T>(scalar)}) {}
|
||||
|
||||
ssize_t size() const override { return data_.size(); }
|
||||
|
||||
ssize_t itemsize() const override { return static_cast<ssize_t>(sizeof(T)); }
|
||||
|
||||
ssize_t nbytes() const override { return size() * itemsize(); }
|
||||
|
||||
ssize_t ndim() const override { return static_cast<ssize_t>(shape_.size()); }
|
||||
|
||||
void *data() override {
|
||||
static std::vector<T> empty_data(1);
|
||||
if (data_.empty()) {
|
||||
// Prevent null pointer for empty data.
|
||||
return empty_data.data();
|
||||
}
|
||||
return data_.data();
|
||||
}
|
||||
|
||||
bool equals(const TensorData &other) const override {
|
||||
auto ptr = dynamic_cast<const TensorDataImpl<T> *>(&other);
|
||||
if (ptr) {
|
||||
return (ptr == this) || ((shape_ == ptr->shape_) && (data_ == ptr->data_));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool result = true;
|
||||
if (TypeId::kTypeUnknown == in_data_type || TypeId::kTypeUnknown == out_data_type) {
|
||||
result = false;
|
||||
} else if (in_data_type == out_data_type) {
|
||||
*out = in;
|
||||
} else if (TypeId::kNumberTypeFloat64 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("float64").cast<py::array>();
|
||||
} else if (TypeId::kNumberTypeFloat32 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("float32").cast<py::array>();
|
||||
} else if (TypeId::kNumberTypeFloat16 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("float16").cast<py::array>();
|
||||
} else if (TypeId::kNumberTypeInt64 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("int64").cast<py::array>();
|
||||
} else if (TypeId::kNumberTypeInt32 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("int32").cast<py::array>();
|
||||
} else if (TypeId::kNumberTypeInt16 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("int16").cast<py::array>();
|
||||
} else if (TypeId::kNumberTypeInt8 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("int8").cast<py::array>();
|
||||
} else if (TypeId::kNumberTypeUInt8 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("uint8").cast<py::array>();
|
||||
} else if (TypeId::kNumberTypeUInt16 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("uint16").cast<py::array>();
|
||||
} else if (TypeId::kNumberTypeUInt32 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("uint32").cast<py::array>();
|
||||
} else if (TypeId::kNumberTypeUInt64 == out_data_type) {
|
||||
*out = in.attr("astype").cast<py::function>()("uint64").cast<py::array>();
|
||||
} else {
|
||||
data_type_ = TypeId::kTypeUnknown;
|
||||
MS_LOG(EXCEPTION) << "Cannot convert from " << TypeIdLabel(in_data_type) << " to " << TypeIdLabel(out_data_type)
|
||||
<< ".";
|
||||
std::string ToString() const override {
|
||||
std::ostringstream ss;
|
||||
ss << '[';
|
||||
for (auto value : data_) {
|
||||
ss << value << ',';
|
||||
}
|
||||
ss << ']';
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
return result;
|
||||
private:
|
||||
std::vector<int> shape_;
|
||||
std::vector<T> data_;
|
||||
};
|
||||
|
||||
template <typename... Args>
|
||||
TensorDataPtr MakeTensorData(TypeId data_type, const std::vector<int> &shape, Args... args) {
|
||||
switch (data_type) {
|
||||
case kNumberTypeBool:
|
||||
// std::vector<bool> is a specialization of std::vector,
|
||||
// it may use single bit instead of sizeof(bool) bytes,
|
||||
// so we use std::vector<Bool> for bool tensors.
|
||||
return std::make_shared<TensorDataImpl<Bool>>(shape, args...);
|
||||
case kNumberTypeUInt8:
|
||||
return std::make_shared<TensorDataImpl<uint8_t>>(shape, args...);
|
||||
case kNumberTypeInt8:
|
||||
return std::make_shared<TensorDataImpl<int8_t>>(shape, args...);
|
||||
case kNumberTypeInt16:
|
||||
return std::make_shared<TensorDataImpl<int16_t>>(shape, args...);
|
||||
case kNumberTypeInt32:
|
||||
return std::make_shared<TensorDataImpl<int32_t>>(shape, args...);
|
||||
case kNumberTypeInt64:
|
||||
return std::make_shared<TensorDataImpl<int64_t>>(shape, args...);
|
||||
case kNumberTypeUInt16:
|
||||
return std::make_shared<TensorDataImpl<uint16_t>>(shape, args...);
|
||||
case kNumberTypeUInt32:
|
||||
return std::make_shared<TensorDataImpl<uint32_t>>(shape, args...);
|
||||
case kNumberTypeUInt64:
|
||||
return std::make_shared<TensorDataImpl<uint64_t>>(shape, args...);
|
||||
case kNumberTypeFloat16:
|
||||
return std::make_shared<TensorDataImpl<float16>>(shape, args...);
|
||||
case kNumberTypeFloat32:
|
||||
return std::make_shared<TensorDataImpl<float>>(shape, args...);
|
||||
case kNumberTypeFloat64:
|
||||
return std::make_shared<TensorDataImpl<double>>(shape, args...);
|
||||
default:
|
||||
break;
|
||||
}
|
||||
MS_LOG(EXCEPTION) << "Cannot construct Tensor because of unsupported data type: " << data_type << ".";
|
||||
}
|
||||
|
||||
Tensor::Tensor(const Tensor &tensor)
|
||||
: MetaTensor(tensor),
|
||||
init_flag_(tensor.init_flag_),
|
||||
data_(tensor.data_),
|
||||
dirty_(tensor.dirty_),
|
||||
id_(tensor.id_),
|
||||
device_address_(tensor.device_address_) {}
|
||||
|
||||
Tensor::Tensor(const Tensor &tensor, TypeId data_type)
|
||||
: MetaTensor(data_type, tensor.shape_),
|
||||
init_flag_(tensor.init_flag_),
|
||||
data_(MakeTensorData(data_type, tensor.shape_, tensor.data_->data(), tensor.data_type_)),
|
||||
dirty_(tensor.dirty_),
|
||||
id_(tensor.id_),
|
||||
device_address_(tensor.device_address_) {}
|
||||
|
||||
Tensor::Tensor(TypeId data_type, const std::vector<int> &shape, TensorDataPtr data)
|
||||
: MetaTensor(data_type, shape), data_(std::move(data)), id_(MakeId()) {}
|
||||
|
||||
Tensor::Tensor(TypeId data_type, const std::vector<int> &shape)
|
||||
: Tensor(data_type, shape, MakeTensorData(data_type, shape)) {}
|
||||
|
||||
Tensor::Tensor(TypeId data_type, const std::vector<int> &shape, void *data, size_t data_len)
|
||||
: Tensor(data_type, shape, MakeTensorData(data_type, shape, data, data_len)) {}
|
||||
|
||||
Tensor::Tensor(TypeId data_type, const std::vector<int> &shape, void *data, TypeId src_data_type)
|
||||
: Tensor(data_type, shape, MakeTensorData(data_type, shape, data, src_data_type)) {}
|
||||
|
||||
Tensor::Tensor(const std::vector<int64_t> &input, const TypePtr &data_type)
|
||||
: MetaTensor(TypeIdOf(data_type, kNumberTypeInt32), {static_cast<int>(input.size())}),
|
||||
data_(MakeTensorData(data_type_, shape_, input.begin(), input.end())),
|
||||
id_(MakeId()) {}
|
||||
|
||||
Tensor::Tensor(const std::vector<double> &input, const TypePtr &data_type)
|
||||
: MetaTensor(TypeIdOf(data_type, kNumberTypeFloat32), {static_cast<int>(input.size())}),
|
||||
data_(MakeTensorData(data_type_, shape_, input.begin(), input.end())),
|
||||
id_(MakeId()) {}
|
||||
|
||||
Tensor::Tensor(int64_t input, const TypePtr &data_type)
|
||||
: MetaTensor(TypeIdOf(data_type, kNumberTypeInt32), {}),
|
||||
data_(MakeTensorData(data_type_, {}, input)),
|
||||
id_(MakeId()) {}
|
||||
|
||||
Tensor::Tensor(double input, const TypePtr &data_type)
|
||||
: MetaTensor(TypeIdOf(data_type, kNumberTypeFloat32), {}),
|
||||
data_(MakeTensorData(data_type_, {}, input)),
|
||||
id_(MakeId()) {}
|
||||
|
||||
bool Tensor::operator==(const Tensor &tensor) const {
|
||||
return (&tensor == this || (MetaTensor::operator==(tensor) && data_ == tensor.data_));
|
||||
}
|
||||
|
||||
bool Tensor::ValueEqual(const Tensor &tensor) const {
|
||||
return (&tensor == this || (MetaTensor::operator==(tensor) && data_->equals(*tensor.data_)));
|
||||
}
|
||||
|
||||
abstract::AbstractBasePtr Tensor::ToAbstract() {
|
||||
|
@ -355,7 +297,7 @@ std::string Tensor::ToString() const {
|
|||
buf << "Tensor shape:[" << shape() << "]" << this->Dtype()->ToString();
|
||||
// only print small tensor
|
||||
if (DataSize() < small_tensor_size) {
|
||||
buf << "val:" << std::string(py::str(data()));
|
||||
buf << "val:" << data().ToString();
|
||||
}
|
||||
return buf.str();
|
||||
}
|
||||
|
@ -365,164 +307,25 @@ std::string Tensor::ToStringRepr() const {
|
|||
auto type_ptr = this->Dtype();
|
||||
MS_EXCEPTION_IF_NULL(type_ptr);
|
||||
buf << "Tensor shape:[" << shape() << "]" << type_ptr->ToString();
|
||||
buf << "\nval:" << std::string(py::str(data()));
|
||||
buf << "\nval:" << data().ToString();
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
py::array Tensor::data_sync() {
|
||||
void Tensor::data_sync() const {
|
||||
if (device_address_ != nullptr) {
|
||||
if (!device_address_->SyncDeviceToHost(this->shape(), static_cast<size_t>(this->data().nbytes()), this->data_type(),
|
||||
this->data_c(true))) {
|
||||
if (!device_address_->SyncDeviceToHost(shape(), static_cast<size_t>(data().nbytes()), data_type(), data_c())) {
|
||||
MS_LOG(EXCEPTION) << "SyncDeviceToHost when asnumpy.";
|
||||
}
|
||||
}
|
||||
return data_;
|
||||
}
|
||||
|
||||
REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
|
||||
// dtype should define before Tensor, because Tensor init depend dtype
|
||||
(void)py::class_<Tensor, std::shared_ptr<Tensor>>(*m, "Tensor")
|
||||
.def(py::init<TypePtr, py::tuple>(), py::arg("dtype"), py::arg("shape"))
|
||||
.def(py::init<py::array, TypePtr>(), py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def(py::init<py::float_, TypePtr>(), py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def(py::init<py::int_, TypePtr>(), py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def(py::init<py::list, TypePtr>(), py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def(py::init<py::tuple, TypePtr>(), py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def(py::init<Tensor, TypePtr>(), py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def_readonly(PYTHON_TENSOR_FLAG, &Tensor::parse_info_)
|
||||
.def_property_readonly("dtype", &Tensor::Dtype, R"mydelimiter(
|
||||
Get the tensor's data type.
|
||||
|
||||
Returns:
|
||||
type, the data type of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 1), np.int32))
|
||||
>>> data.dtype
|
||||
Int32
|
||||
)mydelimiter")
|
||||
.def_property_readonly("shape", &Tensor::GetPyTupleShape, R"mydelimiter(
|
||||
Get the tensor's shape.
|
||||
|
||||
Returns:
|
||||
tuple[int], the shape of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((3, 3)))
|
||||
>>> data.shape()
|
||||
(3, 3)
|
||||
)mydelimiter")
|
||||
.def("asnumpy", &Tensor::data_sync, R"mydelimiter(
|
||||
Convert tensor to numpy.ndarray.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 3)))
|
||||
>>> array = data.asnumpy()
|
||||
>>> array
|
||||
array([[1., 1., 1.],
|
||||
[1., 1., 1.]])
|
||||
)mydelimiter")
|
||||
.def("size", &Tensor::DataSize, R"mydelimiter(
|
||||
Get tensor's data size.
|
||||
|
||||
Returns:
|
||||
int, the size of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 3)))
|
||||
>>> data.size()
|
||||
6
|
||||
)mydelimiter")
|
||||
.def("is_init", &Tensor::is_init, R"mydelimiter(
|
||||
Get tensor init_flag.
|
||||
|
||||
Returns:
|
||||
bool, whether the tensor init.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 3)))
|
||||
>>> data.is_init()
|
||||
False
|
||||
)mydelimiter")
|
||||
.def("set_init_flag", &Tensor::set_init_flag, R"mydelimiter(
|
||||
Set tensor init_flag.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 3)))
|
||||
>>> data.set_init_flag(True)
|
||||
)mydelimiter")
|
||||
.def("dim", &Tensor::DataDim, R"mydelimiter(
|
||||
Get tensor's data dimension.
|
||||
|
||||
Returns:
|
||||
int, the dimension of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 3)))
|
||||
>>> data.dim()
|
||||
2
|
||||
)mydelimiter")
|
||||
.def("set_dtype", &Tensor::SetDtype, R"mydelimiter(
|
||||
Set the tensor's data type.
|
||||
|
||||
Arg:
|
||||
dtype (:class:`mindspore.dtype`): The type of output tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((1, 2), np.float32))
|
||||
>>> data.set_dtype(mindspore.int32)
|
||||
mindspore.int32
|
||||
)mydelimiter")
|
||||
.def("assign_value", &Tensor::AssignValue, R"mydelimiter(
|
||||
Assign another tensor value to this.
