diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index f5637e69d2b..fedb33d2831 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -1219,14 +1219,14 @@ class ApplyMomentum(PrimitiveWithInfer): gradient_scale (float): The scale of the gradient. Default: 1.0. Inputs: - - **variable** (Tensor) - Weights to be update. + - **variable** (Tensor) - Weights to be updated. - **accumulation** (Tensor) - Accumulated gradient value by moment weight. - **learning_rate** (float) - Learning rate. - **gradient** (Tensor) - Gradients. - **momentum** (float) - Momentum. Outputs: - Tensor, parameters to be update. + Tensor, parameters to be updated. Examples: >>> net = ResNet50() @@ -1318,15 +1318,15 @@ class SGD(PrimitiveWithInfer): nesterov (bool): Enable Nesterov momentum. Default: False. Inputs: - - **parameters** (Tensor) - Parameters to be update. + - **parameters** (Tensor) - Parameters to be updated. - **gradient** (Tensor) - Gradients. - **learning_rate** (Tensor) - Learning rate. e.g. Tensor(0.1, mindspore.float32). - - **accum** (Tensor) - Accum(velocity) to be update. + - **accum** (Tensor) - Accum(velocity) to be updated. - **momentum** (Tensor) - Momentum. e.g. Tensor(0.1, mindspore.float32). - **stat** (Tensor) - States to be updated with the same shape as gradient. Outputs: - Tensor, parameters to be update. + Tensor, parameters to be updated. """ @prim_attr_register @@ -2141,7 +2141,7 @@ class Adam(PrimitiveWithInfer): If False, updates the gradients without using NAG. Default: False. Inputs: - - **var** (Tensor) - Weights to be update. + - **var** (Tensor) - Weights to be updated. - **m** (Tensor) - The 1st moment vector in the updating formula. - **v** (Tensor) - the 2nd moment vector in the updating formula. - **beta1_power** (float) - :math:`beta_1^t` in the updating formula. @@ -2251,8 +2251,8 @@ class SparseApplyAdagrad(PrimitiveWithInfer): use_locking (bool): If True, updating of the var and accum tensors will be protected. Default: False. Inputs: - - **var** (Tensor) - Variable to be update. The type must be float32. - - **accum** (Tensor) - Accum to be update. The shape must be the same as `var`'s shape, + - **var** (Tensor) - Variable to be updated. The type must be float32. + - **accum** (Tensor) - Accum to be updated. The shape must be the same as `var`'s shape, the type must be float32. - **grad** (Tensor) - Gradient. The shape must be the same as `var`'s shape except first dimension, the type must be float32. @@ -2299,7 +2299,7 @@ class LARSUpdate(PrimitiveWithInfer): use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False. Inputs: - - **weight** (Tensor) - The weight to be update. + - **weight** (Tensor) - The weight to be updated. - **gradient** (Tensor) - The gradient of weight, which has the same shape and dtype with weight. - **norm_weight** (Tensor) - A scalar tensor, representing the square sum of weight. - **norm_gradient** (Tensor) - A scalar tensor, representing the square sum of gradient.