forked from OSSInnovation/mindspore
!14665 update document of Conv3d
From: @mind-lh Reviewed-by: @liangchenghui,@wuxuejian Signed-off-by: @liangchenghui
This commit is contained in:
commit
394a3fe379
|
@ -505,10 +505,10 @@ class Conv3d(_Conv):
|
|||
Args:
|
||||
in_channels (int): The number of input channel :math:`C_{in}`.
|
||||
out_channels (int): The number of output channel :math:`C_{out}`.
|
||||
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the height
|
||||
and width of the 3D convolution window. Single int means the value is for the depth, height and the width
|
||||
of the kernel. A tuple of 3 ints means the first value is for the depth, second value is for height
|
||||
and the other is for the width of the kernel.
|
||||
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the depth, height
|
||||
and width of the 3D convolution window. Single int means the value is for the depth, height and the width of
|
||||
the kernel. A tuple of 3 ints means the first value is for the depth, second value is for height and the
|
||||
other is for the width of the kernel.
|
||||
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||
the depth, height and width of movement are both strides, or a tuple of three int numbers that
|
||||
represent depth, height and width of movement respectively. Default: 1.
|
||||
|
@ -531,7 +531,7 @@ class Conv3d(_Conv):
|
|||
padding (Union(int, tuple[int])): Implicit paddings on both sides of the input.
|
||||
The data type is int or a tuple of 6 integers. Default: 0. If `padding` is an integer,
|
||||
the paddings of head, tail, top, bottom, left and right are the same, equal to padding.
|
||||
If `paddings` is a tuple of three integers, the padding of head, tail, top, bottom, left and right equal to
|
||||
If `paddings` is a tuple of six integers, the padding of head, tail, top, bottom, left and right equal to
|
||||
padding[0], padding[1], padding[2], padding[3], padding[4] and padding[5] correspondingly.
|
||||
dilation (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers
|
||||
: math:`(dilation_d, dilation_h, dilation_w)`. Currently, dilation on depth only supports the case of 1.
|
||||
|
@ -561,7 +561,7 @@ class Conv3d(_Conv):
|
|||
|
||||
Raises:
|
||||
TypeError: If `in_channels`, `out_channels` or `group` is not an int.
|
||||
TypeError: If `kernel_size`, `stride`, `padding` or `dilation` is neither an int not a tuple of three.
|
||||
TypeError: If `kernel_size`, `stride`, `padding` or `dilation` is neither an int nor a tuple of six.
|
||||
ValueError: If `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1.
|
||||
ValueError: If `padding` is less than 0.
|
||||
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.
|
||||
|
|
|
@ -4187,7 +4187,7 @@ class Adam(PrimitiveWithInfer):
|
|||
TypeError: If `beta1_power`, `beta2_power1`, `lr`, `beta1`, `beta2`, `epsilon` or `gradient` is not a Tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
|
@ -4208,7 +4208,7 @@ class Adam(PrimitiveWithInfer):
|
|||
...
|
||||
>>> net = Net()
|
||||
>>> gradient = Tensor(np.ones([2, 2]).astype(np.float32))
|
||||
>>> net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient)
|
||||
>>> output = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient)
|
||||
>>> print(net.var.asnumpy())
|
||||
[[0.9996838 0.9996838]
|
||||
[0.9996838 0.9996838]]
|
||||
|
@ -6386,7 +6386,7 @@ class LARSUpdate(PrimitiveWithInfer):
|
|||
use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False.
|
||||
|
||||
Inputs:
|
||||
- **weight** (Tensor) - The weight to be updated.
|
||||
- **weight** (Tensor) - A tensor, representing the weight.
|
||||
- **gradient** (Tensor) - The gradient of weight, which has the same shape and dtype with weight.
|
||||
- **norm_weight** (Tensor) - A scalar tensor, representing the sum of squares of weight.
|
||||
- **norm_gradient** (Tensor) - A scalar tensor, representing the sum of squares of gradient.
|
||||
|
@ -7717,7 +7717,7 @@ class Conv3D(PrimitiveWithInfer):
|
|||
|
||||
Args:
|
||||
out_channels (int): The number of output channel :math:`C_{out}`.
|
||||
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the height
|
||||
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 3 integers. Specifies the depth, height
|
||||
and width of the 3D convolution window. Single int means the value is for the depth, height and the width
|
||||
of the kernel. A tuple of 3 ints means the first value is for the depth, height and the other is for the
|
||||
width of the kernel.
|
||||
|
@ -7768,7 +7768,7 @@ class Conv3D(PrimitiveWithInfer):
|
|||
|
||||
Raises:
|
||||
TypeError: If `out_channel` or `group` is not an int.
|
||||
TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int not a tuple.
|
||||
TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int nor a tuple of six.
|
||||
ValueError: If `out_channel`, `kernel_size`, `stride` or `dilation` is less than 1.
|
||||
ValueError: If `pad` is less than 0.
|
||||
ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.
|
||||
|
|
Loading…
Reference in New Issue