|
||||
|
||||
Arg:
|
||||
value (:class:`mindspore.tensor`): The value tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((1, 2), np.float32))
|
||||
>>> data2 = mindspore.Tensor(np.ones((2, 2), np.float32))
|
||||
>>> data.assign_value(data2)
|
||||
>>> data.shape
|
||||
(2, 2)
|
||||
)mydelimiter")
|
||||
.def("__str__", &Tensor::ToString)
|
||||
.def("__repr__", &Tensor::ToStringRepr)
|
||||
.def(py::pickle(
|
||||
[](const Tensor &t) { // __getstate__
|
||||
/* Return a tuple that fully encodes the state of the object */
|
||||
return py::make_tuple(t.data());
|
||||
},
|
||||
[](const py::tuple &t) { // __setstate__
|
||||
if (t.size() != 1) {
|
||||
throw std::runtime_error("Invalid state!");
|
||||
}
|
||||
/* Create a new C++ instance */
|
||||
Tensor tensor(t[0].cast<py::array>());
|
||||
return tensor;
|
||||
}));
|
||||
(void)py::class_<MetaTensor, std::shared_ptr<MetaTensor>>(*m, "MetaTensor")
|
||||
.def(py::init<TypePtr, const std::vector<int>>(), py::arg("dtype"), py::arg("shape"))
|
||||
.def(py::pickle(
|
||||
[](const MetaTensor &t) { // __getstate__
|
||||
/* Return a tuple that fully encodes the state of the object */
|
||||
return py::make_tuple(static_cast<int>(t.data_type()), t.shape());
|
||||
},
|
||||
[](const py::tuple &t) { // __setstate__
|
||||
if (t.size() != 2) {
|
||||
throw std::runtime_error("Invalid state!");
|
||||
}
|
||||
/* Create a new C++ instance */
|
||||
MetaTensor tensor(TypeId(t[0].cast<int>()), t[1].cast<std::vector<int>>());
|
||||
return tensor;
|
||||
}))
|
||||
.def_readonly(PYTHON_META_TENSOR_FLAG, &MetaTensor::parse_info_)
|
||||
.def_property_readonly("dtype", &MetaTensor::Dtype, "Get the MetaTensor's dtype.")
|
||||
.def_property_readonly("shape", &MetaTensor::shape, "Get the MetaTensor's shape.");
|
||||
}));
|
||||
TypeId Tensor::set_data_type(const TypeId data_type) {
|
||||
if (data_type != data_type_) {
|
||||
data_ = MakeTensorData(data_type, shape_, data_->data(), data_type_);
|
||||
return MetaTensor::set_data_type(data_type);
|
||||
}
|
||||
return data_type;
|
||||
}
|
||||
} // namespace tensor
|
||||
|
||||
namespace inference {
|
||||
|
@ -530,8 +333,6 @@ MSTensor *MSTensor::CreateTensor(TypeId data_type, const std::vector<int> &shape
|
|||
return new Tensor(data_type, shape);
|
||||
}
|
||||
|
||||
Tensor::Tensor() { this->tensor_impl_ = std::make_shared<tensor::Tensor>(); }
|
||||
|
||||
Tensor::Tensor(TypeId data_type, const std::vector<int> &shape) {
|
||||
this->tensor_impl_ = std::make_shared<tensor::Tensor>(data_type, shape);
|
||||
}
|
||||
|
@ -585,7 +386,8 @@ size_t Tensor::Size() const {
|
|||
|
||||
void *Tensor::MutableData() const {
|
||||
MS_ASSERT(this->tensor_impl_ != nullptr);
|
||||
return this->tensor_impl_->data_c(true);
|
||||
return this->tensor_impl_->data_c();
|
||||
}
|
||||
|
||||
} // namespace inference
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -20,9 +20,7 @@
|
|||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "pybind11/numpy.h"
|
||||
#include "pybind11/pybind11.h"
|
||||
#include <numeric>
|
||||
|
||||
#include "Eigen/Core"
|
||||
#include "device/device_address.h"
|
||||
|
@ -30,63 +28,8 @@
|
|||
#include "include/ms_tensor.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
using float16 = Eigen::half;
|
||||
|
||||
namespace pybind11 {
|
||||
namespace detail {
|
||||
// Similar to enums in `pybind11/numpy.h`. Determined by doing:
|
||||
// python3 -c 'import numpy as np; print(np.dtype(np.float16).num)'
|
||||
constexpr int NPY_FLOAT16 = 23;
|
||||
|
||||
template <typename T>
|
||||
struct npy_scalar_caster {
|
||||
PYBIND11_TYPE_CASTER(T, _("PleaseOverride"));
|
||||
using Array = array_t<T>;
|
||||
|
||||
bool load(handle src, bool convert) {
|
||||
// Taken from Eigen casters. Permits either scalar dtype or scalar array.
|
||||
handle type = dtype::of<T>().attr("type");
|
||||
if (!convert && !isinstance<Array>(src) && !isinstance(src, type)) return false;
|
||||
|
||||
Array tmp = Array::ensure(src);
|
||||
if (tmp && tmp.size() == 1 && tmp.ndim() == 0) {
|
||||
this->value = *tmp.data();
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static handle cast(T src, return_value_policy, handle) {
|
||||
Array tmp({1});
|
||||
tmp.mutable_at(0) = src;
|
||||
tmp.resize({});
|
||||
|
||||
// You could also just return the array if you want a scalar array.
|
||||
object scalar = tmp[tuple()];
|
||||
return scalar.release();
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct npy_format_descriptor<float16> {
|
||||
static constexpr auto name = "float16";
|
||||
static pybind11::dtype dtype() {
|
||||
handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16);
|
||||
return reinterpret_borrow<pybind11::dtype>(ptr);
|
||||
}
|
||||
virtual ~npy_format_descriptor<float16>() {}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct type_caster<float16> : public npy_scalar_caster<float16> {
|
||||
static constexpr auto name = "float16";
|
||||
};
|
||||
} // namespace detail
|
||||
} // namespace pybind11
|
||||
|
||||
using mindspore::device::DeviceAddress;
|
||||
using DeviceAddressPtr = std::shared_ptr<mindspore::device::DeviceAddress>;
|
||||
// brief mindspore namespace.
|
||||
|
@ -98,179 +41,195 @@ namespace mindspore {
|
|||
//
|
||||
// A sub namespace in ME to support tensor related definition.
|
||||
namespace tensor {
|
||||
// Tensor data interface.
|
||||
class TensorData {
|
||||
public:
|
||||
/// Total number of elements.
|
||||
virtual ssize_t size() const = 0;
|
||||
/// Byte size of a single element.
|
||||
virtual ssize_t itemsize() const = 0;
|
||||
/// Total number of bytes.
|
||||
virtual ssize_t nbytes() const = 0;
|
||||
/// Number of dimensions.
|
||||
virtual ssize_t ndim() const = 0;
|
||||
/// Data pointer.
|
||||
virtual void *data() = 0;
|
||||
/// Is data equals.
|
||||
virtual bool equals(const TensorData &other) const = 0;
|
||||
/// To string.
|
||||
virtual std::string ToString() const = 0;
|
||||
};
|
||||
|
||||
using TensorDataPtr = std::shared_ptr<TensorData>;
|
||||
|
||||
// Tensor entity class
|
||||
class Tensor : public MetaTensor {
|
||||
public:
|
||||
Tensor() = default;
|
||||
abstract::AbstractBasePtr ToAbstract() override;
|
||||
// brief Constructor for Python.
|
||||
//
|
||||
// param type_ptr [TypePty] Data type of the tensor.
|
||||
// param py_shape [py::tuple] The shape represented by py::tuple of the tensor.
|
||||
Tensor(const TypePtr &type_ptr, const py::tuple &shape);
|
||||
|
||||
// brief Constructor for C++.
|
||||
// brief Create tensor from another tensor, data is shared.
|
||||
//
|
||||
// param tensor [Tensor] The input tensor.
|
||||
explicit Tensor(const Tensor &tensor);
|
||||
|
||||
// brief Create tensor with given data type from another tensor.
|
||||
//
|
||||
// param tensor [Tensor] The input tensor.
|
||||
// param data_type [TypeId] The new tensor data type.
|
||||
Tensor(const Tensor &tensor, TypeId data_type);
|
||||
|
||||
// brief Create tensor with the given shared tensor data.
|
||||
//
|
||||
// param data_type [TypeId] Data type of the tensor.
|
||||
// param shape The shape represented by std::vector<int> of the tensor.
|
||||
// param data The shared tensor data.
|
||||
Tensor(TypeId data_type, const std::vector<int> &shape, TensorDataPtr data);
|
||||
|
||||
// brief Create an all zero tensor.
|
||||
//
|
||||
// param data_type [TypeId] Data type of the tensor.
|
||||
// param shape The shape represented by std::vector<int> of the tensor.
|
||||
Tensor(TypeId data_type, const std::vector<int> &shape);
|
||||
|
||||
// brief Constructor for Python.
|
||||
// brief Create a tensor with input data buffer.
|
||||
//
|
||||
// param input [py::array] Data value of the tensor.
|
||||
// param data_type [TypeId] Data type of the tensor.
|
||||
explicit Tensor(const py::array &input, const TypePtr &data_type = nullptr);
|
||||
// param shape The shape represented by std::vector<int> of the tensor.
|
||||
// param data The input data to be copied into tensor.
|
||||
// param data_len The length of data in bytes.
|
||||
Tensor(TypeId data_type, const std::vector<int> &shape, void *data, size_t data_len);
|
||||
|
||||
// brief Constructor
|
||||
// brief Create a tensor with input data buffer and given source data type.
|
||||
//
|
||||
// param input [py::list] the data for tensor
|
||||
// param data_type [TypeId] data type
|
||||
explicit Tensor(const py::list &input, const TypePtr &data_type = nullptr);
|
||||
// param data_type [TypeId] Data type of the tensor.
|
||||
// param shape The shape represented by std::vector<int> of the tensor.
|
||||
// param data The input data to be copied into tensor.
|
||||
// param src_data_type The source data type.
|
||||
Tensor(TypeId data_type, const std::vector<int> &shape, void *data, TypeId src_data_type);
|
||||
|
||||
// brief Constructor
|
||||
// brief Create 1 dimension tensor from an int vector.
|
||||
//
|
||||
// param input [py::tuple] the data for tensor
|
||||
// param input [std::vector<int64_t>] the data for tensor
|
||||
// param data_type [TypeId] data type
|
||||
explicit Tensor(const py::tuple &input, const TypePtr &data_type = nullptr);
|
||||
explicit Tensor(const std::vector<int64_t> &input, const TypePtr &data_type = nullptr);
|
||||
|
||||
// brief Constructor
|
||||
// brief Create 1 dimension tensor from a float vector.
|
||||
//
|
||||
// param input [py::float_] the data for tensor
|
||||
// param input [std::vector<double>] the data for tensor
|
||||
// param data_type [TypeId] data type
|
||||
explicit Tensor(const py::float_ &input, const TypePtr &data_type = nullptr);
|
||||
explicit Tensor(const std::vector<double> &input, const TypePtr &data_type = nullptr);
|
||||
|
||||
// brief Constructor
|
||||
// brief Create 0 dimension tensor from an int scalar.
|
||||
//
|
||||
// param input [py::int_] the data for tensor
|
||||
// param input [int64] the data for tensor
|
||||
// param data_type [TypeId] data type
|
||||
explicit Tensor(const py::int_ &input, const TypePtr &data_type = nullptr);
|
||||
explicit Tensor(int64_t input, const TypePtr &data_type = nullptr);
|
||||
|
||||
// brief Constructor
|
||||
// brief Create 0 dimension tensor from a float scalar.
|
||||
//
|
||||
// param input [Tensor] the data for tensor
|
||||
// param input [double] the data for tensor
|
||||
// param data_type [TypeId] data type
|
||||
Tensor(const Tensor &tensor, const TypePtr &data_type = nullptr);
|
||||
explicit Tensor(double input, const TypePtr &data_type = nullptr);
|
||||
|
||||
~Tensor() override = default;
|
||||
|
||||
MS_DECLARE_PARENT(Tensor, MetaTensor);
|
||||
|
||||
// brief Overloads operator = for Tensor.
|
||||
//
|
||||
// The constructed Tensor object has the same type and shape with tensor.
|
||||
//
|
||||
// param tensor An existing Tensor object.
|
||||
Tensor &operator=(const Tensor &tensor);
|
||||
|
||||
// brief Compares two Tensor objects.
|
||||
//
|
||||
// Compare two tensor objects to see if they have same data type, shape and
|
||||
// data value.
|
||||
// Compare two tensor objects to see if they have same data type, shape and data address.
|
||||
//
|
||||
// param tensor The Tensor object to be compared.
|
||||
// return true: If having same type, shape and data, return true, or return false.
|
||||
// return true: If having same type, shape and data address, return true, or return false.
|
||||
bool operator==(const Tensor &tensor) const;
|
||||
|
||||
// It is different from 'operator==' which just compare shape/type/address, it do real value comparison.
|
||||
bool ValueEqual(const Tensor &other) const;
|
||||
|
||||
// assgin value to this tensor
|
||||
Tensor &AssignValue(const Tensor &tensor);
|
||||
// It is different from 'operator==' which just compare shape/type/address,
|
||||
// it do real value comparison.
|
||||
bool ValueEqual(const Tensor &tensor) const;
|
||||
|
||||
bool operator==(const Value &other) const override {
|
||||
if (other.isa<Tensor>()) {
|
||||
auto other_ = static_cast<const Tensor &>(other);
|
||||
auto &other_ = static_cast<const Tensor &>(other);
|
||||
return *this == other_;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
py::tuple GetPyTupleShape() const;
|
||||
|
||||
// brief Gets tensor's dimension
|
||||
//
|
||||
// return The number of dimensions of the tensor data.
|
||||
int DataDim() const;
|
||||
int DataDim() const { return static_cast<int>(data().ndim()); }
|
||||
|
||||
// brief Getting tensor data size
|
||||
//
|
||||
// return The total number of elements of the tensor data.
