forked from mindspore-Ecosystem/mindspore
!13527 Fix some error format of api comments.
From: @zhang_yi2020 Reviewed-by: @gemini524,@wuxuejian,@liangchenghui Signed-off-by: @wuxuejian,@liangchenghui
This commit is contained in:
commit
f5393aaf20
|
@ -857,12 +857,10 @@ class Dataset:
|
|||
original dataset.
|
||||
If after rounding:
|
||||
|
||||
- Any size equals 0, an error will occur.
|
||||
|
||||
- The sum of split sizes < K, the difference will be added to the first split.
|
||||
|
||||
- The sum of split sizes > K, the difference will be removed from the first large
|
||||
enough split such that it will have at least 1 row after removing the difference.
|
||||
- Any size equals 0, an error will occur.
|
||||
- The sum of split sizes < K, the difference will be added to the first split.
|
||||
- The sum of split sizes > K, the difference will be removed from the first large
|
||||
enough split such that it will have at least 1 row after removing the difference.
|
||||
|
||||
randomize (bool, optional): Determines whether or not to split the data randomly (default=True).
|
||||
If True, the data will be randomly split. Otherwise, each split will be created with
|
||||
|
@ -4120,9 +4118,9 @@ class VOCDataset(MappableDataset):
|
|||
|
||||
The generated dataset has multiple columns :
|
||||
|
||||
- task='Detection', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['label', dtype=uint32],
|
||||
['difficult', dtype=uint32], ['truncate', dtype=uint32]].
|
||||
- task='Segmentation', column: [['image', dtype=uint8], ['target',dtype=uint8]].
|
||||
- task='Detection', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['label', dtype=uint32],
|
||||
['difficult', dtype=uint32], ['truncate', dtype=uint32]].
|
||||
- task='Segmentation', column: [['image', dtype=uint8], ['target',dtype=uint8]].
|
||||
|
||||
This dataset can take in a sampler. 'sampler' and 'shuffle' are mutually exclusive. The table
|
||||
below shows what input arguments are allowed and their expected behavior.
|
||||
|
@ -4276,13 +4274,13 @@ class CocoDataset(MappableDataset):
|
|||
|
||||
The generated dataset has multi-columns :
|
||||
|
||||
- task='Detection', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['category_id', dtype=uint32],
|
||||
['iscrowd', dtype=uint32]].
|
||||
- task='Stuff', column: [['image', dtype=uint8], ['segmentation',dtype=float32], ['iscrowd',dtype=uint32]].
|
||||
- task='Keypoint', column: [['image', dtype=uint8], ['keypoints', dtype=float32],
|
||||
['num_keypoints', dtype=uint32]].
|
||||
- task='Panoptic', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['category_id', dtype=uint32],
|
||||
['iscrowd', dtype=uint32], ['area', dtype=uint32]].
|
||||
- task='Detection', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['category_id', dtype=uint32],
|
||||
['iscrowd', dtype=uint32]].
|
||||
- task='Stuff', column: [['image', dtype=uint8], ['segmentation',dtype=float32], ['iscrowd',dtype=uint32]].
|
||||
- task='Keypoint', column: [['image', dtype=uint8], ['keypoints', dtype=float32],
|
||||
['num_keypoints', dtype=uint32]].
|
||||
- task='Panoptic', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['category_id', dtype=uint32],
|
||||
['iscrowd', dtype=uint32], ['area', dtype=uint32]].
|
||||
|
||||
This dataset can take in a sampler. 'sampler' and 'shuffle' are mutually exclusive. CocoDataset doesn't support
|
||||
PKSampler. The table below shows what input arguments are allowed and their expected behavior.
|
||||
|
|
|
@ -164,9 +164,9 @@ class ROC(Metric):
|
|||
A tuple, composed of `fpr`, `tpr`, and `thresholds`.
|
||||
|
||||
- **fpr** (np.array) - np.array with false positive rates. If multiclass, this is a list of such np.array,
|
||||
one for each class.
|
||||
one for each class.
|
||||
- **tps** (np.array) - np.array with true positive rates. If multiclass, this is a list of such np.array,
|
||||
one for each class.
|
||||
one for each class.
|
||||
- **thresholds** (np.array) - thresholds used for computing false- and true positive rates.
|
||||
"""
|
||||
if self._is_update is False:
|
||||
|
|
|
@ -44,13 +44,13 @@ class SGD(Optimizer):
|
|||
|
||||
If nesterov is True:
|
||||
|
||||
.. math::
|
||||
p_{t+1} = p_{t} - lr \ast (gradient + u \ast v_{t+1})
|
||||
.. math::
|
||||
p_{t+1} = p_{t} - lr \ast (gradient + u \ast v_{t+1})
|
||||
|
||||
If nesterov is Flase:
|
||||
|
||||
.. math::
|
||||
p_{t+1} = p_{t} - lr \ast v_{t+1}
|
||||
.. math::
|
||||
p_{t+1} = p_{t} - lr \ast v_{t+1}
|
||||
|
||||
To be noticed, for the first step, v_{t+1} = gradient
|
||||
|
||||
|
|
|
@ -29,10 +29,10 @@ class ReduceOp:
|
|||
|
||||
There are four kinds of operation options, "SUM", "MAX", "MIN", and "PROD".
|
||||
|
||||
- SUM: Take the sum.
|
||||
- MAX: Take the maximum.
|
||||
- MIN: Take the minimum.
|
||||
- PROD: Take the product.
|
||||
- SUM: Take the sum.
|
||||
- MAX: Take the maximum.
|
||||
- MIN: Take the minimum.
|
||||
- PROD: Take the product.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
|
@ -285,7 +285,7 @@ class _HostAllGather(PrimitiveWithInfer):
|
|||
|
||||
class ReduceScatter(PrimitiveWithInfer):
|
||||
"""
|
||||
Reduces and scatters tensors from the specified communication group.
|
||||
Reduces and scatters tensors from the specified communication group.
|
||||
|
||||
Note:
|
||||
The back propagation of the op is not supported yet. Stay tuned for more.
|
||||
|
|
Loading…
Reference in New Issue