lijiaxing1

This commit is contained in:
lijiaxing1999 2022-08-08 10:46:31 +08:00
parent 4875c1a6be
commit e24c7c8db0
2 changed files with 242 additions and 0 deletions

View File

@ -0,0 +1,179 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <utility>
#include <set>
#include <map>
#include <functional>
#include <numeric>
#include <iterator>
#include <unordered_map>
#include "plugin/device/cpu/kernel/sparse_add_grad_cpu_kernel.h"
#include "mindspore/core/ops/grad/sparse_add_grad.h"
namespace mindspore {
namespace kernel {
// Value check constant
constexpr size_t kInputNum = 4;
constexpr size_t kOutputNum = 2;
// Input idx constant
constexpr size_t kDoutIdx = 0;
constexpr size_t kX1IndicesIdx = 1;
constexpr size_t kX2IndicesIdx = 2;
constexpr size_t kOutIndicesIdx = 3;
// Output idx constant
constexpr size_t kDx1Idx = 0;
constexpr size_t kDx2Idx = 1;
bool SparseAddGradCpuKernelMod::Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
const std::vector<KernelTensorPtr> &outputs) {
auto kernel_ptr = std::dynamic_pointer_cast<ops::SparseAddGrad>(base_operator);
kernel_name_ = kernel_ptr->name();
size_t input_num = inputs.size();
if (input_num != kInputNum) {
MS_LOG(ERROR) << "For " << kernel_name_ << ", input should be dout, x1_indices, x2_indices and out_indices total "
<< kInputNum << " tensors, but get " << input_num;
return false;
}
if (!MatchKernelFunc(base_operator, inputs, outputs)) {
return false;
}
return true;
}
void SparseAddGradCpuKernelMod::ResetResource() noexcept {
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
}
int SparseAddGradCpuKernelMod::Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
const std::vector<KernelTensorPtr> &outputs,
const std::map<uint32_t, tensor::TensorPtr> &inputsOnHost) {
ResetResource();
auto ret = KernelMod::Resize(base_operator, inputs, outputs, inputsOnHost);
if (ret == KRET_UNKNOWN_OUT_SHAPE) {
if (input_size_list_.size() != kInputNum) {
MS_LOG(ERROR) << "Input size list should be " << kInputNum << ", but got " << input_size_list_.size();
return KRET_RESIZE_FAILED;
}
auto dout_shape = inputs.at(kDoutIdx)->GetShapeVector();
auto x1_indices_shape = inputs.at(kX1IndicesIdx)->GetShapeVector();
auto x2_indices_shape = inputs.at(kX2IndicesIdx)->GetShapeVector();
auto out_indices_shape = inputs.at(kOutIndicesIdx)->GetShapeVector();
(void)std::transform(dout_shape.begin(), dout_shape.end(), std::back_inserter(dout_shape_), LongToSize);
(void)std::transform(x1_indices_shape.begin(), x1_indices_shape.end(), std::back_inserter(x1_indices_shape_),
LongToSize);
(void)std::transform(x2_indices_shape.begin(), x2_indices_shape.end(), std::back_inserter(x2_indices_shape_),
LongToSize);
(void)std::transform(out_indices_shape.begin(), out_indices_shape.end(), std::back_inserter(out_indices_shape_),
LongToSize);
auto dout_size_ = std::accumulate(dout_shape_.begin(), dout_shape_.end(), 1, std::multiplies<size_t>());
auto x1_indices_size_ =
std::accumulate(x1_indices_shape_.begin(), x1_indices_shape_.end(), 1, std::multiplies<size_t>());
auto x2_indices_size_ =
std::accumulate(x2_indices_shape_.begin(), x2_indices_shape_.end(), 1, std::multiplies<size_t>());
auto out_indices_size_ =
std::accumulate(out_indices_shape_.begin(), out_indices_shape_.end(), 1, std::multiplies<size_t>());
input_size_list_.push_back(dout_size_);
input_size_list_.push_back(x1_indices_size_);
input_size_list_.push_back(x2_indices_size_);
input_size_list_.push_back(out_indices_size_);
output_size_list_.push_back(x1_indices_size_);
output_size_list_.push_back(x2_indices_size_);
}
return ret;
}
template <typename T, typename S>
bool SparseAddGradCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<AddressPtr> &workspace,
const std::vector<kernel::AddressPtr> &outputs) {
if (inputs.size() != kInputNum) {
MS_LOG(EXCEPTION) << "For " << kernel_name_ << ", the number of inputs should be " << kInputNum << ", but got "
<< inputs.size() << " input(s).";
}
if (outputs.size() != kOutputNum) {
