forked from mindspore-Ecosystem/mindspore
delete enable_fused_layernorm
This commit is contained in:
parent
4ec343961e
commit
dfd85caa1b
|
@ -161,7 +161,6 @@ For example, the schema file of cn-wiki-128 dataset for pretraining shows as fol
|
|||
├─dataset.py # data preprocessing
|
||||
├─finetune_eval_config.py # parameter configuration for finetuning
|
||||
├─finetune_eval_model.py # backbone code of network
|
||||
├─fused_layer_norm.py # Layernormal is optimized for Ascend
|
||||
├─sample_process.py # sample processing
|
||||
├─utils.py # util function
|
||||
├─pretrain_eval.py # train and eval net
|
||||
|
|
|
@ -25,7 +25,6 @@ from mindspore.ops import operations as P
|
|||
from mindspore.ops import composite as C
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.common.parameter import Parameter
|
||||
from .fused_layer_norm import FusedLayerNorm
|
||||
|
||||
|
||||
class BertConfig:
|
||||
|
@ -78,8 +77,7 @@ class BertConfig:
|
|||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float32,
|
||||
enable_fused_layernorm=False):
|
||||
compute_type=mstype.float32):
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.vocab_size = vocab_size
|
||||
|
@ -98,7 +96,6 @@ class BertConfig:
|
|||
self.use_relative_positions = use_relative_positions
|
||||
self.dtype = dtype
|
||||
self.compute_type = compute_type
|
||||
self.enable_fused_layernorm = enable_fused_layernorm
|
||||
|
||||
|
||||
class EmbeddingLookup(nn.Cell):
|
||||
|
@ -245,19 +242,14 @@ class BertOutput(nn.Cell):
|
|||
out_channels,
|
||||
initializer_range=0.02,
|
||||
dropout_prob=0.1,
|
||||
compute_type=mstype.float32,
|
||||
enable_fused_layernorm=False):
|
||||
compute_type=mstype.float32):
|
||||
super(BertOutput, self).__init__()
|
||||
self.dense = nn.Dense(in_channels, out_channels,
|
||||
weight_init=TruncatedNormal(initializer_range)).to_float(compute_type)
|
||||
self.dropout = nn.Dropout(1 - dropout_prob)
|
||||
self.dropout_prob = dropout_prob
|
||||
self.add = P.TensorAdd()
|
||||
if compute_type == mstype.float16:
|
||||
self.layernorm = FusedLayerNorm((out_channels,),
|
||||
use_batch_norm=enable_fused_layernorm).to_float(compute_type)
|
||||
else:
|
||||
self.layernorm = nn.LayerNorm((out_channels,)).to_float(compute_type)
|
||||
self.layernorm = nn.LayerNorm((out_channels,)).to_float(compute_type)
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, hidden_status, input_tensor):
|
||||
|
@ -615,8 +607,7 @@ class BertSelfAttention(nn.Cell):
|
|||
initializer_range=0.02,
|
||||
hidden_dropout_prob=0.1,
|
||||
use_relative_positions=False,
|
||||
compute_type=mstype.float32,
|
||||
enable_fused_layernorm=False):
|
||||
compute_type=mstype.float32):
|
||||
super(BertSelfAttention, self).__init__()
|
||||
if hidden_size % num_attention_heads != 0:
|
||||
raise ValueError("The hidden size (%d) is not a multiple of the number "
|
||||
|
@ -644,8 +635,7 @@ class BertSelfAttention(nn.Cell):
|
|||
out_channels=hidden_size,
|
||||
initializer_range=initializer_range,
|
||||
dropout_prob=hidden_dropout_prob,
|
||||
compute_type=compute_type,
|
||||
enable_fused_layernorm=enable_fused_layernorm)
|
||||
compute_type=compute_type)
|
||||
self.reshape = P.Reshape()