|
||||
int DataSize() const;
|
||||
|
||||
// brief Tensor's data value.
|
||||
//
|
||||
// return [py::array] The tensor's data in py::array.
|
||||
py::array data() const;
|
||||
int DataSize() const { return static_cast<int>(data().size()); }
|
||||
|
||||
// brief Get the data type fo the tensor for C++
|
||||
//
|
||||
// return [int] The tensor's data type will be cast to int to return.
|
||||
int data_type_c() const;
|
||||
int data_type_c() const { return static_cast<int>(data_type_); }
|
||||
|
||||
// brief Get the tensor's shape for C++
|
||||
//
|
||||
// return [std::vector<int>]
|
||||
std::vector<int> shape_c(void) const;
|
||||
std::vector<int> shape_c(void) const { return shape(); }
|
||||
|
||||
// brief Get Tensor data pointer for c++ type
|
||||
//
|
||||
// param writable true if writable, false if read only
|
||||
// return The pointer to the object
|
||||
void *data_c(bool writable = false);
|
||||
void *data_c() { return data().data(); }
|
||||
|
||||
// brief Get Tensor data byte-size for c++ type
|
||||
//
|
||||
// return byte size of Tensor data
|
||||
size_t Size() const { return this->data().nbytes(); }
|
||||
size_t Size() const { return data().nbytes(); }
|
||||
|
||||
// brief Get data type from tensor data.
|
||||
//
|
||||
// param buf The buffer info of the py::array data.
|
||||
// return The [TypeId] of the tensor data.
|
||||
TypeId GetDataType(const py::buffer_info &buf) const;
|
||||
void *data_c() const { return data_->data(); }
|
||||
|
||||
// brief Sets the data type of a tensor.
|
||||
// brief Sync data with device.
|
||||
void data_sync() const;
|
||||
|
||||
// brief Get the internal data object.
|
||||
//
|
||||
// param data_type The data type of the tensor to be set.
|
||||
// return The reference to internal data object.
|
||||
TensorData &data() { return *data_; }
|
||||
|
||||
// brief Get the internal data shared pointer.
|
||||
//
|
||||
// return The reference to internal data object.
|
||||
const TensorDataPtr &data_ptr() const { return data_; }
|
||||
|
||||
// brief Get the internal data object.
|
||||
//
|
||||
// return The reference to internal data object.
|
||||
const TensorData &data() const { return *data_; }
|
||||
|
||||
TypeId set_data_type(const TypeId data_type) override;
|
||||
TypePtr SetDtype(const TypePtr type_ptr) override;
|
||||
|
||||
std::string GetShapeAndDataTypeInfo() const;
|
||||
|
||||
std::string ToString() const override;
|
||||
|
||||
std::string ToStringRepr() const;
|
||||
py::array data_; // < Tensor's data value
|
||||
const bool parse_info_ = true;
|
||||
bool is_init();
|
||||
void set_init_flag(bool flag);
|
||||
|
||||
private:
|
||||
// brief init tensor
|
||||
//
|
||||
// param input [py::array] the data for tensor
|
||||
// param data_type [TypeId] data type
|
||||
// return true if succeed, false if failed.
|
||||
void init(const py::array &input, const TypeId &data_type);
|
||||
void init(const py::array &input, const TypePtr &type_ptr);
|
||||
bool init_flag_{false};
|
||||
// brief init tensor attribute
|
||||
//
|
||||
// param data_type [TypeId] Data type of the tensor.
|
||||
// param shape [py::array] The shape of the tensor.
|
||||
// return true if succeed, false if failed.
|
||||
void init(TypeId data_type, const std::vector<int> &shape, py::array *data);
|
||||
bool is_init() { return init_flag_; }
|
||||
void set_init_flag(bool flag) { init_flag_ = flag; }
|
||||
|
||||
bool convert_data(const py::array &in, const TypeId in_data_type, py::array *out, const TypeId out_data_type);
|
||||
|
||||
public:
|
||||
bool is_dirty() const { return dirty_; }
|
||||
void set_dirty(const bool dirty) { dirty_ = dirty; }
|
||||
|
||||
DeviceAddressPtr device_address() const { return device_address_; }
|
||||
void set_device_address(const DeviceAddressPtr &device_address) { device_address_ = device_address; }
|
||||
py::array data_sync();
|
||||
|
||||
std::string id() const { return id_; }
|
||||
|
||||
const bool parse_info_ = true;
|
||||
|
||||
private:
|
||||
bool init_flag_{false};
|
||||
TensorDataPtr data_{nullptr};
|
||||
bool dirty_{true};
|
||||
std::string id_{""};
|
||||
DeviceAddressPtr device_address_{nullptr};
|
||||
|
@ -282,8 +241,6 @@ using TensorPtrList = std::vector<std::shared_ptr<Tensor>>;
|
|||
namespace inference {
|
||||
class Tensor : public MSTensor {
|
||||
public:
|
||||
Tensor();
|
||||
|
||||
Tensor(TypeId data_type, const std::vector<int> &shape);
|
||||
|
||||
explicit Tensor(std::shared_ptr<tensor::Tensor> tensor_ptr);
|
||||
|
|
|
@ -0,0 +1,377 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "ir/tensor_py.h"
|
||||
|
||||
#include <functional>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
|
||||
#include "device/device_address.h"
|
||||
#include "pybind_api/api_register.h"
|
||||
#include "pybind_api/export_flags.h"
|
||||
#include "pipeline/static_analysis/abstract_value.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace tensor {
|
||||
|
||||
static TypeId GetDataType(const py::buffer_info &buf) {
|
||||
if (buf.format.size() == 1) {
|
||||
switch (buf.format.front()) {
|
||||
case 'e':
|
||||
case 'f':
|
||||
case 'd':
|
||||
switch (buf.itemsize) {
|
||||
case 2:
|
||||
return TypeId::kNumberTypeFloat16;
|
||||
case 4:
|
||||
return TypeId::kNumberTypeFloat32;
|
||||
case 8:
|
||||
return TypeId::kNumberTypeFloat64;
|
||||
}
|
||||
break;
|
||||
case 'b':
|
||||
case 'h':
|
||||
case 'i':
|
||||
case 'l':
|
||||
case 'q':
|
||||
switch (buf.itemsize) {
|
||||
case 1:
|
||||
return TypeId::kNumberTypeInt8;
|
||||
case 2:
|
||||
return TypeId::kNumberTypeInt16;
|
||||
case 4:
|
||||
return TypeId::kNumberTypeInt32;
|
||||
case 8:
|
||||
return TypeId::kNumberTypeInt64;
|
||||
}
|
||||
break;
|
||||
case 'B':
|
||||
case 'H':
|
||||
case 'I':
|
||||
case 'L':
|
||||
case 'Q':
|
||||
switch (buf.itemsize) {
|
||||
case 1:
|
||||
return TypeId::kNumberTypeUInt8;
|
||||
case 2:
|
||||
return TypeId::kNumberTypeUInt16;
|
||||
case 4:
|
||||
return TypeId::kNumberTypeUInt32;
|
||||
case 8:
|
||||
return TypeId::kNumberTypeUInt64;
|
||||
}
|
||||
break;
|
||||
case '?':
|
||||
return TypeId::kNumberTypeBool;
|
||||
}
|
||||
}
|
||||
MS_LOG(WARNING) << "Unsupported DataType format " << buf.format << " item size " << buf.itemsize;
|
||||
return TypeId::kTypeUnknown;
|
||||
}
|
||||
|
||||
static std::string GetPyTypeFormat(TypeId data_type) {
|
||||
switch (data_type) {
|
||||
case TypeId::kNumberTypeFloat16:
|
||||
return "e";
|
||||
case TypeId::kNumberTypeFloat32:
|
||||
return py::format_descriptor<float>::format();
|
||||
case TypeId::kNumberTypeFloat64:
|
||||
return py::format_descriptor<double>::format();
|
||||
case TypeId::kNumberTypeUInt8:
|
||||
return py::format_descriptor<uint8_t>::format();
|
||||
case TypeId::kNumberTypeUInt16:
|
||||
return py::format_descriptor<uint16_t>::format();
|
||||
case TypeId::kNumberTypeUInt32:
|
||||
return py::format_descriptor<uint32_t>::format();
|
||||
case TypeId::kNumberTypeUInt64:
|
||||
return py::format_descriptor<uint64_t>::format();
|
||||
case TypeId::kNumberTypeInt8:
|
||||
return py::format_descriptor<int8_t>::format();
|
||||
case TypeId::kNumberTypeInt16:
|
||||
return py::format_descriptor<int16_t>::format();
|
||||
case TypeId::kNumberTypeInt32:
|
||||
return py::format_descriptor<int32_t>::format();
|
||||
case TypeId::kNumberTypeInt64:
|
||||
return py::format_descriptor<int64_t>::format();
|
||||
case TypeId::kNumberTypeBool:
|
||||
return py::format_descriptor<bool>::format();
|
||||
default:
|
||||
MS_LOG(WARNING) << "Unsupported DataType " << data_type << ".";
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
static bool IsCContiguous(const py::array &input) {
|
||||
auto flags = static_cast<unsigned int>(input.flags());
|
||||
return (flags & pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_) != 0;
|
||||
}
|
||||
|
||||
TensorPtr TensorPy::MakeTensor(const py::array &input, const TypePtr &type_ptr) {
|
||||
// Get input buffer info.
|
||||
py::buffer_info buf = input.request();
|
||||
// Check data types.
|
||||
auto data_type = type_ptr ? type_ptr->type_id() : TypeId::kTypeUnknown;
|
||||
auto buf_type = GetDataType(buf);
|
||||
if (buf_type == TypeId::kTypeUnknown && data_type == TypeId::kTypeUnknown) {
|
||||
MS_LOG(EXCEPTION) << "Unsupported tensor type!";
|
||||
}
|
||||
// Use buf type as data type if type_ptr not set.
|
||||
if (data_type == TypeId::kTypeUnknown) {
|
||||
data_type = buf_type;
|
||||
}
|
||||
// Convert input array to C contiguous if need.
|
||||
std::unique_ptr<char[]> tmp_buf;
|
||||
if (!IsCContiguous(input)) {
|
||||
Py_buffer pybuf;
|
||||
if (PyObject_GetBuffer(input.ptr(), &pybuf, PyBUF_ANY_CONTIGUOUS)) {
|
||||
MS_LOG(EXCEPTION) << "Failed to get buffer from the input!";
|
||||
}
|
||||
tmp_buf = std::make_unique<char[]>(pybuf.len);
|
||||
if (PyBuffer_ToContiguous(tmp_buf.get(), &pybuf, pybuf.len, 'C')) {
|
||||
MS_LOG(EXCEPTION) << "Can't copy numpy.ndarray to a contiguous buffer.";
|
||||
}
|
||||
PyBuffer_Release(&pybuf);
|
||||
buf.ptr = tmp_buf.get();
|
||||
}
|
||||
// Get tensor shape.
|
||||
std::vector<int> shape(buf.shape.begin(), buf.shape.end());
|
||||
if (data_type == buf_type) {
|
||||
// Use memory copy if input data type is same as the required type.
|
||||
return std::make_shared<Tensor>(data_type, shape, buf.ptr, buf.size * buf.itemsize);
|
||||
}
|
||||
// Create tensor with data type converted.
|
||||
return std::make_shared<Tensor>(data_type, shape, buf.ptr, buf_type);
|
||||
}
|
||||
|
||||
static std::vector<ssize_t> GetStrides(const std::vector<ssize_t> &shape, ssize_t item_size) {
|
||||
std::vector<ssize_t> strides;
|
||||
strides.reserve(shape.size());
|
||||
const auto ndim = shape.size();
|
||||
for (size_t i = 0; i < ndim; ++i) {
|
||||
auto stride = item_size;
|
||||
for (size_t j = i + 1; j < ndim; ++j) {
|
||||
stride *= shape[j];
|
||||
}
|
||||
strides.push_back(stride);
|
||||
}
|
||||
return strides;
|
||||
}
|
||||
|
||||
static py::buffer_info GetPyBufferInfo(const Tensor &tensor) {
|
||||
std::vector<ssize_t> shape(tensor.shape().begin(), tensor.shape().end());
|
||||
std::vector<ssize_t> strides = GetStrides(shape, tensor.data().itemsize());
|
||||
return py::buffer_info{
|
||||
tensor.data_c(), tensor.data().itemsize(), GetPyTypeFormat(tensor.data_type()), tensor.DataDim(), shape, strides};
|
||||
}
|
||||
|
||||
py::tuple TensorPy::GetPyTupleShape(const Tensor &tensor) {
|
||||
auto &shape = tensor.shape();
|
||||
py::tuple dims(shape.size());
|
||||
for (size_t i = 0; i < dims.size(); ++i) {
|
||||
dims[i] = py::int_(shape[i]);
|
||||
}
|
||||
return dims;
|
||||
}
|
||||
|
||||
py::array TensorPy::SyncAsNumpy(const Tensor &tensor) {
|
||||
tensor.data_sync();
|
||||
auto info = GetPyBufferInfo(tensor);
|
||||
py::object self = py::cast(&tensor);
|
||||
return py::array(py::dtype(info), info.shape, info.strides, info.ptr, self);
|
||||
}
|
||||
|
||||
py::array TensorPy::AsNumpy(const Tensor &tensor) {
|
||||
auto info = GetPyBufferInfo(tensor);
|
||||
py::object self = py::cast(&tensor);
|
||||
return py::array(py::dtype(info), info.shape, info.strides, info.ptr, self);
|
||||
}
|
||||
|
||||
static std::vector<int> GetShapeFromTuple(const py::tuple &tuple) {
|
||||
std::vector<int> shape;
|
||||
const size_t size = tuple.size();
|
||||
shape.reserve(tuple.size());
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
shape.push_back(py::int_(tuple[i]));
|
||||
}
|
||||
return shape;
|
||||
}
|
||||
|
||||
REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
|
||||
// Define python Tensor class.