MS_LOG(EXCEPTION) << "For " << kernel_name_ << ", the number of inputs should be " << kOutputNum << ", but got "
<< outputs.size() << " output(s).";
}
// Inputs
const auto dout = reinterpret_cast<T *>(inputs[kDoutIdx]->addr);
const auto x1_indices = reinterpret_cast<S *>(inputs[kX1IndicesIdx]->addr);
const auto x2_indices = reinterpret_cast<S *>(inputs[kX2IndicesIdx]->addr);
const auto out_indices = reinterpret_cast<S *>(inputs[kOutIndicesIdx]->addr);
// Outputs
auto dx1 = reinterpret_cast<T *>(outputs[kDx1Idx]->addr);
auto dx2 = reinterpret_cast<T *>(outputs[kDx2Idx]->addr);
const int64_t x1_indices_num = inputs[kX1IndicesIdx]->size / (sizeof(S) * 2);
const int64_t x2_indices_num = inputs[kX2IndicesIdx]->size / (sizeof(S) * 2);
const int64_t out_indices_num = inputs[kOutIndicesIdx]->size / (sizeof(S) * 2);
auto arrayHash = [fn = std::hash<int>{}](const std::array<int, 2> &arr) -> size_t {
return std::accumulate(arr.begin(), arr.end(), 0u, [&](size_t acc, int num) { return (acc << 1) ^ fn(num); });
};
constexpr int dimension_difference = 2;
std::unordered_map<std::array<int, 2>, int, decltype(arrayHash)> out_map(0, arrayHash);
for (int i = 0; i < out_indices_num * dimension_difference; i += dimension_difference) {
std::array<int, 2> index{};
index[0] = out_indices[i];
index[1] = out_indices[i + 1];
out_map[index] = static_cast<int>(i / dimension_difference);
}
for (int i = 0; i < x1_indices_num * dimension_difference; i += dimension_difference) {
std::array<int, 2> index{};
index[0] = x1_indices[i];
index[1] = x1_indices[i + 1];
if (out_map.find(index) != out_map.end()) {
dx1[static_cast<int>(i / dimension_difference)] = dout[out_map[index]];
}
}
for (int i = 0; i < x2_indices_num * dimension_difference; i += dimension_difference) {
std::array<int, 2> index{};
index[0] = x2_indices[i];
index[1] = x2_indices[i + 1];
if (out_map.find(index) != out_map.end()) {
dx2[static_cast<int>(i / dimension_difference)] = dout[out_map[index]];
}
}
return true;
}
const std::vector<std::pair<KernelAttr, SparseAddGradCpuKernelMod::KernelRunFunc>>
&SparseAddGradCpuKernelMod::GetFuncList() const {
static const std::vector<std::pair<KernelAttr, SparseAddGradCpuKernelMod::KernelRunFunc>> func_list = {
{KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
&SparseAddGradCpuKernelMod::LaunchKernel<float, int32_t>},
};
return func_list;
}
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, SparseAddGrad, SparseAddGradCpuKernelMod);
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,63 @@
/**
* Copyright 2022 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_ADD_GRAD_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_ADD_GRAD_CPU_KERNEL_H_
#include <vector>
#include <map>
#include <utility>
#include "plugin/device/cpu/kernel/cpu_kernel.h"
#include "plugin/factory/ms_factory.h"
namespace mindspore {
namespace kernel {
class SparseAddGradCpuKernelMod : public NativeCpuKernelMod, public MatchKernelHelper<SparseAddGradCpuKernelMod> {
public:
SparseAddGradCpuKernelMod() = default;
~SparseAddGradCpuKernelMod() override = default;
bool Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
const std::vector<KernelTensorPtr> &outputs) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override {
return kernel_func_(this, inputs, workspace, outputs);
}
int Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
const std::vector<KernelTensorPtr> &outputs,
const std::map<uint32_t, tensor::TensorPtr> &inputsOnHost) override;
void ResetResource() noexcept;
const std::vector<std::pair<KernelAttr, KernelRunFunc>> &GetFuncList() const override;
protected:
std::vector<KernelAttr> GetOpSupport() override { return OpSupport(); }
private:
template <typename T, typename S>
bool LaunchKernel(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &workspace,
const std::vector<kernel::AddressPtr> &outputs);
std::vector<size_t> dout_shape_;
std::vector<size_t> x1_indices_shape_;
std::vector<size_t> x2_indices_shape_;
std::vector<size_t> out_indices_shape_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_ADD_GRAD_CPU_KERNEL_H_