|
||||
self.shape = (-1, hidden_size)
|
||||
|
||||
|
@ -687,8 +677,7 @@ class BertEncoderCell(nn.Cell):
|
|||
hidden_dropout_prob=0.1,
|
||||
use_relative_positions=False,
|
||||
hidden_act="gelu",
|
||||
compute_type=mstype.float32,
|
||||
enable_fused_layernorm=False):
|
||||
compute_type=mstype.float32):
|
||||
super(BertEncoderCell, self).__init__()
|
||||
self.attention = BertSelfAttention(
|
||||
batch_size=batch_size,
|
||||
|
@ -700,8 +689,7 @@ class BertEncoderCell(nn.Cell):
|
|||
initializer_range=initializer_range,
|
||||
hidden_dropout_prob=hidden_dropout_prob,
|
||||
use_relative_positions=use_relative_positions,
|
||||
compute_type=compute_type,
|
||||
enable_fused_layernorm=enable_fused_layernorm)
|
||||
compute_type=compute_type)
|
||||
self.intermediate = nn.Dense(in_channels=hidden_size,
|
||||
out_channels=intermediate_size,
|
||||
activation=hidden_act,
|
||||
|
@ -710,8 +698,7 @@ class BertEncoderCell(nn.Cell):
|
|||
out_channels=hidden_size,
|
||||
initializer_range=initializer_range,
|
||||
dropout_prob=hidden_dropout_prob,
|
||||
compute_type=compute_type,
|
||||
enable_fused_layernorm=enable_fused_layernorm)
|
||||
compute_type=compute_type)
|
||||
|
||||
def construct(self, hidden_states, attention_mask):
|
||||
# self-attention
|
||||
|
@ -758,8 +745,7 @@ class BertTransformer(nn.Cell):
|
|||
use_relative_positions=False,
|
||||
hidden_act="gelu",
|
||||
compute_type=mstype.float32,
|
||||
return_all_encoders=False,
|
||||
enable_fused_layernorm=False):
|
||||
return_all_encoders=False):
|
||||
super(BertTransformer, self).__init__()
|
||||
self.return_all_encoders = return_all_encoders
|
||||
|
||||
|
@ -776,8 +762,7 @@ class BertTransformer(nn.Cell):
|
|||
hidden_dropout_prob=hidden_dropout_prob,
|
||||
use_relative_positions=use_relative_positions,
|
||||
hidden_act=hidden_act,
|
||||
compute_type=compute_type,
|
||||
enable_fused_layernorm=enable_fused_layernorm)
|
||||
compute_type=compute_type)
|
||||
layers.append(layer)
|
||||
|
||||
self.layers = nn.CellList(layers)
|
||||
|
@ -904,8 +889,7 @@ class BertModel(nn.Cell):
|
|||
use_relative_positions=config.use_relative_positions,
|
||||
hidden_act=config.hidden_act,
|
||||
compute_type=config.compute_type,
|
||||
return_all_encoders=True,
|
||||
enable_fused_layernorm=config.enable_fused_layernorm)
|
||||
return_all_encoders=True)
|
||||
|
||||
self.cast = P.Cast()
|
||||
self.dtype = config.dtype
|
||||
|
|
|
@ -1,122 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""fused layernorm"""
|
||||
import numpy as np
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.ops.primitive import constexpr
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.nn.cell import Cell
|
||||
|
||||
|
||||
|
||||
__all__ = ['FusedLayerNorm']
|
||||
|
||||
@constexpr
|
||||
def get_shape_for_norm(x_shape, begin_norm_axis):
|
||||
print("input_shape: ", x_shape)
|
||||
norm_shape = x_shape[begin_norm_axis:]
|
||||
output_shape = (1, -1, 1, int(np.prod(norm_shape)))
|
||||
print("output_shape: ", output_shape)
|
||||
return output_shape
|
||||
|
||||
class FusedLayerNorm(Cell):
|
||||
r"""
|
||||
Applies Layer Normalization over a mini-batch of inputs.
