2020-03-27 14:49:12 +08:00
|
|
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
2020-05-18 16:42:35 +08:00
|
|
|
|
2020-04-22 16:44:19 +08:00
|
|
|
import mindspore.context as context
|
2020-03-27 14:49:12 +08:00
|
|
|
import mindspore.nn as nn
|
2020-04-22 16:44:19 +08:00
|
|
|
from mindspore import Tensor, Parameter, Model, ms_function
|
2020-03-27 14:49:12 +08:00
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
|
|
|
from mindspore.nn.optim import Momentum
|
2020-05-18 16:42:35 +08:00
|
|
|
from mindspore.ops import operations as P
|
2020-03-27 14:49:12 +08:00
|
|
|
|
2020-05-12 22:11:50 +08:00
|
|
|
context.set_context(device_target="Ascend")
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
input_channel = 2048
|
|
|
|
output_channel = 512
|
|
|
|
num_class = 10
|
|
|
|
batch_size = 32
|
|
|
|
|
|
|
|
|
|
|
|
class MsWrapper(nn.Cell):
|
|
|
|
def __init__(self, network):
|
|
|
|
super(MsWrapper, self).__init__(auto_prefix=False)
|
|
|
|
self._network = network
|
2020-04-22 16:44:19 +08:00
|
|
|
|
2020-03-27 14:49:12 +08:00
|
|
|
@ms_function
|
|
|
|
def construct(self, *args):
|
|
|
|
return self._network(*args)
|
|
|
|
|
|
|
|
|
|
|
|
def me_train_tensor(net, input_np, label_np, epoch_size=2):
|
|
|
|
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
2020-04-22 16:44:19 +08:00
|
|
|
opt = nn.Momentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])),
|
|
|
|
filter(lambda x: x.requires_grad, net.get_parameters()))
|
2020-03-27 14:49:12 +08:00
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
Model(net, loss, opt)
|
2020-04-22 16:44:19 +08:00
|
|
|
_network = nn.WithLossCell(net, loss)
|
|
|
|
_train_net = MsWrapper(nn.TrainOneStepCell(_network, opt))
|
2020-03-27 14:49:12 +08:00
|
|
|
_train_net.set_train()
|
|
|
|
for epoch in range(0, epoch_size):
|
2020-04-22 16:44:19 +08:00
|
|
|
print(f"epoch %d" % (epoch))
|
2020-03-27 14:49:12 +08:00
|
|
|
output = _train_net(Tensor(input_np), Tensor(label_np))
|
|
|
|
print(output.asnumpy())
|
|
|
|
|
|
|
|
|
|
|
|
def test_conv_bn_add_relu_fusion():
|
|
|
|
class Net(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.conv = nn.Conv2d(input_channel, output_channel,
|
2020-04-22 16:44:19 +08:00
|
|
|
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
2020-03-27 14:49:12 +08:00
|
|
|
self.conv1 = nn.Conv2d(input_channel, output_channel,
|
2020-04-22 16:44:19 +08:00
|
|
|
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
2020-03-27 14:49:12 +08:00
|
|
|
self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
|
|
|
|
self.add = P.TensorAdd()
|
|
|
|
self.relu = P.ReLU()
|
|
|
|
self.mean = P.ReduceMean(keep_dims=True)
|
|
|
|
self.reshape = P.Reshape()
|
|
|
|
self.dense = nn.Dense(output_channel, num_class)
|
|
|
|
|
|
|
|
def construct(self, input_x):
|
|
|
|
output = self.conv(input_x)
|
|
|
|
output = self.bn(output)
|
|
|
|
output = self.add(output, self.conv1(input_x))
|
|
|
|
output = self.relu(output)
|
|
|
|
output = self.mean(output, (-2, -1))
|
|
|
|
output = self.reshape(output, (batch_size, output_channel))
|
|
|
|
output = self.dense(output)
|
|
|
|
return output
|
|
|
|
|
|
|
|
net = Net()
|
|
|
|
input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01
|
|
|
|
label_np = np.ones([batch_size]).astype(np.int32)
|
|
|
|
me_train_tensor(net, input_np, label_np)
|
|
|
|
|
|
|
|
|
|
|
|
def test_conv_bn_relu_fusion():
|
|
|
|
class Net(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.conv = nn.Conv2d(input_channel, output_channel,
|
2020-04-22 16:44:19 +08:00
|
|
|
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
2020-03-27 14:49:12 +08:00
|
|
|
self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
|
|
|
|
self.relu = P.ReLU()
|
|
|
|
self.mean = P.ReduceMean(keep_dims=True)
|
|
|
|
self.reshape = P.Reshape()
|
|
|
|
self.dense = nn.Dense(output_channel, num_class)
|
|
|
|
|
|
|
|
def construct(self, input_x):
|
|
|
|
output = self.conv(input_x)
|
|
|
|
output = self.bn(output)
|
|
|
|
output = self.relu(output)
|
|
|
|
output = self.mean(output, (-2, -1))
|
|
|
|
output = self.reshape(output, (batch_size, output_channel))
|
|
|
|
output = self.dense(output)
|
|
|
|
return output
|
|
|
|
|
|
|
|
net = Net()
|
|
|
|
input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01
|
|
|
|
label_np = np.ones([batch_size]).astype(np.int32)
|
|
|
|
me_train_tensor(net, input_np, label_np)
|
|
|
|
|
|
|
|
|
|
|
|
def test_conv_bn_fusion():
|
|
|
|
class Net(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.conv = nn.Conv2d(input_channel, output_channel,
|
2020-04-22 16:44:19 +08:00
|
|
|
kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
2020-03-27 14:49:12 +08:00
|
|
|
self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
|
|
|
|
self.mean = P.ReduceMean(keep_dims=True)
|
|
|
|
self.reshape = P.Reshape()
|
|
|
|
self.dense = nn.Dense(output_channel, num_class)
|
|
|
|
|
|
|
|
def construct(self, input_x):
|
|
|
|
output = self.conv(input_x)
|
|
|
|
output = self.bn(output)
|
|
|
|
output = self.mean(output, (-2, -1))
|
|
|
|
output = self.reshape(output, (batch_size, output_channel))
|
|
|
|
output = self.dense(output)
|
|
|
|
return output
|
|
|
|
|
|
|
|
net = Net()
|
|
|
|
input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01
|
|
|
|
label_np = np.ones([batch_size]).astype(np.int32)
|
|
|
|
me_train_tensor(net, input_np, label_np)
|