|
||||
// dtype should define before Tensor, because Tensor init depend dtype
|
||||
(void)py::class_<Tensor, std::shared_ptr<Tensor>>(*m, "Tensor")
|
||||
.def(py::init([](const Tensor &tensor) { return std::make_shared<Tensor>(tensor); }),
|
||||
py::arg("input"))
|
||||
.def(py::init([](const Tensor &tensor, const TypePtr &type_ptr) {
|
||||
TypeId data_type = type_ptr ? type_ptr->type_id() : kTypeUnknown;
|
||||
if (data_type == kTypeUnknown || tensor.data_type() == data_type) {
|
||||
return std::make_shared<Tensor>(tensor);
|
||||
}
|
||||
return std::make_shared<Tensor>(tensor, data_type);
|
||||
}),
|
||||
py::arg("input"), py::arg("dtype"))
|
||||
.def(py::init([](const TypePtr &type_ptr, const py::tuple &shape) {
|
||||
auto data_type = type_ptr ? type_ptr->type_id() : TypeId::kNumberTypeFloat64;
|
||||
return std::make_shared<Tensor>(data_type, GetShapeFromTuple(shape));
|
||||
}),
|
||||
py::arg("dtype"), py::arg("shape"))
|
||||
.def(py::init([](const py::array &input, const TypePtr &type_ptr) {
|
||||
return TensorPy::MakeTensor(input, type_ptr);
|
||||
}),
|
||||
py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def(py::init([](py::float_ input, const TypePtr &type_ptr) {
|
||||
return TensorPy::MakeTensor(py::array(input), type_ptr);
|
||||
}),
|
||||
py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def(py::init([](py::int_ input, const TypePtr &type_ptr) {
|
||||
return TensorPy::MakeTensor(py::array(input), type_ptr);
|
||||
}),
|
||||
py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def(py::init([](py::list input, const TypePtr &type_ptr) {
|
||||
return TensorPy::MakeTensor(py::array(input), type_ptr);
|
||||
}),
|
||||
py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def(py::init([](py::tuple input, const TypePtr &type_ptr) {
|
||||
return TensorPy::MakeTensor(py::array(input), type_ptr);
|
||||
}),
|
||||
py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def_readonly(PYTHON_TENSOR_FLAG, &Tensor::parse_info_)
|
||||
.def_property_readonly("dtype", &Tensor::Dtype, R"mydelimiter(
|
||||
Get the tensor's data type.
|
||||
|
||||
Returns:
|
||||
type, the data type of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 1), np.int32))
|
||||
>>> data.dtype
|
||||
Int32
|
||||
)mydelimiter")
|
||||
.def_property_readonly("shape", TensorPy::GetPyTupleShape, R"mydelimiter(
|
||||
Get the tensor's shape.
|
||||
|
||||
Returns:
|
||||
tuple[int], the shape of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((3, 3)))
|
||||
>>> data.shape()
|
||||
(3, 3)
|
||||
)mydelimiter")
|
||||
.def("asnumpy", TensorPy::SyncAsNumpy, R"mydelimiter(
|
||||
Convert tensor to numpy.ndarray.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 3)))
|
||||
>>> array = data.asnumpy()
|
||||
>>> array
|
||||
array([[1., 1., 1.],
|
||||
[1., 1., 1.]])
|
||||
)mydelimiter")
|
||||
.def("size", &Tensor::DataSize, R"mydelimiter(
|
||||
Get tensor's data size.
|
||||
|
||||
Returns:
|
||||
int, the size of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 3)))
|
||||
>>> data.size()
|
||||
6
|
||||
)mydelimiter")
|
||||
.def("is_init", &Tensor::is_init, R"mydelimiter(
|
||||
Get tensor init_flag.
|
||||
|
||||
Returns:
|
||||
bool, whether the tensor init.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 3)))
|
||||
>>> data.is_init()
|
||||
False
|
||||
)mydelimiter")
|
||||
.def("set_init_flag", &Tensor::set_init_flag, R"mydelimiter(
|
||||
Set tensor init_flag.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 3)))
|
||||
>>> data.set_init_flag(True)
|
||||
)mydelimiter")
|
||||
.def("dim", &Tensor::DataDim, R"mydelimiter(
|
||||
Get tensor's data dimension.
|
||||
|
||||
Returns:
|
||||
int, the dimension of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 3)))
|
||||
>>> data.dim()
|
||||
2
|
||||
)mydelimiter")
|
||||
.def("set_dtype", &Tensor::SetDtype, R"mydelimiter(
|
||||
Set the tensor's data type.
|
||||
|
||||
Arg:
|
||||
dtype (:class:`mindspore.dtype`): The type of output tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((1, 2), np.float32))
|
||||
>>> data.set_dtype(mindspore.int32)
|
||||
mindspore.int32
|
||||
)mydelimiter")
|
||||
.def("__str__", &Tensor::ToString)
|
||||
.def("__repr__", &Tensor::ToStringRepr)
|
||||
.def(py::pickle(
|
||||
[](const Tensor &t) { // __getstate__
|
||||
/* Return a tuple that fully encodes the state of the object */
|
||||
return py::make_tuple(TensorPy::AsNumpy(t));
|
||||
},
|
||||
[](const py::tuple &t) { // __setstate__
|
||||
if (t.size() != 1) {
|
||||
throw std::runtime_error("Invalid state!");
|
||||
}
|
||||
/* Create a new C++ instance */
|
||||
return TensorPy::MakeTensor(t[0].cast<py::array>());
|
||||
}));
|
||||
// Define python MetaTensor class.
|
||||
(void)py::class_<MetaTensor, std::shared_ptr<MetaTensor>>(*m, "MetaTensor")
|
||||
.def(py::init<TypePtr, const std::vector<int>>(), py::arg("dtype"), py::arg("shape"))
|
||||
.def_readonly(PYTHON_META_TENSOR_FLAG, &MetaTensor::parse_info_)
|
||||
.def_property_readonly("dtype", &MetaTensor::Dtype, "Get the MetaTensor's dtype.")
|
||||
.def_property_readonly("shape", &MetaTensor::shape, "Get the MetaTensor's shape.")
|
||||
.def(py::pickle(
|
||||
[](const MetaTensor &t) { // __getstate__
|
||||
/* Return a tuple that fully encodes the state of the object */
|
||||
return py::make_tuple(static_cast<int>(t.data_type()), t.shape());
|
||||
},
|
||||
[](const py::tuple &t) { // __setstate__
|
||||
if (t.size() != 2) {
|
||||
throw std::runtime_error("Invalid state!");
|
||||
}
|
||||
/* Create a new C++ instance */
|
||||
MetaTensor tensor(TypeId(t[0].cast<int>()), t[1].cast<std::vector<int>>());
|
||||
return tensor;
|
||||
}));
|
||||
}));
|
||||
|
||||
} // namespace tensor
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,114 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_IR_TENSOR_PY_H_
|
||||
#define MINDSPORE_CCSRC_IR_TENSOR_PY_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "pybind11/pybind11.h"
|
||||
#include "pybind11/numpy.h"
|
||||
|
||||
#include "ir/tensor.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
namespace pybind11 {
|
||||
namespace detail {
|
||||
// Similar to enums in `pybind11/numpy.h`. Determined by doing:
|
||||
// python3 -c 'import numpy as np; print(np.dtype(np.float16).num)'
|
||||
constexpr int NPY_FLOAT16 = 23;
|
||||
|
||||
template <typename T>
|
||||
struct npy_scalar_caster {
|
||||
PYBIND11_TYPE_CASTER(T, _("PleaseOverride"));
|
||||
using Array = array_t<T>;
|
||||
|
||||
bool load(handle src, bool convert) {
|
||||
// Taken from Eigen casters. Permits either scalar dtype or scalar array.
|
||||
handle type = dtype::of<T>().attr("type");
|
||||
if (!convert && !isinstance<Array>(src) && !isinstance(src, type)) return false;
|
||||
|
||||
Array tmp = Array::ensure(src);
|
||||
if (tmp && tmp.size() == 1 && tmp.ndim() == 0) {
|
||||
this->value = *tmp.data();
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static handle cast(T src, return_value_policy, handle) {
|
||||
Array tmp({1});
|
||||
tmp.mutable_at(0) = src;
|
||||
tmp.resize({});
|
||||
|
||||
// You could also just return the array if you want a scalar array.
|
||||
object scalar = tmp[tuple()];
|
||||
return scalar.release();
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct npy_format_descriptor<float16> {
|
||||
static constexpr auto name = "float16";
|
||||
static pybind11::dtype dtype() {
|
||||
handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16);
|
||||
return reinterpret_borrow<pybind11::dtype>(ptr);
|
||||
}
|
||||
virtual ~npy_format_descriptor<float16>() {}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct type_caster<float16> : public npy_scalar_caster<float16> {
|
||||
static constexpr auto name = "float16";
|
||||
};
|
||||
} // namespace detail
|
||||
} // namespace pybind11
|
||||
|
||||
using mindspore::device::DeviceAddress;
|
||||
using DeviceAddressPtr = std::shared_ptr<mindspore::device::DeviceAddress>;
|
||||
// brief mindspore namespace.
|
||||
//
|
||||
// mindspore namespace is the top level namespace of Mindsporeession project.
|
||||
// Other namespace should be a sub namespace of mindspore namespace in the ME project.
|
||||
namespace mindspore {
|
||||
// brief mindspore::tensor namespace
|
||||
//
|
||||
// A sub namespace in ME to support tensor related definition.
|
||||
namespace tensor {
|
||||
// Tensor python wrapper and adapter class.
|
||||
class TensorPy {
|
||||
public:
|
||||
// brief Create Tensor from a numpy array object.
|
||||
//
|
||||
// param input [py::array] Data value of the tensor.
|
||||
// param data_type [TypeId] Data type of the tensor.
