forked from mindspore-Ecosystem/mindspore
add api image gradients
This commit is contained in:
parent
475e858474
commit
f9d180d413
|
@ -22,7 +22,7 @@ from .normalization import BatchNorm1d, BatchNorm2d, LayerNorm
|
||||||
from .container import SequentialCell, CellList
|
from .container import SequentialCell, CellList
|
||||||
from .conv import Conv2d, Conv2dTranspose
|
from .conv import Conv2d, Conv2dTranspose
|
||||||
from .lstm import LSTM
|
from .lstm import LSTM
|
||||||
from .basic import Dropout, Flatten, Dense, ClipByNorm, Norm, OneHot
|
from .basic import Dropout, Flatten, Dense, ClipByNorm, Norm, OneHot, ImageGradients
|
||||||
from .embedding import Embedding
|
from .embedding import Embedding
|
||||||
from .pooling import AvgPool2d, MaxPool2d
|
from .pooling import AvgPool2d, MaxPool2d
|
||||||
|
|
||||||
|
@ -31,7 +31,7 @@ __all__ = ['Softmax', 'LogSoftmax', 'ReLU', 'ReLU6', 'Tanh', 'GELU', 'Sigmoid',
|
||||||
'SequentialCell', 'CellList',
|
'SequentialCell', 'CellList',
|
||||||
'Conv2d', 'Conv2dTranspose',
|
'Conv2d', 'Conv2dTranspose',
|
||||||
'LSTM',
|
'LSTM',
|
||||||
'Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot',
|
'Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot', 'ImageGradients',
|
||||||
'Embedding',
|
'Embedding',
|
||||||
'AvgPool2d', 'MaxPool2d',
|
'AvgPool2d', 'MaxPool2d',
|
||||||
]
|
]
|
||||||
|
|
|
@ -370,3 +370,48 @@ class OneHot(Cell):
|
||||||
|
|
||||||
def construct(self, indices):
|
def construct(self, indices):
|
||||||
return self.onehot(indices, self.depth, self.on_value, self.off_value)
|
return self.onehot(indices, self.depth, self.on_value, self.off_value)
|
||||||
|
|
||||||
|
|
||||||
|
class ImageGradients(Cell):
|
||||||
|
r"""
|
||||||
|
Returns two tensors, the first is along the height dimension and the second is along the width dimension.
|
||||||
|
|
||||||
|
Assume an image shape is :math:`h*w`. The gradients along the height and the width are :math:`dy` and :math:`dx`,
|
||||||
|
respectively.
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
dy[i] = \begin{cases} image[i+1, :]-image[i, :], &if\ 0<=i<h-1 \cr
|
||||||
|
0, &if\ i==h-1\end{cases}
|
||||||
|
|
||||||
|
dx[i] = \begin{cases} image[:, i+1]-image[:, i], &if\ 0<=i<w-1 \cr
|
||||||
|
0, &if\ i==w-1\end{cases}
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **images** (Tensor) - The input image data, with format 'NCHW'.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
- **dy** (Tensor) - vertical image gradients, the same type and shape as input.