|
||||
|
||||
Layer normalization is widely used in recurrent neural networks. It applies
|
||||
normalization over a mini-batch of inputs for each single training case as described
|
||||
in the paper `Layer Normalization <https://arxiv.org/pdf/1607.06450.pdf>`_. Unlike batch
|
||||
normalization, layer normalization performs exactly the same computation at training and
|
||||
testing times. It can be described using the following formula. It is applied across all channels
|
||||
and pixel but only one batch size.
|
||||
|
||||
.. math::
|
||||
y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
||||
|
||||
Args:
|
||||
normalized_shape (Union(tuple[int], list[int]): The normalization is performed over axis
|
||||
`begin_norm_axis ... R - 1`.
|
||||
begin_norm_axis (int): It first normalization dimension: normalization will be performed along dimensions
|
||||
`begin_norm_axis: rank(inputs)`, the value should be in [-1, rank(input)). Default: -1.
|
||||
begin_params_axis (int): The first parameter(beta, gamma)dimension: scale and centering parameters
|
||||
will have dimensions `begin_params_axis: rank(inputs)` and will be broadcast with
|
||||
the normalized inputs accordingly, the value should be in [-1, rank(input)). Default: -1.
|
||||
gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the gamma weight.
|
||||
The values of str refer to the function `initializer` including 'zeros', 'ones', 'xavier_uniform',
|
||||
'he_uniform', etc. Default: 'ones'.
|
||||
beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the beta weight.
|
||||
The values of str refer to the function `initializer` including 'zeros', 'ones', 'xavier_uniform',
|
||||
'he_uniform', etc. Default: 'zeros'.
|
||||
use_batch_nrom (bool): Whether use batchnorm to preocess.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of 'input_x' is :math:`(x_1, x_2, ..., x_R)`,
|
||||
and `input_shape[begin_norm_axis:]` is equal to `normalized_shape`.
|
||||
|
||||
Outputs:
|
||||
Tensor, the normalized and scaled offset tensor, has the same shape and data type as the `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
|
||||
>>> shape1 = x.shape[1:]
|
||||
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
|
||||
>>> m(x)
|
||||
"""
|
||||
def __init__(self,
|
||||
normalized_shape,
|
||||
begin_norm_axis=-1,
|
||||
begin_params_axis=-1,
|
||||
gamma_init='ones',
|
||||
beta_init='zeros',
|
||||
use_batch_norm=False):
|
||||
super(FusedLayerNorm, self).__init__()
|
||||
if not isinstance(normalized_shape, (tuple, list)):
|
||||
raise TypeError("The type of 'normalized_shape' should be tuple[int] or list[int], but '{}' type is {}."
|
||||
.format(normalized_shape, type(normalized_shape)))
|
||||
self.normalized_shape = normalized_shape
|
||||
self.begin_norm_axis = begin_norm_axis
|
||||
self.begin_params_axis = begin_params_axis
|
||||
self.gamma = Parameter(initializer(
|
||||
gamma_init, normalized_shape), name="gamma")
|
||||
self.beta = Parameter(initializer(
|
||||
beta_init, normalized_shape), name="beta")
|
||||
self.layer_norm = P.LayerNorm(begin_norm_axis=self.begin_norm_axis, begin_params_axis=self.begin_params_axis)
|
||||
|
||||
self.batch_norm = P.BatchNorm(is_training=True, epsilon=1e-5)
|
||||
self.use_batch_norm = use_batch_norm
|
||||
|
||||
def construct(self, input_x):
|
||||
"""Applies Layer Normalization over a mini-batch of inputs"""
|
||||
if self.use_batch_norm and self.training:
|
||||
ones = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 1.0)
|
||||
zeros = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 0.0)
|
||||
shape_x = F.shape(input_x)
|
||||
norm_shape = get_shape_for_norm(shape_x, self.begin_norm_axis)
|
||||
input_x = F.reshape(input_x, norm_shape)
|
||||
output, _, _, _, _, _ = self.batch_norm(input_x, ones, zeros, None, None)
|
||||
output = F.reshape(output, shape_x)
|
||||
y = output * self.gamma + self.beta
|
||||
else:
|
||||
y, _, _ = self.layer_norm(input_x, self.gamma, self.beta)
|
||||
return y
|
||||
|
||||
def extend_repr(self):
|
||||
"""Display instance object as string."""