|
||||
static TensorPtr MakeTensor(const py::array &input, const TypePtr &data_type = nullptr);
|
||||
|
||||
static py::array SyncAsNumpy(const Tensor &tensor);
|
||||
|
||||
static py::array AsNumpy(const Tensor &tensor);
|
||||
|
||||
static py::tuple GetPyTupleShape(const Tensor &tensor);
|
||||
};
|
||||
|
||||
} // namespace tensor
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_IR_TENSOR_PY_H_
|
|
@ -23,6 +23,7 @@
|
|||
#include <algorithm>
|
||||
#include <functional>
|
||||
|
||||
#include "ir/tensor_py.h"
|
||||
#include "ir/param_value_py.h"
|
||||
#include "debug/anf_ir_utils.h"
|
||||
#include "operator/ops.h"
|
||||
|
@ -257,7 +258,7 @@ void IrExportBuilder::SetTensorToAttributeProto(const ValuePtr &value, onnx::Att
|
|||
attr_proto->set_type(onnx::AttributeProto_AttributeType_TENSOR);
|
||||
onnx::TensorProto *tensor_proto = attr_proto->mutable_t();
|
||||
auto data = value->cast<tensor::TensorPtr>();
|
||||
tensor_proto->set_raw_data(data->data().request(true).ptr, static_cast<size_t>(data->data().nbytes()));
|
||||
tensor_proto->set_raw_data(data->data_c(), static_cast<size_t>(data->data().nbytes()));
|
||||
auto dtype = data->data_type();
|
||||
auto shape = data->shape_c();
|
||||
tensor_proto->set_data_type(GetOnnxDataType(dtype));
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include "proto/onnx.pb.h"
|
||||
#include "operator/ops.h"
|
||||
#include "ir/param_value_py.h"
|
||||
#include "ir/tensor_py.h"
|
||||
|
||||
namespace mindspore {
|
||||
enum OpMergeMode {
|
||||
|
@ -1190,7 +1191,7 @@ void OnnxExporter::SetNodeAttribute(const ValuePtr &value, onnx::NodeProto *cons
|
|||
attr_proto->set_type(onnx::AttributeProto_AttributeType_TENSOR);
|
||||
onnx::TensorProto *tensor_proto = attr_proto->mutable_t();
|
||||
auto data = dyn_cast<tensor::Tensor>(value);
|
||||
tensor_proto->set_raw_data(data->data().request(true).ptr, static_cast<size_t>(data->data().nbytes()));
|
||||
tensor_proto->set_raw_data(data->data_c(), static_cast<size_t>(data->data().nbytes()));
|
||||
auto dtype = data->data_type();
|
||||
auto shape = data->shape_c();
|
||||
|
||||
|
|
|
@ -21,6 +21,9 @@
|
|||
#include "pipeline/static_analysis/param_validator.h"
|
||||
#include "operator/ops.h"
|
||||
#include "utils/convert_utils.h"
|
||||
#include "ir/tensor_py.h"
|
||||
|
||||
using mindspore::tensor::TensorPy;
|
||||
|
||||
namespace mindspore {
|
||||
namespace abstract {
|
||||
|
@ -554,7 +557,7 @@ AbstractBasePtr InferImplTuple2Array(const AnalysisEnginePtr &, const PrimitiveP
|
|||
|
||||
py::tuple data_tuple = ValuePtrToPyData(input->BuildValue());
|
||||
py::array data = py::array(data_tuple);
|
||||
auto tensor = std::make_shared<tensor::Tensor>(data);
|
||||
auto tensor = TensorPy::MakeTensor(data);
|
||||
auto ret = tensor->ToAbstract();
|
||||
ret->set_value(tensor);
|
||||
MS_LOG(DEBUG) << "Tuple2arry result AbstractTensor: " << ret->ToString();
|
||||
|
|
|
@ -153,7 +153,7 @@ class TensorMultiplyBase : public AnfVisitor {
|
|||
}
|
||||
|
||||
tensor::TensorPtr tensor_ptr = dyn_cast<tensor::Tensor>(value);
|
||||
return tensor_ptr->data_c(writable);
|
||||
return tensor_ptr->data_c();
|
||||
}
|
||||
|
||||
// Make a new tensor (when possible) with the same shape as of `node`
|
||||
|
@ -171,7 +171,7 @@ class TensorMultiplyBase : public AnfVisitor {
|
|||
|
||||
auto new_tensor_ptr = std::make_shared<tensor::Tensor>(tensor_type_ptr->type_id(), tensor_shape);
|
||||
size_t mem_size = GetTypeByte(tensor_type_ptr) * IntToSize(new_tensor_ptr->ElementsNum());
|
||||
char *data = reinterpret_cast<char *>(new_tensor_ptr->data_c(true));
|
||||
char *data = reinterpret_cast<char *>(new_tensor_ptr->data_c());
|
||||
|
||||
if (x == nullptr) {
|
||||
std::memset(data, 0, mem_size);
|
||||
|
@ -546,7 +546,7 @@ class ConstantDuplicateMul : public AnfVisitor {
|
|||
|
||||
auto new_tensor_ptr = std::make_shared<tensor::Tensor>(tensor_3_type_ptr->type_id(), tensor_out_shape);
|
||||
size_t mem_size = GetTypeByte(tensor_3_type_ptr) * IntToSize(new_tensor_ptr->ElementsNum());
|
||||
char *data = reinterpret_cast<char *>(new_tensor_ptr->data_c(true));
|
||||
char *data = reinterpret_cast<char *>(new_tensor_ptr->data_c());
|
||||
memcpy(data, data_out, mem_size);
|
||||
|
||||
auto new_vnode = NewValueNode(new_tensor_ptr);
|
||||
|
|
|
@ -191,7 +191,7 @@ inline void ResetSharedOp() {
|
|||
tensor::TensorPtr ConstData() {
|
||||
std::vector<int> shp = {1};
|
||||
tensor::TensorPtr const_data = std::make_shared<tensor::Tensor>(kInt32->type_id(), shp);
|
||||
auto *val = static_cast<int32_t *>(const_data->data_c(true));
|
||||
auto *val = static_cast<int32_t *>(const_data->data_c());
|
||||
*val = 0;
|
||||
return const_data;
|
||||
}
|
||||
|
@ -267,7 +267,7 @@ CNodePtr GenerateSwitchControlDependNode(const FuncGraphPtr &graph, const AnfNod
|
|||
auto PrimSquare = prim::GetPythonOps("square", "mindspore.ops.functional")->cast<PrimitivePtr>();
|
||||
std::vector<int> shp = {1};
|
||||
tensor::TensorPtr const_data = std::make_shared<tensor::Tensor>(kInt32->type_id(), shp);
|
||||
auto *val = static_cast<int32_t *>(const_data->data_c(true));
|
||||
auto *val = static_cast<int32_t *>(const_data->data_c());
|
||||
*val = 0;
|
||||
// for the control_depend netoutput node , add two const data to merge the flow ,one for depended node with same
|
||||
// switch the other use the opposite
|
||||
|
|
|
@ -178,7 +178,7 @@ class ZeroLikeFillZero : public AnfVisitor {
|
|||
|
||||
tensor::TensorPtr new_tensor_ptr = std::make_shared<tensor::Tensor>(tensor_type_ptr->type_id(), tensor_shape);
|
||||
size_t mem_size = GetTypeByte(tensor_type_ptr) * IntToSize(new_tensor_ptr->ElementsNum());
|
||||
char *data = reinterpret_cast<char *>(new_tensor_ptr->data_c(true));
|
||||
char *data = reinterpret_cast<char *>(new_tensor_ptr->data_c());
|
||||
(void)memset_s(data, mem_size, 0, mem_size);
|
||||
|
||||
auto new_cnode = NewValueNode(new_tensor_ptr);
|
||||
|
|
|
@ -71,7 +71,7 @@ class SpecializeTransform {
|
|||
continue;
|
||||
}
|
||||
if (value_args[i] != nullptr) {
|
||||
auto const_tensor = *value_args[i];
|
||||
auto &const_tensor = *value_args[i];
|
||||
auto const_tensor_ptr = std::make_shared<tensor::Tensor>(const_tensor);
|
||||
AnfNodePtr arg = NewValueNode(const_tensor_ptr);
|
||||
(void)mng->Replace(params[i], arg);
|
||||
|
|
|
@ -210,8 +210,8 @@ OperatorVector CreateSubOp(int32_t sub_value) {
|
|||
OperatorName operator_name = SUB;
|
||||
OperatorAttrs operator_attrs;
|
||||
|
||||
py::tuple tuple = py::make_tuple(sub_value);
|
||||
mindspore::tensor::TensorPtr tensor_ptr = std::make_shared<mindspore::tensor::Tensor>(tuple, kInt32);
|
||||
std::vector<int64_t> tensor_data = {sub_value};
|
||||
mindspore::tensor::TensorPtr tensor_ptr = std::make_shared<mindspore::tensor::Tensor>(tensor_data, kInt32);
|
||||
ValuePtr op_param_value = MakeValue(tensor_ptr);
|
||||
|
||||
Attr op1_param = std::make_pair("", op_param_value);
|
||||
|
|
|
@ -204,8 +204,8 @@ ForwardOp CreatReduceMeanForwardOp(const std::vector<Group> &forward_group, cons
|
|||
OperatorName operator1_name = REAL_DIV;
|
||||
std::vector<Device> device_list = forward_group[0].GetDevicesList();
|
||||
auto divisor = static_cast<float>(device_list.size());
|
||||
py::tuple tuple = py::make_tuple(divisor);
|
||||
mindspore::tensor::TensorPtr tensor_ptr = std::make_shared<mindspore::tensor::Tensor>(tuple, dtype);
|
||||
std::vector<double> tensor_data = {divisor};
|
||||
mindspore::tensor::TensorPtr tensor_ptr = std::make_shared<mindspore::tensor::Tensor>(tensor_data, dtype);
|
||||
ValuePtr op1_param_value = MakeValue(tensor_ptr);
|
||||
Attr op1_param = std::make_pair("divisor", op1_param_value);
|
||||
OperatorParams operator1_params = {std::make_pair(op1_param, 2)};
|
||||
|
|
|
@ -156,11 +156,11 @@ void ConvertObjectToTensors(const py::dict &dict, TensorOrderMap *const tensors)
|
|||
if (py::isinstance<py::float_>(item.second.attr("default_input"))) {
|
||||
// convert float to tensor with shape([1])
|
||||
tensor = std::make_shared<Tensor>(kNumberTypeFloat32, std::vector<int>({1}));
|
||||
*(static_cast<float *>(tensor->data_c(true))) = py::cast<float>(item.second.attr("default_input"));
|
||||
*(static_cast<float *>(tensor->data_c())) = py::cast<float>(item.second.attr("default_input"));
|
||||
} else if (py::isinstance<py::int_>(item.second.attr("default_input"))) {
|
||||
// convert int to tensor with shape([1])
|
||||
tensor = std::make_shared<Tensor>(kNumberTypeInt32, std::vector<int>({1}));
|
||||
*(static_cast<float *>(tensor->data_c(true))) = py::cast<float>(item.second.attr("default_input"));
|
||||
*(static_cast<float *>(tensor->data_c())) = py::cast<float>(item.second.attr("default_input"));
|
||||
} else if (py::hasattr(item.second.attr("default_input"), PYTHON_TENSOR_FLAG)) {
|
||||
// cast tensor
|
||||
tensor = py::cast<std::shared_ptr<Tensor>>(item.second.attr("default_input"));
|
||||
|
@ -330,7 +330,7 @@ py::object ExtractGeneralCnodeRet(const AbstractBasePtr &cnode_data, const py::t
|
|||
MS_LOG(EXCEPTION) << "The shape of the tensor derived is not Shape, is " << shape->ToString();
|
||||
}
|
||||
auto shape_me = shape->cast<abstract::ShapePtr>()->shape();
|
||||
auto shape_ge = py::cast<Tensor>(data[*count]).shape();
|
||||
auto shape_ge = py::cast<Tensor &>(data[*count]).shape();
|
||||
if (shape_ge != shape_me) {
|
||||
MS_LOG(EXCEPTION) << "The shape of the " << *count << "th tensor returned: " << shape_ge
|
||||
<< " is not the same as the shape of the tensor derived: " << shape_me;
|
||||
|
|
|
@ -44,7 +44,7 @@ tensor::TensorPtr CreateTensor(const AnfNodePtr &node) {
|
|||
indices_tensor->set_device_info(device_info);
|
||||
|
||||
// 2 set value of tensor
|
||||
auto data_ptr = indices_tensor->data_c(true);
|
||||
auto data_ptr = indices_tensor->data_c();
|
||||
MS_EXCEPTION_IF_NULL(data_ptr);
|
||||
std::vector<Eigen::half> half_data;
|
||||
for (size_t i = 0; i < last_dim; ++i) {
|
||||
|
|
|
@ -348,7 +348,7 @@ tensor::TensorPtr CreateTensorWithValueTuple(const ValueTuplePtr &value_tuple_pt
|
|||
MS_EXCEPTION_IF_NULL(tensor);
|
||||
tensor::DeviceInfo device_info{kOpFormat_DEFAULT, type_ptr};
|
||||
tensor->set_device_info(device_info);
|
||||
auto data_ptr = tensor->data_c(true);
|
||||
auto data_ptr = tensor->data_c();
|
||||
MS_EXCEPTION_IF_NULL(data_ptr);
|
||||
auto elem_num = values.size() * data_length;
|
||||
auto ret_code = memcpy_s(data_ptr, static_cast<size_t>(tensor->data().nbytes()), values.data(), elem_num);
|
||||
|
|
|
@ -538,7 +538,7 @@ bool Kernel2Ms::KernelInput2MS(const std::vector<TensorPtr> &input_tensors) {
|
|||
auto match_idx = match_to_rel_idxs[j];
|
||||
auto real_tensor = input_tensors[match_idx];
|
||||
auto real_size = LongToSize(real_tensor->data().nbytes());
|
||||
auto real_data = real_tensor->data_c(false);
|
||||
auto real_data = real_tensor->data_c();
|
||||
MS_EXCEPTION_IF_NULL(real_data);
|
||||
if (sub_ms_graph_->allTensors[cache_idx] != nullptr) {
|
||||
sub_ms_graph_->allTensors[cache_idx]->data.resize(real_size);
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
#include <unordered_set>
|
||||
#include <algorithm>
|
||||
|
||||
#include "ir/tensor_py.h"
|
||||
#include "ir/param_value_py.h"
|
||||
#include "utils/any.h"
|
||||
#include "utils/utils.h"
|
||||
|
@ -51,6 +52,8 @@
|
|||
#include "pynative/pynative_execute_ge.h"
