forked from mindspore-Ecosystem/mindspore
!40369 [feat][assistant][I4XJGO]add Polar operator
Merge pull request !40369 from 桂宁馨/Polar
This commit is contained in:
commit
e54c09a50f
|
@ -0,0 +1,90 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "plugin/device/cpu/kernel/polar_cpu_kernel.h"
|
||||
#include <algorithm>
|
||||
#include <complex>
|
||||
#include <functional>
|
||||
#include <cmath>
|
||||
#include <tuple>
|
||||
#include <type_traits>
|
||||
#include "utils/ms_utils.h"
|
||||
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
|
||||
|
||||
namespace {
|
||||
constexpr size_t kPolarInputsNum = 2;
|
||||
constexpr size_t kPolarOutputsNum = 1;
|
||||
|
||||
#define POLAR_COMPUTE_CASE(DTYPE, TYPE) \
|
||||
case (DTYPE): { \
|
||||
ret = LaunchKernel<TYPE>(inputs, outputs); \
|
||||
break; \
|
||||
}
|
||||
} // namespace
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
bool PolarCpuKernelMod::Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) {
|
||||
MS_EXCEPTION_IF_NULL(base_operator);
|
||||
kernel_name_ = base_operator->name();
|
||||
input1_dtype_ = inputs[0]->GetDtype();
|
||||
return true;
|
||||
}
|
||||
|
||||
bool PolarCpuKernelMod::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
bool ret = true;
|
||||
CHECK_KERNEL_INPUTS_NUM(inputs.size(), kPolarInputsNum, kernel_name_);
|
||||
CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kPolarOutputsNum, kernel_name_);
|
||||
switch (input1_dtype_) {
|
||||
POLAR_COMPUTE_CASE(kNumberTypeFloat32, float)
|
||||
POLAR_COMPUTE_CASE(kNumberTypeFloat64, double)
|
||||
default:
|
||||
ret = false;
|
||||
MS_EXCEPTION(TypeError) << "For Polar, unsupported input data type: " << TypeIdToString(input1_dtype_) << ".";
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool PolarCpuKernelMod::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||
const auto abs = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
const auto angle = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto output_addr = reinterpret_cast<std::complex<T> *>(outputs[0]->addr);
|
||||
size_t output_size = outputs[0]->size / sizeof(std::complex<T>);
|
||||
auto task = [output_addr, abs, angle](size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; ++i) {
|
||||
output_addr[i].real(abs[i] * cos(angle[i]));
|
||||
output_addr[i].imag(abs[i] * sin(angle[i]));
|
||||
}
|
||||
};
|
||||
ParallelLaunchAutoSearch(task, output_size, this, ¶llel_search_info_);
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<KernelAttr> PolarCpuKernelMod::GetOpSupport() {
|
||||
static std::vector<KernelAttr> support_list = {
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeComplex64),
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeComplex128)};
|
||||
return support_list;
|
||||
}
|
||||
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, Polar, PolarCpuKernelMod);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,56 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_POLAR_CPU_KERNEL_H
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_POLAR_CPU_KERNEL_H
|
||||
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
#include <tuple>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <complex>
|
||||
#include <string>
|
||||
#include "plugin/device/cpu/kernel/cpu_kernel.h"
|
||||
#include "plugin/factory/ms_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class PolarCpuKernelMod : public NativeCpuKernelMod {
|
||||
public:
|
||||
PolarCpuKernelMod() = default;
|
||||
~PolarCpuKernelMod() override = default;
|
||||
|
||||
bool Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
protected:
|
||||
std::vector<KernelAttr> GetOpSupport() override;
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
bool LaunchKernel(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
string kernel_name_;
|
||||
TypeId input1_dtype_{kTypeUnknown};
|
||||
TypeId input2_dtype_{kTypeUnknown};
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_POLAR_CPU_KERNEL_H
|
|
@ -1,44 +1,44 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_POLAR_H_
|
||||
#define MINDSPORE_CORE_OPS_POLAR_H_
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "ops/base_operator.h"
|
||||
#include "mindapi/base/types.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNamePolar = "Polar";
|
||||
|
||||
class MIND_API Polar : public BaseOperator {
|
||||
public:
|
||||
MIND_API_BASE_MEMBER(Polar);
|
||||
Polar() : BaseOperator(kNamePolar) { InitIOName({"abs", "angle"}, {"y"}); }
|
||||
};
|
||||
|
||||
abstract::AbstractBasePtr PolarInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<abstract::AbstractBasePtr> &input_args);
|
||||
using PrimPolarPtr = std::shared_ptr<Polar>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_POLAR_H_
|
||||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_POLAR_H_
|
||||
#define MINDSPORE_CORE_OPS_POLAR_H_
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "ops/base_operator.h"
|
||||
#include "mindapi/base/types.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNamePolar = "Polar";
|
||||
|
||||
class MIND_API Polar : public BaseOperator {
|
||||
public:
|
||||
MIND_API_BASE_MEMBER(Polar);
|
||||
Polar() : BaseOperator(kNamePolar) { InitIOName({"abs", "angle"}, {"y"}); }
|
||||
};
|
||||
|
||||
abstract::AbstractBasePtr PolarInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<abstract::AbstractBasePtr> &input_args);
|
||||
using PrimPolarPtr = std::shared_ptr<Polar>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_POLAR_H_
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Polar op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
polar_op_info = AiCPURegOp("Polar") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "abs", "required") \
|
||||
.input(1, "angle", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.C64_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default, DataType.C128_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(polar_op_info)
|
||||
def _polar_aicpu():
|
||||
"""Polar aicpu register"""
|
||||
return
|
|
@ -63,6 +63,7 @@ from mindspore.ops.operations.math_ops import (
|
|||
InplaceUpdateV2,
|
||||
Igamma,
|
||||
Igammac,
|
||||
Polar,
|
||||
Angle,
|
||||
)
|
||||
from mindspore.common.tensor import Tensor
|
||||
|
@ -127,6 +128,7 @@ sinc_ = Sinc()
|
|||
cos_ = P.Cos()
|
||||
tan_ = P.Tan()
|
||||
asin_ = P.Asin()
|
||||
polar_ = Polar()
|
||||
acos_ = P.ACos()
|
||||
atan_ = P.Atan()
|
||||
sinh_ = P.Sinh()
|
||||
|
@ -1673,6 +1675,45 @@ def arctan2(x, other):
|
|||
return _atan2(x, other)
|
||||
|
||||
|
||||
def polar(abs, angle): # pylint: disable=redefined-outer-name
|
||||
r"""
|
||||
Returns the complex tensor at polar coordinates.