|
||||
s = 'normalized_shape={}, begin_norm_axis={}, begin_params_axis={}, gamma{}, beta={}'.format(
|
||||
self.normalized_shape, self.begin_norm_axis, self.begin_params_axis, self.gamma, self.beta)
|
||||
return s
|
|
@ -113,7 +113,6 @@ For example, the dataset is cn-wiki-128, the schema file for general distill pha
|
|||
├─__init__.py
|
||||
├─assessment_method.py # assessment method for evaluation
|
||||
├─dataset.py # data processing
|
||||
├─fused_layer_norm.py # Layernormal is optimized for Ascend
|
||||
├─gd_config.py # parameter configuration for general distill phase
|
||||
├─td_config.py # parameter configuration for task distill phase
|
||||
├─tinybert_for_gd_td.py # backbone code of network
|
||||
|
@ -229,7 +228,6 @@ Parameters for bert network:
|
|||
token_type_ids_from_dataset use the token type ids loaded from dataset or not: True | False, default is True
|
||||
dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32
|
||||
compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16
|
||||
enable_fused_layernorm use batchnorm instead of layernorm to improve performance, default is False
|
||||
```
|
||||
## [Training Process](#contents)
|
||||
### Training
|
||||
|
|
|
@ -1,122 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""fused layernorm"""
|
||||
import numpy as np
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.ops.primitive import constexpr
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.nn.cell import Cell
|
||||
|
||||
|
||||
|
||||
__all__ = ['FusedLayerNorm']
|
||||
|
||||
@constexpr
|
||||
def get_shape_for_norm(x_shape, begin_norm_axis):
|
||||
print("input_shape: ", x_shape)
|
||||
norm_shape = x_shape[begin_norm_axis:]
|
||||
output_shape = (1, -1, 1, int(np.prod(norm_shape)))
|
||||
print("output_shape: ", output_shape)
|
||||
return output_shape
|
||||
|
||||
class FusedLayerNorm(Cell):
|
||||
r"""
|
||||
Applies Layer Normalization over a mini-batch of inputs.
|
||||
|
||||
Layer normalization is widely used in recurrent neural networks. It applies
|
||||
normalization over a mini-batch of inputs for each single training case as described
|
||||
in the paper `Layer Normalization <https://arxiv.org/pdf/1607.06450.pdf>`_. Unlike batch
|
||||
normalization, layer normalization performs exactly the same computation at training and
|
||||
testing times. It can be described using the following formula. It is applied across all channels
|
||||
and pixel but only one batch size.
|
||||
|
||||
.. math::
|
||||
y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
||||
|
||||
Args:
|
||||
normalized_shape (Union(tuple[int], list[int]): The normalization is performed over axis
|
||||
`begin_norm_axis ... R - 1`.
|
||||
begin_norm_axis (int): It first normalization dimension: normalization will be performed along dimensions
|
||||
`begin_norm_axis: rank(inputs)`, the value should be in [-1, rank(input)). Default: -1.
|
||||
begin_params_axis (int): The first parameter(beta, gamma)dimension: scale and centering parameters
|
||||
will have dimensions `begin_params_axis: rank(inputs)` and will be broadcast with
|
||||
the normalized inputs accordingly, the value should be in [-1, rank(input)). Default: -1.
|
||||
gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the gamma weight.
|
||||
The values of str refer to the function `initializer` including 'zeros', 'ones', 'xavier_uniform',
|
||||
'he_uniform', etc. Default: 'ones'.
|
||||
beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the beta weight.
|
||||
The values of str refer to the function `initializer` including 'zeros', 'ones', 'xavier_uniform',
|
||||
'he_uniform', etc. Default: 'zeros'.