|
||||
#endif
|
||||
|
||||
using mindspore::tensor::TensorPy;
|
||||
|
||||
const char SINGLE_OP_GRAPH[] = "single_op_graph";
|
||||
// primitive unable to infer value for constant input in PyNative mode
|
||||
const std::set<std::string> vm_operators = {"make_ref", "HookBackward", "stop_gradient"};
|
||||
|
@ -171,7 +174,8 @@ py::tuple ConvertInputs(const PrimitivePyPtr &prim, const py::list &args, py::tu
|
|||
py_args[i] = std::make_shared<tensor::Tensor>(py::cast<py::int_>(py_args[i]), tensor_ptr->Dtype());
|
||||
(*out_args_list)[i] = py_args[i];
|
||||
} else {
|
||||
py_args[i] = std::make_shared<tensor::Tensor>(py::cast<py::float_>(py_args[i]), tensor_ptr->Dtype());
|
||||
double arg_value = py::cast<py::float_>(py_args[i]);
|
||||
py_args[i] = std::make_shared<tensor::Tensor>(arg_value, tensor_ptr->Dtype());
|
||||
(*out_args_list)[i] = py_args[i];
|
||||
}
|
||||
continue;
|
||||
|
@ -262,7 +266,7 @@ py::object RunOpInVM(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *stat
|
|||
result[i] = py::getattr(input, "data");
|
||||
} else {
|
||||
auto tensor = py::cast<tensor::TensorPtr>(op_inputs[i]);
|
||||
auto new_tensor = std::make_shared<tensor::Tensor>(tensor->data());
|
||||
auto new_tensor = std::make_shared<tensor::Tensor>(tensor->data_type(), tensor->shape(), tensor->data_ptr());
|
||||
result[i] = new_tensor;
|
||||
}
|
||||
}
|
||||
|
@ -366,13 +370,14 @@ void ConvertPyObjectToTensor(const py::object &input_object, const PrimitivePtr
|
|||
if (py::isinstance<tensor::Tensor>(input_object)) {
|
||||
tensor_ptr = py::cast<tensor::TensorPtr>(input_object);
|
||||
} else if (py::isinstance<py::float_>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::float_>(input_object), kFloat32);
|
||||
double input_value = py::cast<py::float_>(input_object);
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(input_value, kFloat32);
|
||||
*tensor_mask = kValueNodeTensorMask;
|
||||
} else if (py::isinstance<py::int_>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::int_>(input_object), kInt32);
|
||||
*tensor_mask = kValueNodeTensorMask;
|
||||
} else if (py::isinstance<py::array>(input_object)) {
|
||||
tensor_ptr = std::make_shared<tensor::Tensor>(py::cast<py::array>(input_object), nullptr);
|
||||
tensor_ptr = TensorPy::MakeTensor(py::cast<py::array>(input_object), nullptr);
|
||||
} else if (py::isinstance<py::list>(input_object)) {
|
||||
auto list_inputs = py::cast<py::list>(input_object);
|
||||
py::tuple tuple_inputs(list_inputs.size());
|
||||
|
|
|
@ -26,6 +26,7 @@
|
|||
#include <stack>
|
||||
|
||||
#include "pybind11/pybind11.h"
|
||||
#include "pybind11/numpy.h"
|
||||
|
||||
#include "pynative/base.h"
|
||||
#include "utils/context/ms_context.h"
|
||||
|
|
|
@ -28,9 +28,12 @@
|
|||
#include "pipeline/parse/data_converter.h"
|
||||
#include "pipeline/static_analysis/prim.h"
|
||||
#include "session/session_factory.h"
|
||||
#include "ir/tensor_py.h"
|
||||
|
||||
const char SINGLE_OP_GRAPH[] = "single_op_graph";
|
||||
|
||||
using mindspore::tensor::TensorPy;
|
||||
|
||||
namespace mindspore {
|
||||
namespace pynative {
|
||||
using MeTensor = mindspore::tensor::Tensor;
|
||||
|
@ -56,15 +59,15 @@ MeTensorPtr ConvertPyObjToTensor(const py::object &obj) {
|
|||
if (py::isinstance<MeTensor>(obj)) {
|
||||
me_tensor_ptr = py::cast<MeTensorPtr>(obj);
|
||||
} else if (py::isinstance<py::tuple>(obj)) {
|
||||
me_tensor_ptr = std::make_shared<MeTensor>(py::cast<py::tuple>(obj), nullptr);
|
||||
me_tensor_ptr = TensorPy::MakeTensor(py::array(py::cast<py::tuple>(obj)), nullptr);
|
||||
} else if (py::isinstance<py::float_>(obj)) {
|
||||
me_tensor_ptr = std::make_shared<MeTensor>(py::cast<py::float_>(obj), nullptr);
|
||||
me_tensor_ptr = TensorPy::MakeTensor(py::array(py::cast<py::float_>(obj)), nullptr);
|
||||
} else if (py::isinstance<py::int_>(obj)) {
|
||||
me_tensor_ptr = std::make_shared<MeTensor>(py::cast<py::int_>(obj), nullptr);
|
||||
me_tensor_ptr = TensorPy::MakeTensor(py::array(py::cast<py::int_>(obj)), nullptr);
|
||||
} else if (py::isinstance<py::list>(obj)) {
|
||||
me_tensor_ptr = std::make_shared<MeTensor>(py::cast<py::list>(obj), nullptr);
|
||||
me_tensor_ptr = TensorPy::MakeTensor(py::array(py::cast<py::list>(obj)), nullptr);
|
||||
} else if (py::isinstance<py::array>(obj)) {
|
||||
me_tensor_ptr = std::make_shared<MeTensor>(py::cast<py::array>(obj), nullptr);
|
||||
me_tensor_ptr = TensorPy::MakeTensor(py::cast<py::array>(obj), nullptr);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Run op inputs type is invalid!";
|
||||
}
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
#include "session/ascend_inference_session.h"
|
||||
#include "operator/ops.h"
|
||||
#include "ir/tensor.h"
|
||||
#include "ir/tensor_py.h"
|
||||
#include "ir/anf.h"
|
||||
#include "ir/param_value_py.h"
|
||||
#include "device/kernel_runtime.h"
|
||||
|
@ -26,6 +27,8 @@
|
|||
#include "utils/config_manager.h"
|
||||
#include "utils/base_ref_extends.h"
|
||||
|
||||
using mindspore::tensor::TensorPy;
|
||||
|
||||
namespace mindspore {
|
||||
namespace session {
|
||||
void AscendInferenceSession::LoadInputData(const std::shared_ptr<KernelGraph> &kernel_graph,
|
||||
|
@ -51,7 +54,7 @@ void AscendInferenceSession::LoadInputData(const std::shared_ptr<KernelGraph> &k
|
|||
auto py_param = param_value->value();
|
||||
MS_EXCEPTION_IF_NULL(py_param);
|
||||
py::array py_array = py_param.cast<py::array>();
|
||||
tensor = std::make_shared<tensor::Tensor>(py_array);
|
||||
tensor = TensorPy::MakeTensor(py_array);
|
||||
} else {
|
||||
tensor = inputs[no_weight_input++];
|
||||
}
|
||||
|
@ -78,7 +81,7 @@ void AscendInferenceSession::LoadInputData(const std::shared_ptr<KernelGraph> &k
|
|||
MS_EXCEPTION_IF_NULL(device_address);
|
||||
if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0),
|
||||
LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
||||
tensor->data_c(false))) {
|
||||
tensor->data_c())) {
|
||||
MS_LOG(EXCEPTION) << "SyncHostToDevice failed.";
|
||||
}
|
||||
}
|
||||
|
|
|
@ -989,7 +989,7 @@ void AscendSession::InsertSwitchToGraph(GraphId condition_graph_id, GraphId true
|
|||
MS_EXCEPTION_IF_NULL(condition_graph);
|
||||
tensor::TensorPtr tensor = std::make_shared<tensor::Tensor>(kNumberTypeInt32, std::vector<int>{1});
|
||||
int32_t *val = nullptr;
|
||||
val = static_cast<int32_t *>(tensor->data_c(true));
|
||||
val = static_cast<int32_t *>(tensor->data_c());
|
||||
MS_EXCEPTION_IF_NULL(val);
|
||||
*val = 0;
|
||||
auto value_node = std::make_shared<ValueNode>(tensor);
|
||||
|
@ -1523,7 +1523,7 @@ void AscendSession::SyncInitialTenosrToDevice() {
|
|||
auto addr = AnfAlgo::GetOutputAddr(backend_parameter, 0);
|
||||
MS_EXCEPTION_IF_NULL(addr);
|
||||
if (!addr->SyncHostToDevice(trans::GetRuntimePaddingShape(backend_parameter, 0), tensor_size,
|
||||
front_tensor->data_type(), front_tensor->data_c(false))) {
|
||||
front_tensor->data_type(), front_tensor->data_c())) {
|
||||
MS_LOG(EXCEPTION) << "Tensor SyncHostToDevice fail!";
|
||||
}
|
||||
}
|
||||
|
|
|
@ -129,7 +129,7 @@ void GPUSession::LoadInputData(const std::shared_ptr<KernelGraph> &kernel_graph,
|
|||
MS_EXCEPTION_IF_NULL(device_address);
|
||||
if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0),
|
||||
LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
||||
tensor->data_c(false))) {
|
||||
tensor->data_c())) {
|
||||
MS_LOG(EXCEPTION) << "SyncHostToDevice failed.";
|
||||
}
|
||||
}
|
||||
|
|
|
@ -96,8 +96,7 @@ BaseRef CreateOneTensor(const AnfNodePtr &node, size_t output_index, const Kerne
|
|||
tensor->set_device_address(AnfAlgo::GetMutableOutputAddr(node, output_index));
|
||||
tensor->set_dirty(false);
|
||||
} else if (!address->SyncDeviceToHost(trans::GetRuntimePaddingShape(node, output_index),
|
||||
LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
||||
tensor->data_c(true))) {
|
||||
LongToSize(tensor->data().nbytes()), tensor->data_type(), tensor->data_c())) {
|
||||
MS_LOG(INFO) << "output sync device to host error!!!";
|
||||
tensor->set_dirty(false);
|
||||
}
|
||||
|
@ -218,7 +217,7 @@ size_t LoadCtrlInputTensor(const std::shared_ptr<KernelGraph> &graph, std::vecto
|
|||
}
|
||||
auto tensor = (*inputs_params)[0];
|
||||
MS_EXCEPTION_IF_NULL(tensor);
|
||||
auto *val = static_cast<int32_t *>(tensor->data_c(true));
|
||||
auto *val = static_cast<int32_t *>(tensor->data_c());
|
||||
MS_EXCEPTION_IF_NULL(val);
|
||||
*val = 0;
|
||||
tensor->set_dirty(true);
|
||||
|
@ -720,7 +719,7 @@ void SessionBasic::LoadInputData(const std::shared_ptr<KernelGraph> &kernel_grap
|
|||
MS_EXCEPTION_IF_NULL(device_address);
|
||||
if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0),
|
||||
LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
||||
tensor->data_c(false))) {
|
||||
tensor->data_c())) {
|
||||
MS_LOG(EXCEPTION) << "SyncHostToDevice failed.";
|
||||
}
|
||||
}
|
||||
|
@ -815,7 +814,7 @@ void SessionBasic::Summary(KernelGraph *graph) {
|
|||
continue;
|
||||
}
|
||||
if (!address->SyncDeviceToHost(trans::GetRuntimePaddingShape(node, index), LongToSize(tensor->data().nbytes()),
|
||||
tensor->data_type(), tensor->data_c(true))) {
|
||||
tensor->data_type(), tensor->data_c())) {
|
||||
MS_LOG(ERROR) << "Failed to sync output from device to host.";
|
||||
}
|
||||
tensor->set_dirty(false);
|
||||
|
|
|
@ -342,7 +342,7 @@ MeTensorPtr TransformUtil::GenerateMeTensor(const GeTensorPtr &ge_tensor, const
|
|||
MeTensor me_tensor(me_type, me_dims);
|
||||
|
||||
// Get the writable data pointer of the tensor and cast it to its data type
|
||||
auto me_data_ptr = reinterpret_cast<uint8_t *>(me_tensor.data_c(true));
|
||||
auto me_data_ptr = reinterpret_cast<uint8_t *>(me_tensor.data_c());
|
||||
size_t me_data_size = static_cast<size_t>(me_tensor.data().nbytes());
|
||||
MS_EXCEPTION_IF_NULL(me_data_ptr);
|
||||
MS_EXCEPTION_IF_NULL(ge_tensor);
|
||||
|
|
|
@ -579,11 +579,12 @@ tensor::TensorPtr ScalarToTensor(const ScalarPtr &scalar) {
|
|||
}
|
||||
tensor::TensorPtr tensor = nullptr;
|
||||
if (scalar->isa<FloatImm>()) {
|
||||
tensor = std::make_shared<tensor::Tensor>(py::float_(GetValue<float>(scalar)), kFloat32);
|
||||
tensor = std::make_shared<tensor::Tensor>(static_cast<double>(GetValue<float>(scalar)), kFloat32);
|
||||
} else if (scalar->isa<IntergerImm>()) {
|
||||
tensor = std::make_shared<tensor::Tensor>(py::int_(GetValue<int>(scalar)), kInt32);
|
||||
tensor = std::make_shared<tensor::Tensor>(static_cast<int64_t>(GetValue<int>(scalar)), kInt32);
|
||||
} else if (scalar->isa<BoolImm>()) {
|
||||
tensor = std::make_shared<tensor::Tensor>(py::array(py::bool_(GetValue<bool>(scalar))), kBool);
|
||||
const int64_t bool_value = GetValue<bool>(scalar) ? 1 : 0;
|
||||
tensor = std::make_shared<tensor::Tensor>(bool_value, kBool);
|
||||
} else {
|
||||
auto type = scalar->type();
|
||||
auto type_str = (type == nullptr) ? "nullptr" : type->ToString();
|
||||
|
|
|
@ -22,12 +22,14 @@
|
|||
#include <vector>
|
||||
#include "google/protobuf/io/zero_copy_stream_impl.h"
|
||||
#include "ir/tensor.h"
|
||||
#include "ir/tensor_py.h"
|
||||
#include "ir/param_value_py.h"
|
||||
#include "operator/ops.h"
|
||||
#include "pipeline/static_analysis/abstract_value.h"
|
||||
#include "proto/onnx.pb.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
using mindspore::tensor::TensorPy;
|
||||
using std::string;