|
||||||
|
- **dx** (Tensor) - horizontal image gradients, the same type and shape as input.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> net = nn.ImageGradients()
|
||||||
|
>>> image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32)
|
||||||
|
>>> net(image)
|
||||||
|
[[[[2,2]
|
||||||
|
[0,0]]]]
|
||||||
|
[[[[1,0]
|
||||||
|
[1,0]]]]
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
super(ImageGradients, self).__init__()
|
||||||
|
|
||||||
|
def construct(self, images):
|
||||||
|
batch_size, depth, height, width = P.Shape()(images)
|
||||||
|
dy = images[:, :, 1:, :] - images[:, :, :height - 1, :]
|
||||||
|
dy_last = P.Fill()(P.DType()(images), (batch_size, depth, 1, width), 0)
|
||||||
|
dy = P.Concat(2)((dy, dy_last))
|
||||||
|
|
||||||
|
dx = images[:, :, :, 1:] - images[:, :, :, :width - 1]
|
||||||
|
dx_last = P.Fill()(P.DType()(images), (batch_size, depth, height, 1), 0)
|
||||||
|
dx = P.Concat(3)((dx, dx_last))
|
||||||
|
return dy, dx
|
||||||
|
|
|
@ -0,0 +1,62 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
import mindspore.nn as nn
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.common.api import ms_function
|
||||||
|
|
||||||
|
context.set_context(device_target="Ascend")
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.image_gradients = nn.ImageGradients()
|
||||||
|
|
||||||
|
@ms_function
|
||||||
|
def construct(self, x):
|
||||||
|
return self.image_gradients(x)
|
||||||
|
|
||||||
|
|
||||||
|
def test_image_gradients():
|
||||||
|
image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32)
|
||||||
|
expected_dy = np.array([[[[2,2],[0,0]]]]).astype(np.int32)
|
||||||
|
expected_dx = np.array([[[[1,0],[1,0]]]]).astype(np.int32)
|
||||||
|
net = Net()
|
||||||
|
dy, dx = net(image)
|
||||||
|
assert np.any(dx.asnumpy()-expected_dx) == False
|
||||||
|
assert np.any(dy.asnumpy()-expected_dy) == False
|
||||||
|
|
||||||
|
|
||||||
|
def test_image_gradients_multi_channel_depth():
|
||||||
|
# 4 x 2 x 2 x 2
|
||||||
|
dtype = mstype.int32
|
||||||
|
image = Tensor(np.array([[[[1,2],[3,4]], [[5,6],[7,8]]],
|
||||||
|
[[[3,5],[7,9]], [[11,13],[15,17]]],
|
||||||
|
[[[5,10],[15,20]], [[25,30],[35,40]]],
|
||||||
|
[[[10,20],[30,40]], [[50,60],[70,80]]]]), dtype=dtype)
|
||||||
|
expected_dy = Tensor(np.array([[[[2,2],[0,0]], [[2,2],[0,0]]],
|
||||||
|
[[[4,4],[0,0]], [[4,4],[0,0]]],
|
||||||
|
[[[10,10],[0,0]], [[10,10],[0,0]]],
|
||||||
|
[[[20,20],[0,0]], [[20,20],[0,0]]]]), dtype=dtype)
|
||||||
|
expected_dx = Tensor(np.array([[[[1,0],[1,0]], [[1,0],[1,0]]],
|
||||||
|
[[[2,0],[2,0]], [[2,0],[2,0]]],
|
||||||
|
[[[5,0],[5,0]], [[5,0],[5,0]]],
|
||||||
|
[[[10,0],[10,0]], [[10,0],[10,0]]]]), dtype=dtype)
|
||||||
|
net = Net()
|
||||||
|
dy, dx = net(image)
|
||||||
|
|
||||||
|
assert np.any(dx.asnumpy()-expected_dx.asnumpy()) == False
|
||||||
|
assert np.any(dy.asnumpy()-expected_dy.asnumpy()) == False
|
|
@ -0,0 +1,49 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
""" test loss """
|
||||||
|
import numpy as np
|
||||||
|
import mindspore.nn as nn
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.common.api import _executor
|
||||||
|
from mindspore.common.api import ms_function
|
||||||
|
|
||||||
|
context.set_context(device_target="Ascend")
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.image_gradients = nn.ImageGradients()
|
||||||
|
|
||||||
|
@ms_function
|
||||||
|
def construct(self, x):
|
||||||
|
return self.image_gradients(x)
|
||||||
|
|
||||||
|
def test_compile():
|
||||||
|
# input shape 1 x 1 x 2 x 2
|
||||||
|
image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32)
|
||||||
|
net = Net()
|
||||||
|
_executor.compile(net, image)
|
||||||
|
|
||||||
|
|
||||||
|
def test_compile_multi_channel():
|
||||||
|
# input shape 4 x 2 x 2 x 2
|
||||||
|
dtype = mstype.int32
|
||||||
|
image = Tensor(np.array([[[[1,2],[3,4]], [[5,6],[7,8]]],
|
||||||
|
[[[3,5],[7,9]], [[11,13],[15,17]]],
|
||||||
|
[[[5,10],[15,20]], [[25,30],[35,40]]],
|
||||||
|
[[[10,20],[30,40]], [[50,60],[70,80]]]]), dtype=dtype)
|
||||||
|
net = Net()
|
||||||
|
_executor.compile(net, image)
|
Loading…
Reference in New Issue