|
||||
use_batch_nrom (bool): Whether use batchnorm to preocess.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of 'input_x' is :math:`(x_1, x_2, ..., x_R)`,
|
||||
and `input_shape[begin_norm_axis:]` is equal to `normalized_shape`.
|
||||
|
||||
Outputs:
|
||||
Tensor, the normalized and scaled offset tensor, has the same shape and data type as the `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
|
||||
>>> shape1 = x.shape[1:]
|
||||
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
|
||||
>>> m(x)
|
||||
"""
|
||||
def __init__(self,
|
||||
normalized_shape,
|
||||
begin_norm_axis=-1,
|
||||
begin_params_axis=-1,
|
||||
gamma_init='ones',
|
||||
beta_init='zeros',
|
||||
use_batch_norm=False):
|
||||
super(FusedLayerNorm, self).__init__()
|
||||
if not isinstance(normalized_shape, (tuple, list)):
|
||||
raise TypeError("The type of 'normalized_shape' should be tuple[int] or list[int], but '{}' type is {}."
|
||||
.format(normalized_shape, type(normalized_shape)))
|
||||
self.normalized_shape = normalized_shape
|
||||
self.begin_norm_axis = begin_norm_axis
|
||||
self.begin_params_axis = begin_params_axis
|
||||
self.gamma = Parameter(initializer(
|
||||
gamma_init, normalized_shape), name="gamma")
|
||||
self.beta = Parameter(initializer(
|
||||
beta_init, normalized_shape), name="beta")
|
||||
self.layer_norm = P.LayerNorm(begin_norm_axis=self.begin_norm_axis, begin_params_axis=self.begin_params_axis)
|
||||
|
||||
self.batch_norm = P.BatchNorm(is_training=True, epsilon=1e-5)
|
||||
self.use_batch_norm = use_batch_norm
|
||||
|
||||
def construct(self, input_x):
|
||||
"""fusedlayernorm"""
|
||||
if self.use_batch_norm and self.training:
|
||||
ones = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 1.0)
|
||||
zeros = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 0.0)
|
||||
shape_x = F.shape(input_x)
|
||||
norm_shape = get_shape_for_norm(shape_x, self.begin_norm_axis)
|
||||
input_x = F.reshape(input_x, norm_shape)
|
||||
output, _, _, _, _, _ = self.batch_norm(input_x, ones, zeros, None, None)
|
||||
output = F.reshape(output, shape_x)
|
||||
y = output * self.gamma + self.beta
|
||||
else:
|
||||
y, _, _ = self.layer_norm(input_x, self.gamma, self.beta)
|
||||
return y
|
||||
|
||||
def extend_repr(self):
|
||||
"""Display instance object as string."""
|
||||
s = 'normalized_shape={}, begin_norm_axis={}, begin_params_axis={}, gamma{}, beta={}'.format(
|
||||
self.normalized_shape, self.begin_norm_axis, self.begin_params_axis, self.gamma, self.beta)
|
||||
return s
|
|
@ -55,8 +55,7 @@ bert_teacher_net_cfg = BertConfig(
|
|||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
enable_fused_layernorm=False
|
||||
compute_type=mstype.float16
|
||||
)
|
||||
bert_student_net_cfg = BertConfig(
|
||||
batch_size=32,
|
||||
|
@ -76,6 +75,5 @@ bert_student_net_cfg = BertConfig(
|
|||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
enable_fused_layernorm=False
|
||||
compute_type=mstype.float16
|
||||
)
|
||||
|
|
|
@ -74,8 +74,7 @@ td_teacher_net_cfg = BertConfig(
|
|||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
enable_fused_layernorm=False
|
||||
compute_type=mstype.float16
|
||||
)
|
||||
td_student_net_cfg = BertConfig(