|
||||
|
||||
namespace mindspore {
|
||||
|
@ -117,11 +119,11 @@ bool MSANFModelParser::BuildParameterForFuncGraph(const ParameterPtr &node, cons
|
|||
if (default_para_map_.find(value_proto.name()) != default_para_map_.end()) {
|
||||
const onnx::TensorProto initialize_proto = default_para_map_[value_proto.name()];
|
||||
std::string initial_data = initialize_proto.raw_data();
|
||||
auto *tensor_data_buf = reinterpret_cast<uint8_t *>(tensor_info->data_c(true));
|
||||
auto *tensor_data_buf = reinterpret_cast<uint8_t *>(tensor_info->data_c());
|
||||
MS_EXCEPTION_IF_NULL(tensor_data_buf);
|
||||
memcpy_s(tensor_data_buf, tensor_info->data().nbytes(), initial_data.data(), initial_data.size());
|
||||
|
||||
py::array array_data = tensor_info->data();
|
||||
py::array array_data = TensorPy::AsNumpy(*tensor_info);
|
||||
ParamValuePyPtr para_value_ptr = std::make_shared<ParamValuePy>();
|
||||
MS_EXCEPTION_IF_NULL(para_value_ptr);
|
||||
para_value_ptr->set_value(array_data);
|
||||
|
@ -249,7 +251,7 @@ bool MSANFModelParser::ObtainValueNodeInTensorForm(const std::string &value_node
|
|||
}
|
||||
tensor::TensorPtr tensor_info = std::make_shared<tensor::Tensor>(kDefaultValueSwitchMap[attr_tensor_type], shape);
|
||||
const std::string &tensor_buf = attr_tensor.raw_data();
|
||||
auto *tensor_data_buf = reinterpret_cast<uint8_t *>(tensor_info->data_c(true));
|
||||
auto *tensor_data_buf = reinterpret_cast<uint8_t *>(tensor_info->data_c());
|
||||
memcpy_s(tensor_data_buf, tensor_info->data().nbytes(), tensor_buf.data(), tensor_buf.size());
|
||||
auto new_value_node = NewValueNode(MakeValue(tensor_info));
|
||||
MS_EXCEPTION_IF_NULL(new_value_node);
|
||||
|
|
|
@ -87,7 +87,7 @@ bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *co
|
|||
const size_t &memory_size) {
|
||||
MS_EXCEPTION_IF_NULL(str_data_ptr);
|
||||
MS_EXCEPTION_IF_NULL(print_tensor);
|
||||
auto *tensor_data_ptr = static_cast<uint8_t *>(print_tensor->data_c(true));
|
||||
auto *tensor_data_ptr = static_cast<uint8_t *>(print_tensor->data_c());
|
||||
MS_EXCEPTION_IF_NULL(tensor_data_ptr);
|
||||
auto cp_ret =
|
||||
memcpy_s(tensor_data_ptr, static_cast<size_t>(print_tensor->data().nbytes()), str_data_ptr, memory_size);
|
||||
|
|
|
@ -61,9 +61,9 @@ class Tensor(Tensor_):
|
|||
if isinstance(input_data, np.ndarray) and (not input_data.flags['FORC']):
|
||||
input_data = np.ascontiguousarray(input_data)
|
||||
if dtype is None:
|
||||
super(Tensor, self).__init__(input_data)
|
||||
Tensor_.__init__(self, input_data)
|
||||
else:
|
||||
super(Tensor, self).__init__(input_data, dtype)
|
||||
Tensor_.__init__(self, input_data, dtype)
|
||||
self._virtual_flag = False
|
||||
self._init_flag = False
|
||||
|
||||
|
|
|
@ -55,6 +55,7 @@ def rmsprop_numpy(variable, gradients, mean_square, moment,
|
|||
mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
|
||||
moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients
|
||||
variable = variable - moment
|
||||
return variable, gradients, mean_square, moment
|
||||
|
||||
|
||||
def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment,
|
||||
|
@ -64,7 +65,7 @@ def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment
|
|||
moment = momentum * moment + learning_rate / np.sqrt(
|
||||
mean_square - mean_gradients * mean_gradients + epsilon) * gradients
|
||||
variable = variable - moment
|
||||
|
||||
return variable, gradients, mean_gradients, mean_square, moment
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
|
@ -85,12 +86,14 @@ def test_rmsprop():
|
|||
moment_ms = Tensor(moment_np)
|
||||
|
||||
if centered:
|
||||
variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
|
||||
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon)
|
||||
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
||||
|
||||
else:
|
||||
variable_np, gradients_np, mean_square_np, moment_np = \
|
||||
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetRMSProp(learning_rate, decay, momentum, epsilon)
|
||||
|
@ -136,11 +139,13 @@ def test_rmspropcenter():
|
|||
moment_ms = Tensor(moment_np)
|
||||
|
||||
if centered:
|
||||
variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
|
||||
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon)
|
||||
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
||||
else:
|
||||
variable_np, gradients_np, mean_square_np, moment_np = \
|
||||
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetRMSProp(learning_rate, decay, momentum, epsilon)
|
||||
|
|
|
@ -22,6 +22,9 @@
|
|||
|
||||
#include "securec/include/securec.h"
|
||||
#include "ir/tensor.h"
|
||||
#include "ir/tensor_py.h"
|
||||
|
||||
using mindspore::tensor::TensorPy;
|
||||
|
||||
namespace mindspore {
|
||||
namespace tensor {
|
||||
|
@ -90,9 +93,7 @@ TEST_F(TestMetaTensor, EqualTest) {
|
|||
class TestTensor : public UT::Common {
|
||||
public:
|
||||
TestTensor() {}
|
||||
virtual void SetUp() {
|
||||
UT::InitPythonPath();
|
||||
}
|
||||
virtual void SetUp() { UT::InitPythonPath(); }
|
||||
};
|
||||
|
||||
py::array_t<float, py::array::c_style> BuildInputTensor() {
|
||||
|
@ -124,7 +125,7 @@ TEST_F(TestTensor, PyArrayScalarTest) {
|
|||
TEST_F(TestTensor, InitScalarTest) {
|
||||
std::vector<int> dimensions;
|
||||
Tensor tensor(TypeId::kNumberTypeInt64, dimensions);
|
||||
uint8_t *data_buf = reinterpret_cast<uint8_t *>(tensor.data_c(true));
|
||||
uint8_t *data_buf = reinterpret_cast<uint8_t *>(tensor.data_c());
|
||||
|
||||
int64_t num = 1;
|
||||
errno_t ret = memcpy_s(data_buf, sizeof(int64_t), &num, sizeof(int64_t));
|
||||
|
@ -172,9 +173,9 @@ TEST_F(TestTensor, InitTensorPtrTest) {
|
|||
}
|
||||
|
||||
TEST_F(TestTensor, InitByTupleTest) {
|
||||
py::tuple dimensions = py::make_tuple(2, 3, 4);
|
||||
const std::vector<int> shape = {2, 3, 4};
|
||||
TypePtr data_type = kFloat32;
|
||||
Tensor tuple_tensor = Tensor(data_type, dimensions);
|
||||
Tensor tuple_tensor(data_type->type_id(), shape);
|
||||
ASSERT_EQ(2, tuple_tensor.DimensionSize(0));
|
||||
ASSERT_EQ(3, tuple_tensor.DimensionSize(1));
|
||||
ASSERT_EQ(4, tuple_tensor.DimensionSize(2));
|
||||
|
@ -184,8 +185,8 @@ TEST_F(TestTensor, InitByTupleTest) {
|
|||
ASSERT_EQ(TypeId::kNumberTypeFloat32, tuple_tensor.data_type());
|
||||
|
||||
py::tuple tuple = py::make_tuple(1.0, 2.0, 3, 4, 5, 6);
|
||||
TensorPtr tensor = std::make_shared<Tensor>(tuple, kFloat64);
|
||||
py::array array = tensor->data();
|
||||
TensorPtr tensor = TensorPy::MakeTensor(py::array(tuple), kFloat64);
|
||||
py::array array = TensorPy::AsNumpy(*tensor);
|
||||
|
||||
std::cout << "Dim: " << array.ndim() << std::endl;
|
||||
ASSERT_EQ(1, array.ndim());
|
||||
|
@ -203,24 +204,24 @@ TEST_F(TestTensor, InitByTupleTest) {
|
|||
|
||||
TEST_F(TestTensor, EqualTest) {
|
||||
py::tuple tuple = py::make_tuple(1, 2, 3, 4, 5, 6);
|
||||
TensorPtr tensor_int8 = std::make_shared<Tensor>(tuple, kInt8);
|
||||
TensorPtr tensor_int8 = TensorPy::MakeTensor(py::array(tuple), kInt8);
|
||||
ASSERT_TRUE(*tensor_int8 == *tensor_int8);
|
||||
|
||||
ASSERT_EQ(TypeId::kNumberTypeInt8, tensor_int8->data_type_c());
|
||||
|
||||
TensorPtr tensor_int16 = std::make_shared<Tensor>(tuple, kInt16);
|
||||
TensorPtr tensor_int16 = TensorPy::MakeTensor(py::array(tuple), kInt16);
|
||||
ASSERT_EQ(TypeId::kNumberTypeInt16, tensor_int16->data_type_c());
|
||||
|
||||
TensorPtr tensor_int32 = std::make_shared<Tensor>(tuple, kInt32);
|
||||
TensorPtr tensor_int32 = TensorPy::MakeTensor(py::array(tuple), kInt32);
|
||||
ASSERT_EQ(TypeId::kNumberTypeInt32, tensor_int32->data_type_c());
|
||||
|
||||
TensorPtr tensor_float16 = std::make_shared<Tensor>(tuple, kFloat16);
|
||||
TensorPtr tensor_float16 = TensorPy::MakeTensor(py::array(tuple), kFloat16);
|
||||
ASSERT_EQ(TypeId::kNumberTypeFloat16, tensor_float16->data_type_c());
|
||||
|
||||
TensorPtr tensor_float32 = std::make_shared<Tensor>(tuple, kFloat32);
|
||||
TensorPtr tensor_float32 = TensorPy::MakeTensor(py::array(tuple), kFloat32);
|
||||
ASSERT_EQ(TypeId::kNumberTypeFloat32, tensor_float32->data_type_c());
|
||||
|
||||
TensorPtr tensor_float64 = std::make_shared<Tensor>(tuple, kFloat64);
|
||||
TensorPtr tensor_float64 = TensorPy::MakeTensor(py::array(tuple), kFloat64);
|
||||
ASSERT_EQ(TypeId::kNumberTypeFloat64, tensor_float64->data_type_c());
|
||||
}
|
||||
|
||||
|
@ -247,7 +248,7 @@ TEST_F(TestTensor, PyArrayTest) {
|
|||
|
||||
TEST_F(TestTensor, InitByFloatArrayDataCTest) {
|
||||
// Init tensor data by py::array_t<float>
|
||||
auto tensor = std::make_shared<Tensor>(BuildInputTensor());
|
||||
auto tensor = TensorPy::MakeTensor(BuildInputTensor());
|
||||
|
||||
// Print some information of the tensor
|
||||
std::cout << "Datatype: " << tensor->data_type() << std::endl;
|
||||
|
@ -269,7 +270,7 @@ TEST_F(TestTensor, InitByFloatArrayDataCTest) {
|
|||
|
||||
TEST_F(TestTensor, InitByFloatArrayDataTest) {
|
||||
// Init tensor data by py::array_t<float>
|
||||
TensorPtr tensor = std::make_shared<Tensor>(BuildInputTensor());
|
||||
TensorPtr tensor = TensorPy::MakeTensor(BuildInputTensor());
|
||||
|
||||
// Print some information of the tensor
|
||||
std::cout << "Datatype: " << tensor->data_type() << std::endl;
|
||||
|
@ -291,7 +292,7 @@ TEST_F(TestTensor, InitByFloatArrayDataTest) {
|
|||
|
||||
// Print each elements
|
||||
std::cout << "Elements: " << std::endl;
|
||||
py::array_t<float> data = (py::array_t<float>)tensor->data();
|
||||
py::array_t<float> data = py::cast<py::array_t<float>>(TensorPy::AsNumpy(*tensor));
|
||||
auto array = data.unchecked<2>();
|
||||
for (int i = 0; i < array.shape(0); i++) {
|
||||
for (int j = 0; j < array.shape(1); j++) {
|
||||
|
@ -319,17 +320,17 @@ TEST_F(TestTensor, TensorDataTest) {
|
|||
float ge_tensor_data[] = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6};
|
||||
|
||||
// Create a Tensor with wanted data type and shape
|
||||
Tensor tensor = Tensor(TypeId::kNumberTypeFloat32, std::vector<int>({2, 3}));
|
||||
Tensor tensor(TypeId::kNumberTypeFloat32, std::vector<int>({2, 3}));
|
||||
|
||||
// Get the writable data pointer from the tensor
|
||||
float *me_tensor_data = reinterpret_cast<float *>(tensor.data_c(true));
|
||||
float *me_tensor_data = reinterpret_cast<float *>(tensor.data_c());
|
||||
|
||||
// Copy data from buffer to tensor's data
|
||||
errno_t ret = memcpy_s(me_tensor_data, tensor.data().nbytes(), ge_tensor_data, sizeof(ge_tensor_data));
|
||||
ASSERT_EQ(0, ret);
|
||||
|
||||
// Testify if the data has been copied to the tensor data
|
||||
py::array_t<float> data = (py::array_t<float>)tensor.data();
|
||||
py::array_t<float> data = py::cast<py::array_t<float>>(TensorPy::AsNumpy(tensor));
|
||||
auto array = data.mutable_unchecked();
|
||||
for (int i = 0; i < array.shape(0); i++) {
|
||||
for (int j = 0; j < array.shape(1); j++) {
|
||||
|
@ -340,5 +341,17 @@ TEST_F(TestTensor, TensorDataTest) {
|
|||
}
|
||||
}
|
||||
|
||||
TEST_F(TestTensor, TensorPyCast) {
|
||||
std::vector<int> shape{2, 3, 4, 5};
|
||||
py::tuple py_tuple = py::make_tuple(std::make_shared<Tensor>(kNumberTypeFloat32, shape));
|
||||
auto shape1 = py::cast<Tensor &>(py_tuple[0]).shape();
|
||||
const py::tuple &t = py_tuple;
|
||||
auto shape2 = py::cast<const Tensor &>(t[0]).shape();
|
||||
auto shape3 = py::cast<Tensor &>(t[0]).shape();
|
||||
ASSERT_EQ(shape, shape1);
|
||||
ASSERT_EQ(shape, shape2);