|
||||
|
||||
.. math::
|
||||
|
||||
y_{i} = abs_{i} * cos(angle_{i}) + abs_{i} * sin(angle_{i}) * j
|
||||
|
||||
Args:
|
||||
abs (Tensor): The shape of tensor is
|
||||
:math:`(N,*)`, where :math:`*` means additional dimensions of size less than 8.
|
||||
Must be one of the following types: float32, float64.
|
||||
|
||||
angle (Tensor): The shape of tensor is
|
||||
:math:`(N,*)`, where :math:`*` means additional dimensions of size less than 8.
|
||||
Must be one of the following types: float32, float64.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and data type as `abs`.
|
||||
|
||||
Raises:
|
||||
TypeError: If neither `abs` nor `angle` is a Tensor.
|
||||
TypeError: If the dtype of input is not one of: float32, float64.
|
||||
TypeError: If the dtypes of two args are not the same.
|
||||
ValueError: If the shape of `abs` is not the same as that of `angle`.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> abs = Tensor(np.array([1, 2]), mindspore.float64)
|
||||
>>> angle = Tensor(np.array([np.pi / 2, 5 * np.pi / 4]), mindspore.float64)
|
||||
>>> output = ops.polar(abs, angle)
|
||||
>>> print(output)
|
||||
[ 6.12323400e-17+1.j -1.41421356e+00-1.41421356j]
|
||||
"""
|
||||
return polar_(abs, angle)
|
||||
|
||||
|
||||
def asin(x):
|
||||
r"""
|
||||
Computes arcsine of input tensors element-wise.
|
||||
|
|
|
@ -7241,7 +7241,7 @@ class Polar(Primitive):
|
|||
ValueError: If `abs`'s shape is not the same as `angle`.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> polar = ops.Polar()
|
||||
|
|
|
@ -32,7 +32,7 @@ from mindspore.ops.operations.math_ops import Zeta, Igamma, Igammac, BatchMatMul
|
|||
from mindspore.ops.operations.math_ops import MatrixTriangularSolve
|
||||
from mindspore.ops.operations.sparse_ops import DenseToDenseSetOperation
|
||||
from mindspore.ops.operations.sparse_ops import DenseToSparseSetOperation
|
||||
from mindspore.ops.function.math_func import inplace_index_add
|
||||
from mindspore.ops.function.math_func import inplace_index_add, polar
|
||||
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.initializer import initializer
|
||||
|
@ -632,6 +632,15 @@ class KronFunc(nn.Cell):
|
|||
return self.kron(x, y)
|
||||
|
||||
|
||||
class PolarFunc(nn.Cell):
|
||||
def __init__(self):
|
||||
super(PolarFunc, self).__init__()
|
||||
self.polar = polar
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.polar(x, y)
|
||||
|
||||
|
||||
class Rot90Func(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Rot90Func, self).__init__()
|
||||
|
@ -849,6 +858,12 @@ test_case_math_ops = [
|
|||
'desc_inputs': [Tensor(np.array([[0, 1, 2], [3, 4, 5]]).astype(np.float32)),
|
||||
Tensor(np.array([[-1, -2, -3], [-4, -6, -8]]).astype(np.float32))],
|
||||
'skip': ['backward']}),
|
||||
('Polar', {
|
||||
'block': PolarFunc(),
|
||||
'desc_inputs': [Tensor(np.array([[0, 1, 2], [3, 4, 5]]).astype(np.float32)),
|
||||
Tensor(np.array([[-1, -2, -3], [-4, -6, -8]]).astype(np.float32))],
|
||||
'desc_bprop': [Tensor(np.array([1+2j, 2+3j, 3+4j], np.complex64))],
|
||||
}),
|
||||
('Rot90', {
|
||||
'block': Rot90Func(),
|
||||
'desc_inputs': [Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))],
|
||||
|
|
Loading…
Reference in New Issue