|
||||
batch_size=32,
|
||||
|
@ -95,6 +94,5 @@ td_student_net_cfg = BertConfig(
|
|||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
enable_fused_layernorm=False
|
||||
compute_type=mstype.float16
|
||||
)
|
||||
|
|
|
@ -25,7 +25,6 @@ from mindspore.ops import composite as C
|
|||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore import context
|
||||
from .fused_layer_norm import FusedLayerNorm
|
||||
|
||||
|
||||
class BertConfig:
|
||||
|
@ -78,8 +77,7 @@ class BertConfig:
|
|||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float32,
|
||||
enable_fused_layernorm=False):
|
||||
compute_type=mstype.float32):
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.vocab_size = vocab_size
|
||||
|
@ -98,7 +96,6 @@ class BertConfig:
|
|||
self.use_relative_positions = use_relative_positions
|
||||
self.dtype = dtype
|
||||
self.compute_type = compute_type
|
||||
self.enable_fused_layernorm = enable_fused_layernorm
|
||||
|
||||
|
||||
class EmbeddingLookup(nn.Cell):
|
||||
|
@ -244,8 +241,7 @@ class BertOutput(nn.Cell):
|
|||
out_channels,
|
||||
initializer_range=0.02,
|
||||
dropout_prob=0.1,
|
||||
compute_type=mstype.float32,
|
||||
enable_fused_layernorm=False):
|
||||
compute_type=mstype.float32):
|
||||
super(BertOutput, self).__init__()
|
||||
self.dense = nn.Dense(in_channels, out_channels,
|
||||
weight_init=TruncatedNormal(initializer_range)).to_float(compute_type)
|
||||
|
@ -256,11 +252,7 @@ class BertOutput(nn.Cell):
|
|||
self.layernorm = nn.LayerNorm((out_channels,)).to_float(mstype.float32)
|
||||
self.compute_type = compute_type
|
||||
else:
|
||||
if compute_type == mstype.float16:
|
||||
self.layernorm = FusedLayerNorm((out_channels,),
|
||||
use_batch_norm=enable_fused_layernorm).to_float(compute_type)
|
||||
else:
|
||||
self.layernorm = nn.LayerNorm((out_channels,)).to_float(compute_type)
|
||||
self.layernorm = nn.LayerNorm((out_channels,)).to_float(compute_type)
|
||||
|
||||
self.cast = P.Cast()
|
||||
|
||||
|
@ -602,8 +594,7 @@ class BertSelfAttention(nn.Cell):
|
|||
initializer_range=0.02,
|
||||
hidden_dropout_prob=0.1,
|
||||
use_relative_positions=False,
|
||||
compute_type=mstype.float32,
|
||||
enable_fused_layernorm=False):
|
||||
compute_type=mstype.float32):
|
||||
super(BertSelfAttention, self).__init__()
|
||||
if hidden_size % num_attention_heads != 0:
|
||||
raise ValueError("The hidden size (%d) is not a multiple of the number "
|
||||
|
@ -628,8 +619,7 @@ class BertSelfAttention(nn.Cell):
|
|||
out_channels=hidden_size,
|
||||
initializer_range=initializer_range,
|
||||
dropout_prob=hidden_dropout_prob,
|
||||
compute_type=compute_type,
|
||||
enable_fused_layernorm=enable_fused_layernorm)
|
||||
compute_type=compute_type)
|
||||
self.reshape = P.Reshape()
|
||||
self.shape = (-1, hidden_size)
|
||||
|
||||
|
@ -672,8 +662,7 @@ class BertEncoderCell(nn.Cell):
|
|||
hidden_dropout_prob=0.1,
|
||||
use_relative_positions=False,
|
||||
hidden_act="gelu",
|
||||
compute_type=mstype.float32,
|
||||
enable_fused_layernorm=False):
|
||||
compute_type=mstype.float32):
|
||||
super(BertEncoderCell, self).__init__()
|
||||
self.attention = BertSelfAttention(
|
||||
batch_size=batch_size,
|
||||