|
||||
ASSERT_EQ(shape, shape3);
|
||||
}
|
||||
|
||||
} // namespace tensor
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -60,15 +60,9 @@ CNodePtr Make_Node(Shape x, Shape y, Shape out, int condition = 0) {
|
|||
BaseShapePtr shape1 = std::make_shared<abstract::Shape>(x);
|
||||
BaseShapePtr shape2 = std::make_shared<abstract::Shape>(y);
|
||||
BaseShapePtr shape3 = std::make_shared<abstract::Shape>(out);
|
||||
std::shared_ptr<tensor::Tensor> inputs_x = std::make_shared<tensor::Tensor>();
|
||||
inputs_x->set_data_type(kNumberTypeInt32);
|
||||
inputs_x->set_shape(x);
|
||||
std::shared_ptr<tensor::Tensor> inputs_y = std::make_shared<tensor::Tensor>();
|
||||
inputs_y->set_data_type(kNumberTypeInt32);
|
||||
inputs_y->set_shape(y);
|
||||
std::shared_ptr<tensor::Tensor> inputs_out = std::make_shared<tensor::Tensor>();
|
||||
inputs_out->set_data_type(kNumberTypeInt32);
|
||||
inputs_out->set_shape(out);
|
||||
std::shared_ptr<tensor::Tensor> inputs_x = std::make_shared<tensor::Tensor>(kNumberTypeInt32, x);
|
||||
std::shared_ptr<tensor::Tensor> inputs_y = std::make_shared<tensor::Tensor>(kNumberTypeInt32, y);
|
||||
std::shared_ptr<tensor::Tensor> inputs_out = std::make_shared<tensor::Tensor>(kNumberTypeInt32, out);
|
||||
AbstractBasePtr abstract1 = abstract::FromValue(inputs_x, true);
|
||||
AbstractBasePtr abstract2 = abstract::FromValue(inputs_y, true);
|
||||
AbstractBasePtr abstract3 = abstract::FromValue(inputs_out, true);
|
||||
|
@ -127,21 +121,11 @@ FuncGraphManagerPtr Make_Manager(int condition = 0) {
|
|||
ParameterPtr param1 = func_graph->add_parameter();
|
||||
ParameterPtr param2 = func_graph->add_parameter();
|
||||
ParameterPtr param3 = func_graph->add_parameter();
|
||||
std::shared_ptr<tensor::Tensor> inputs_x_dim = std::make_shared<tensor::Tensor>();
|
||||
inputs_x_dim->set_data_type(kNumberTypeInt32);
|
||||
inputs_x_dim->set_shape(inputs_x);
|
||||
std::shared_ptr<tensor::Tensor> inputs_y_dim = std::make_shared<tensor::Tensor>();
|
||||
inputs_y_dim->set_data_type(kNumberTypeInt32);
|
||||
inputs_y_dim->set_shape(inputs_y);
|
||||
std::shared_ptr<tensor::Tensor> inputs_z_dim = std::make_shared<tensor::Tensor>();
|
||||
inputs_z_dim->set_data_type(kNumberTypeInt32);
|
||||
inputs_z_dim->set_shape(inputs_z);
|
||||
std::shared_ptr<tensor::Tensor> inputs_out1_dim = std::make_shared<tensor::Tensor>();
|
||||
inputs_out1_dim->set_data_type(kNumberTypeInt32);
|
||||
inputs_out1_dim->set_shape(outputs_1);
|
||||
std::shared_ptr<tensor::Tensor> inputs_out2_dim = std::make_shared<tensor::Tensor>();
|
||||
inputs_out2_dim->set_data_type(kNumberTypeInt32);
|
||||
inputs_out2_dim->set_shape(outputs_2);
|
||||
std::shared_ptr<tensor::Tensor> inputs_x_dim = std::make_shared<tensor::Tensor>(kNumberTypeInt32, inputs_x);
|
||||
std::shared_ptr<tensor::Tensor> inputs_y_dim = std::make_shared<tensor::Tensor>(kNumberTypeInt32, inputs_y);
|
||||
std::shared_ptr<tensor::Tensor> inputs_z_dim = std::make_shared<tensor::Tensor>(kNumberTypeInt32, inputs_z);
|
||||
std::shared_ptr<tensor::Tensor> inputs_out1_dim = std::make_shared<tensor::Tensor>(kNumberTypeInt32, outputs_1);
|
||||
std::shared_ptr<tensor::Tensor> inputs_out2_dim = std::make_shared<tensor::Tensor>(kNumberTypeInt32, outputs_2);
|
||||
AbstractBasePtr abstract_x = abstract::FromValue(inputs_x_dim, true);
|
||||
AbstractBasePtr abstract_y = abstract::FromValue(inputs_y_dim, true);
|
||||
AbstractBasePtr abstract_z = abstract::FromValue(inputs_z_dim, true);
|
||||
|
|
|
@ -113,12 +113,8 @@ TEST_F(TestData, test_build_shape) {
|
|||
|
||||
std::vector<int> weight1_dims = {2, 20, 5, 5};
|
||||
std::vector<int> weight2_dims = {2, 2, 5, 5};
|
||||
tensor::TensorPtr weight1 = std::make_shared<tensor::Tensor>();
|
||||
weight1->set_data_type(kNumberTypeInt32);
|
||||
weight1->set_shape(weight1_dims);
|
||||
tensor::TensorPtr weight2 = std::make_shared<tensor::Tensor>();
|
||||
weight2->set_data_type(kNumberTypeInt32);
|
||||
weight2->set_shape(weight2_dims);
|
||||
tensor::TensorPtr weight1 = std::make_shared<tensor::Tensor>(kNumberTypeInt32, weight1_dims);
|
||||
tensor::TensorPtr weight2 = std::make_shared<tensor::Tensor>(kNumberTypeInt32, weight2_dims);
|
||||
|
||||
AbstractBasePtr abstract_weight1 = FromValue(weight1, true);
|
||||
AbstractBasePtr abstract_weight2 = FromValue(weight2, true);
|
||||
|
|
|
@ -104,7 +104,7 @@ TEST_F(TestHWConstInputToTensorInput, test_value_tuple_tensor_input) {
|
|||
EXPECT_TRUE(IsValueNode<tensor::Tensor>(input1));
|
||||
auto tensor = input1->cast<ValueNodePtr>()->value()->cast<tensor::TensorPtr>();
|
||||
ASSERT_TRUE(tensor != nullptr);
|
||||
auto data = tensor->data_c(false);
|
||||
auto data = tensor->data_c();
|
||||
EXPECT_EQ(std::vector<int>((int *)data, (int *)data + 4), std::vector<int>({2, 4, 2, 2}));
|
||||
}
|
||||
} // namespace opt
|
||||
|
|
|
@ -706,7 +706,7 @@ TEST_F(TestConvert, TestConvertTensor) {
|
|||
auto type_id = kNumberTypeFloat32;
|
||||
MeTensor me_tensor(type_id, dims);
|
||||
// Get the writable data pointer of the tensor and cast it to its data type
|
||||
uint8_t* me_data_ptr = reinterpret_cast<uint8_t*>(me_tensor.data_c(true));
|
||||
uint8_t* me_data_ptr = reinterpret_cast<uint8_t*>(me_tensor.data_c());
|
||||
// Copy or use the writable data pointer of the ME tensor
|
||||
memcpy_s(me_data_ptr, me_tensor.data().nbytes(), data, 12 * sizeof(float));
|
||||
auto me_tensor_ptr = std::make_shared<MeTensor>(me_tensor);
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#include <memory>
|
||||
#include "common/common_test.h"
|
||||
#include "ir/dtype.h"
|
||||
#include "ir/tensor_py.h"
|
||||
#include "transform/transform_base_test.h"
|
||||
#include "common/py_func_graph_fetcher.h"
|
||||
#include "pipeline/static_analysis/static_analysis.h"
|
||||
|
@ -35,6 +36,8 @@
|
|||
#define private public
|
||||
#include "transform/graph_runner.h"
|
||||
|
||||
using mindspore::tensor::TensorPy;
|
||||
|
||||
namespace mindspore {
|
||||
namespace transform {
|
||||
class TestGraphRunner : public UT::Common {
|
||||
|
@ -70,7 +73,7 @@ std::shared_ptr<DfGraphConvertor> MakeGeGraph() {
|
|||
return std::make_shared<DfGraphConvertor>(anf_graph);
|
||||
}
|
||||
namespace {
|
||||
std::shared_ptr<std::vector<MeTensorPtr>> DoExecGraph(const std::vector<MeTensorPtr>& inputs) {
|
||||
std::shared_ptr<std::vector<MeTensorPtr>> DoExecGraph(const std::vector<MeTensorPtr> &inputs) {
|
||||
std::vector<GeTensorPtr> ge_tensor_ptrs = TransformUtil::ConvertInputTensors(inputs, kOpFormat_NCHW);
|
||||
|
||||
std::vector<GeTensorPtr> ge_outputs;
|
||||
|
@ -109,7 +112,7 @@ TEST_F(TestGraphRunner, TestGeTensorConstructor) {
|
|||
MeTensor tensor = MeTensor(TypeId::kNumberTypeFloat32, std::vector<int>({1, 2, 3}));
|
||||
|
||||
// Get the writable data pointer from the tensor
|
||||
float* me_tensor_data = reinterpret_cast<float*>(tensor.data_c(true));
|
||||
float *me_tensor_data = reinterpret_cast<float *>(tensor.data_c());
|
||||
|
||||
// Copy data from buffer to tensor's data
|
||||
memcpy_s(me_tensor_data, static_cast<size_t>(tensor.data().nbytes()), ge_tensor_data, sizeof(ge_tensor_data));
|
||||
|
@ -119,11 +122,11 @@ TEST_F(TestGraphRunner, TestGeTensorConstructor) {
|
|||
py::tuple py_tuple =
|
||||
py::make_tuple(py::make_tuple(py::make_tuple(1.1f, 2.2f, 3.3f), py::make_tuple(4.4f, 5.5f, 6.6f)));
|
||||
py::array my_arry = py::array(py_tuple).attr("astype").cast<py::function>()("float32").cast<py::array>();
|
||||
MeTensor tensor_tuple = MeTensor(my_arry, kFloat32);
|
||||
PrintMeTensor(&tensor_tuple);
|
||||
auto tensor_tuple = TensorPy::MakeTensor(my_arry, kFloat32);
|
||||
PrintMeTensor(tensor_tuple.get());
|
||||
|
||||
py::array tensor_array = tensor.data();
|
||||
py::array tensor_tuple_array = tensor_tuple.data();
|
||||
py::array tensor_array = TensorPy::AsNumpy(tensor);
|
||||
py::array tensor_tuple_array = TensorPy::AsNumpy(*tensor_tuple);
|
||||
assert(memcmp(ge_tensor_data, tensor_array.data(), sizeof(ge_tensor_data)) == 0);
|
||||
assert(memcmp(ge_tensor_data, tensor_tuple_array.data(), sizeof(ge_tensor_data)) == 0);
|
||||
}
|
||||
|
@ -131,7 +134,7 @@ TEST_F(TestGraphRunner, TestGeTensorConstructor) {
|
|||
#if (!defined ENABLE_GE)
|
||||
|
||||
TEST_F(TestGraphRunner, TestRunGraphException) {
|
||||
DfGraphManager& graph_manager = DfGraphManager::GetInstance();
|
||||
DfGraphManager &graph_manager = DfGraphManager::GetInstance();
|
||||
graph_manager.ClearGraph();
|
||||
|
||||
std::map<string, MeTensorPtr> dict;
|
||||
|
@ -167,7 +170,7 @@ TEST_F(TestGraphRunner, TestRunGraphException) {
|
|||
}
|
||||
|
||||
TEST_F(TestGraphRunner, TestRunGraph) {
|
||||
DfGraphManager& graph_manager = DfGraphManager::GetInstance();
|
||||
DfGraphManager &graph_manager = DfGraphManager::GetInstance();
|
||||
graph_manager.ClearGraph();
|
||||
|
||||
std::shared_ptr<DfGraphConvertor> convertor = MakeGeGraph();
|
||||
|
@ -183,7 +186,7 @@ TEST_F(TestGraphRunner, TestRunGraph) {
|
|||
py::make_tuple(py::make_tuple(py::make_tuple(1.0, 2.0, 3.0, 4.0), py::make_tuple(4.0, 5.0, 6.0, 7.0))),
|
||||
py::make_tuple(py::make_tuple(py::make_tuple(1.0, 2.0, 3.0, 4.0), py::make_tuple(4.0, 5.0, 6.0, 7.0))));
|
||||
py::array array = py::array(tuple);
|
||||
MeTensorPtr me_tensor_ptr = std::make_shared<MeTensor>(array, type_id);
|
||||
MeTensorPtr me_tensor_ptr = TensorPy::MakeTensor(array, type_id);
|
||||
|
||||
MS_LOG(INFO) << "inputs me tensor data is: ";
|
||||
PrintMeTensor(&(*me_tensor_ptr));
|
||||
|
@ -204,7 +207,7 @@ TEST_F(TestGraphRunner, TestRunGraph) {
|
|||
}
|
||||
|
||||
TEST_F(TestGraphRunner, TestAPI) {
|
||||
DfGraphManager& graph_manager = DfGraphManager::GetInstance();
|
||||
DfGraphManager &graph_manager = DfGraphManager::GetInstance();
|
||||
graph_manager.ClearGraph();
|
||||
|
||||
std::shared_ptr<DfGraphConvertor> convertor = MakeGeGraph();
|
||||
|
|
|
@ -16,6 +16,9 @@
|
|||
#include <iostream>
|
||||
#include "common/common_test.h"
|
||||
#include "transform/transform_base_test.h"
|
||||
#include "ir/tensor_py.h"
|
||||
|
||||
using mindspore::tensor::TensorPy;
|
||||
|
||||
namespace mindspore {
|
||||
namespace transform {
|
||||
|
@ -55,10 +58,10 @@ void PrintMeTensor(MeTensor* tensor) {
|
|||
}
|
||||
|
||||
std::cout << "the py::str() data is: " << std::endl;
|
||||
py::array tensor_data = (*tensor).data();
|
||||
py::array tensor_data = TensorPy::AsNumpy(*tensor);
|
||||
std::cout << std::string(py::str(tensor_data)) << std::endl;
|
||||
|
||||
std::cout << "tensor dtype is: " << std::string(tensor->data().dtype().str()) << std::endl;
|
||||
std::cout << "tensor dtype is: " << std::string(tensor_data.dtype().str()) << std::endl;
|
||||
}
|
||||
|
||||
FuncGraphPtr MakeFuncGraph(const PrimitivePtr prim, unsigned int nparam) {
|
||||
|
@ -73,7 +76,7 @@ FuncGraphPtr MakeFuncGraph(const PrimitivePtr prim, unsigned int nparam) {
|
|||
std::vector<AnfNodePtr> inputs;
|
||||
inputs.push_back(NewValueNode(prim));
|
||||
for (unsigned int i = 0; i < nparam; i++) {
|
||||
if ((prim->name() == "ScalarSummary" || prim->name() == "TensorSummary" ||
|
||||
if ((prim->name() == "ScalarSummary" || prim->name() == "TensorSummary" ||
|
||||
prim->name() == "ImageSummary" || prim->name() == "HistogramSummary") &&
|
||||
i == 0) {
|
||||
auto input = NewValueNode("testSummary");
|
||||
|
|
Loading…
Reference in New Issue