mindspore/model_zoo/bert/squadeval.py

100 lines
4.2 KiB
Python

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation script for SQuAD task"""
import os
import collections
import mindspore.dataset as de
import mindspore.dataset.transforms.c_transforms as C
import mindspore.common.dtype as mstype
from mindspore import context
from mindspore.common.tensor import Tensor
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src import tokenization
from src.evaluation_config import cfg, bert_net_cfg
from src.utils import BertSquad
from src.create_squad_data import read_squad_examples, convert_examples_to_features
from src.run_squad import write_predictions
def get_squad_dataset(batch_size=1, repeat_count=1, distribute_file=''):
"""get SQuAD dataset from tfrecord"""
ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask",
"segment_ids", "unique_ids"],
shuffle=False)
type_cast_op = C.TypeCast(mstype.int32)
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
ds = ds.repeat(repeat_count)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def test_eval():
"""Evaluation function for SQuAD task"""
tokenizer = tokenization.FullTokenizer(vocab_file="./vocab.txt", do_lower_case=True)
input_file = "dataset/v1.1/dev-v1.1.json"
eval_examples = read_squad_examples(input_file, False)
eval_features = convert_examples_to_features(
examples=eval_examples,
tokenizer=tokenizer,
max_seq_length=384,
doc_stride=128,
max_query_length=64,
is_training=False,
output_fn=None,
verbose_logging=False)
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=device_id)
dataset = get_squad_dataset(bert_net_cfg.batch_size, 1)
net = BertSquad(bert_net_cfg, False, 2)
net.set_train(False)
param_dict = load_checkpoint(cfg.finetune_ckpt)
load_param_into_net(net, param_dict)
model = Model(net)
output = []
RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"])
columns_list = ["input_ids", "input_mask", "segment_ids", "unique_ids"]
for data in dataset.create_dict_iterator():
input_data = []
for i in columns_list:
input_data.append(Tensor(data[i]))
input_ids, input_mask, segment_ids, unique_ids = input_data
start_positions = Tensor([1], mstype.float32)
end_positions = Tensor([1], mstype.float32)
is_impossible = Tensor([1], mstype.float32)
logits = model.predict(input_ids, input_mask, segment_ids, start_positions,
end_positions, unique_ids, is_impossible)
ids = logits[0].asnumpy()
start = logits[1].asnumpy()
end = logits[2].asnumpy()
for i in range(bert_net_cfg.batch_size):
unique_id = int(ids[i])
start_logits = [float(x) for x in start[i].flat]
end_logits = [float(x) for x in end[i].flat]
output.append(RawResult(
unique_id=unique_id,
start_logits=start_logits,
end_logits=end_logits))
write_predictions(eval_examples, eval_features, output, 20, 30, True, "./predictions.json",
None, None, False, False)
if __name__ == "__main__":
test_eval()