forked from OSSInnovation/mindspore
!3442 bug fix for quant.py in train/ and nn/
Merge pull request !3442 from chenzhongming/master
This commit is contained in:
commit
0fac402a1a
|
@ -83,7 +83,7 @@ class Conv2dBnAct(Cell):
|
|||
Initializer and string are the same as 'weight_init'. Refer to the values of
|
||||
Initializer for more details. Default: 'zeros'.
|
||||
has_bn (bool): Specifies to used batchnorm or not. Default: False.
|
||||
activation (string): Specifies activation type. The optional values are as following:
|
||||
activation (Cell): Specifies activation type. The optional values are as following:
|
||||
'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid',
|
||||
'prelu', 'leakyrelu', 'hswish', 'hsigmoid'. Default: None.
|
||||
|
||||
|
@ -170,7 +170,7 @@ class DenseBnAct(Cell):
|
|||
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
|
||||
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
|
||||
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
||||
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
|
||||
activation (Cell): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
|
||||
has_bn (bool): Specifies to used batchnorm or not. Default: False.
|
||||
activation (string): Specifies activation type. The optional values are as following:
|
||||
'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid',
|
||||
|
@ -403,8 +403,8 @@ class Conv2dBatchNormQuant(Cell):
|
|||
out_channels (int): The number of output channel :math:`C_{out}`.
|
||||
kernel_size (Union[int, tuple]): Specifies the height and width of the 2D convolution window.
|
||||
stride (int): Specifies stride for all spatial dimensions with the same value.
|
||||
pad_mode: (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same".
|
||||
padding: (int): Implicit paddings on both sides of the input. Default: 0.
|
||||
pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same".
|
||||
padding (int): Implicit paddings on both sides of the input. Default: 0.
|
||||
eps (float): Parameters for BatchNormal. Default: 1e-5.
|
||||
momentum (float): Parameters for BatchNormal op. Default: 0.997.
|
||||
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
|
||||
|
@ -590,8 +590,8 @@ class Conv2dQuant(Cell):
|
|||
out_channels (int): The number of output channel :math:`C_{out}`.
|
||||
kernel_size (Union[int, tuple]): Specifies the height and width of the 2D convolution window.
|
||||
stride (int): Specifies stride for all spatial dimensions with the same value. Default: 1.
|
||||
pad_mode: (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same".
|
||||
padding: (int): Implicit paddings on both sides of the input. Default: 0.
|
||||
pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same".
|
||||
padding (int): Implicit paddings on both sides of the input. Default: 0.
|
||||
dilation (int): Specifying the dilation rate to use for dilated convolution. Default: 1.
|
||||
group (int): Split filter into groups, `in_ channels` and `out_channels` should be
|
||||
divisible by the number of groups. Default: 1.
|
||||
|
@ -989,7 +989,7 @@ class HSigmoidQuant(_QuantActivation):
|
|||
symmetric=symmetric,
|
||||
narrow_range=narrow_range,
|
||||
quant_delay=quant_delay)
|
||||
if issubclass(activation, nn.HSwish):
|
||||
if issubclass(activation, nn.HSigmoid):
|
||||
self.act = activation()
|
||||
else:
|
||||
raise ValueError("Activation should be `nn.HSigmoid`")
|
||||
|
|
Loading…
Reference in New Issue