|
@ -685,8 +674,7 @@ class BertEncoderCell(nn.Cell):
|
|||
initializer_range=initializer_range,
|
||||
hidden_dropout_prob=hidden_dropout_prob,
|
||||
use_relative_positions=use_relative_positions,
|
||||
compute_type=compute_type,
|
||||
enable_fused_layernorm=enable_fused_layernorm)
|
||||
compute_type=compute_type)
|
||||
self.intermediate = nn.Dense(in_channels=hidden_size,
|
||||
out_channels=intermediate_size,
|
||||
activation=hidden_act,
|
||||
|
@ -695,8 +683,7 @@ class BertEncoderCell(nn.Cell):
|
|||
out_channels=hidden_size,
|
||||
initializer_range=initializer_range,
|
||||
dropout_prob=hidden_dropout_prob,
|
||||
compute_type=compute_type,
|
||||
enable_fused_layernorm=enable_fused_layernorm)
|
||||
compute_type=compute_type)
|
||||
def construct(self, hidden_states, attention_mask):
|
||||
"""bert encoder cell"""
|
||||
# self-attention
|
||||
|
@ -743,8 +730,7 @@ class BertTransformer(nn.Cell):
|
|||
use_relative_positions=False,
|
||||
hidden_act="gelu",
|
||||
compute_type=mstype.float32,
|
||||
return_all_encoders=False,
|
||||
enable_fused_layernorm=False):
|
||||
return_all_encoders=False):
|
||||
super(BertTransformer, self).__init__()
|
||||
self.return_all_encoders = return_all_encoders
|
||||
layers = []
|
||||
|
@ -760,8 +746,7 @@ class BertTransformer(nn.Cell):
|
|||
hidden_dropout_prob=hidden_dropout_prob,
|
||||
use_relative_positions=use_relative_positions,
|
||||
hidden_act=hidden_act,
|
||||
compute_type=compute_type,
|
||||
enable_fused_layernorm=enable_fused_layernorm)
|
||||
compute_type=compute_type)
|
||||
layers.append(layer)
|
||||
self.layers = nn.CellList(layers)
|
||||
self.reshape = P.Reshape()
|
||||
|
@ -877,8 +862,7 @@ class BertModel(nn.Cell):
|
|||
use_relative_positions=config.use_relative_positions,
|
||||
hidden_act=config.hidden_act,
|
||||
compute_type=config.compute_type,
|
||||
return_all_encoders=True,
|
||||
enable_fused_layernorm=config.enable_fused_layernorm)
|
||||
return_all_encoders=True)
|
||||
self.cast = P.Cast()
|
||||
self.dtype = config.dtype
|
||||
self.cast_compute_type = SaturateCast(dst_type=config.compute_type)
|
||||
|
@ -981,8 +965,7 @@ class TinyBertModel(nn.Cell):
|
|||
use_relative_positions=config.use_relative_positions,
|
||||
hidden_act=config.hidden_act,
|
||||
compute_type=config.compute_type,
|
||||
return_all_encoders=True,
|
||||
enable_fused_layernorm=config.enable_fused_layernorm)
|
||||
return_all_encoders=True)
|
||||
self.cast = P.Cast()
|
||||
self.dtype = config.dtype
|
||||
self.cast_compute_type = SaturateCast(dst_type=config.compute_type)
|
||||
|
|
|
@ -82,8 +82,7 @@ def get_config(version='base', batch_size=1):
|
|||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
enable_fused_layernorm=False)
|
||||
compute_type=mstype.float16)
|
||||
else:
|
||||
bert_config = BertConfig(batch_size=batch_size)
|
||||
return bert_config
|
||||
|
|
|
@ -82,8 +82,7 @@ def get_config(version='base', batch_size=1):
|
|||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
enable_fused_layernorm=False)
|
||||
compute_type=mstype.float16)
|
||||
else:
|
||||
bert_config = BertConfig(batch_size=batch_size)
|
||||
return bert_config
|
||||
|
|
Loading…
Reference in New Issue