mindspore/tests/st/pynative/test_framstruct.py

151 lines
4.7 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.common.parameter import Parameter
from tests.mindspore_test_framework.utils.check_gradient import (
check_jacobian, Tensor, OperationGradChecker, check_gradient, NNGradChecker)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_operation_grad_checker():
"""
Feature: Auto diff.
Description: Check the result for GradOperation.
Expectation: The result is expected.
"""
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.matmul = P.MatMul()
self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z')
def construct(self, x, y):
x = x * self.z
out = self.matmul(x, y)
return out
check_gradient(Net(), Tensor(np.array([[0.65, 0.8, 0.8]], np.float32)),
Tensor(np.array([[0.1], [0.2], [-.1]], np.float32)), grad_checker_class=OperationGradChecker,
input_selector=[1], sampling_times=2)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_grad_checker_primitive():
"""
Feature: Auto diff.
Description: Check the result for GradOperation.
Expectation: The result is expected.
"""
matmul = P.MatMul()
def prim_f(x, y):
return matmul(x, y)
check_gradient(prim_f, Tensor(np.array([[0.65, 0.8, 0.8]], np.float32)),
Tensor(np.array([[0.1], [0.2], [-.1]], np.float32)),
grad_checker_class=OperationGradChecker, sampling_times=2)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_nn_jacobian_checker():
"""
Feature: Auto diff.
Description: Check the result for GradOperation.
Expectation: The result is expected.
"""
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.dense = nn.Dense(10, 10)
def construct(self, x):
out = self.dense(x)
return out, x
check_jacobian(Net(), Tensor(np.random.rand(1, 10).astype(np.float32)),
delta=1e-3,
max_error=1e-7,
grad_checker_class=NNGradChecker,
input_selector=[1],
output_selector=[0])
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_nn_grad_checker():
"""
Feature: Auto diff.
Description: Check the result for GradOperation.
Expectation: The result is expected.
"""
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.dense = nn.Dense(10, 10)
def construct(self, x):
out = self.dense(x)
return out
check_gradient(Net(), Tensor(np.random.rand(1, 10).astype(np.float32)),
delta=1e-3,
max_error=1e-3,
grad_checker_class=NNGradChecker, sampling_times=3)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_operation_jacobian_checker():
"""
Feature: Auto diff.
Description: Check the result for GradOperation.
Expectation: The result is expected.
"""
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.matmul = P.MatMul()
self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z')
def construct(self, x, y):
x = x * self.z
out = self.matmul(x, y)
return x, out
check_jacobian(Net(), Tensor(np.array([[0.65, 0.8, 0.8], [0.1, 0.2, 0.3]], np.float32)),
Tensor(np.array([[0.1, 0.3], [0.2, 0.2], [-.1, 0.4]], np.float32)),
grad_checker_class=OperationGradChecker, input_selector=[0],
output_selector=[0])