forked from mindspore-Ecosystem/mindspore
!11328 OneHot int64 input support
From: @peilin-wang Reviewed-by: @tom__chen,@robingrosman Signed-off-by: @robingrosman
This commit is contained in:
commit
ddf84551ab
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -13,6 +13,7 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <cstdint>
|
||||
|
||||
#include "backend/kernel_compiler/gpu/arrays/one_hot_gpu_kernel.h"
|
||||
|
||||
|
@ -32,5 +33,19 @@ MS_REG_GPU_KERNEL_TWO(OneHot,
|
|||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
OneHotGpuFwdKernel, half, int)
|
||||
MS_REG_GPU_KERNEL_TWO(OneHot,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
OneHotGpuFwdKernel, float, int64_t)
|
||||
MS_REG_GPU_KERNEL_TWO(OneHot,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
OneHotGpuFwdKernel, half, int64_t)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -49,3 +49,9 @@ template void OneHot<float, int>(const int *indices, size_t depth, const float *
|
|||
size_t left_dim_size, size_t right_dim_size, float *output, cudaStream_t cuda_stream);
|
||||
template void OneHot<half, int>(const int *indices, size_t depth, const half *on_value, const half *off_value,
|
||||
size_t left_dim_size, size_t right_dim_size, half *output, cudaStream_t cuda_stream);
|
||||
template void OneHot<float, int64_t>(const int64_t *indices, size_t depth, const float *on_value,
|
||||
const float *off_value, size_t left_dim_size, size_t right_dim_size, float *output,
|
||||
cudaStream_t cuda_stream);
|
||||
template void OneHot<half, int64_t>(const int64_t *indices, size_t depth, const half *on_value, const half *off_value,
|
||||
size_t left_dim_size, size_t right_dim_size, half *output,
|
||||
cudaStream_t cuda_stream);
|
||||
|
|
|
@ -2985,7 +2985,7 @@ class OneHot(PrimitiveWithInfer):
|
|||
|
||||
Inputs:
|
||||
- **indices** (Tensor) - A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`.
|
||||
Data type must be int32.
|
||||
Data type must be int32 or int64.
|
||||
- **depth** (int) - A scalar defining the depth of the one hot dimension.
|
||||
- **on_value** (Tensor) - A value to fill in output when `indices[j] = i`. With data type of float16 or float32.
|
||||
- **off_value** (Tensor) - A value to fill in output when `indices[j] != i`.
|
||||
|
@ -3015,7 +3015,7 @@ class OneHot(PrimitiveWithInfer):
|
|||
|
||||
def __infer__(self, indices, depth, on_value, off_value):
|
||||
# check type
|
||||
validator.check_tensor_dtype_valid("indices", indices['dtype'], (mstype.int32,), self.name)
|
||||
validator.check_tensor_dtype_valid("indices", indices['dtype'], (mstype.int32, mstype.int64), self.name)
|
||||
validator.check_type_name("depth", depth['dtype'], mstype.int_type, self.name)
|
||||
args = {"on_value": on_value['dtype'], "off_value": off_value['dtype']}
|
||||
validator.check_tensors_dtypes_same_and_valid(args, (mstype.float16, mstype.float32), self.name)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -44,16 +44,13 @@ class NetOneHot(nn.Cell):
|
|||
self.one_hot_3(indices3), self.one_hot_4(indices4))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_one_hot():
|
||||
one_hot = NetOneHot()
|
||||
indices1 = Tensor(np.array([[0, 1], [4, 5], [2, 6]]).astype(np.int32))
|
||||
indices2 = Tensor(np.array([1, 2, 3]).astype(np.int32))
|
||||
indices3 = Tensor(np.array([[0, 1], [1, 0]]).astype(np.int32))
|
||||
indices4 = Tensor(np.array([[0, 1], [4, 5], [2, 6]]).astype(np.int32))
|
||||
output = one_hot(indices1, indices2, indices3, indices4)
|
||||
def one_hot(nptype):
|
||||
one_hot_net = NetOneHot()
|
||||
indices1 = Tensor(np.array([[0, 1], [4, 5], [2, 6]]).astype(nptype))
|
||||
indices2 = Tensor(np.array([1, 2, 3]).astype(nptype))
|
||||
indices3 = Tensor(np.array([[0, 1], [1, 0]]).astype(nptype))
|
||||
indices4 = Tensor(np.array([[0, 1], [4, 5], [2, 6]]).astype(nptype))
|
||||
output = one_hot_net(indices1, indices2, indices3, indices4)
|
||||
expect_0 = np.array([
|
||||
[[2., 3., 3., 3., 3., 3.], [3., 2., 3., 3., 3., 3.]],
|
||||
[[3., 3., 3., 3., 2., 3.], [3., 3., 3., 3., 3., 2.]],
|
||||
|
@ -80,3 +77,15 @@ def test_one_hot():
|
|||
assert (output[1].asnumpy() == expect_1).all()
|
||||
assert (output[2].asnumpy() == expect_2).all()
|
||||
assert (output[3].asnumpy() == expect_3).all()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_one_hot_int32():
|
||||
one_hot(np.int32)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_one_hot_int64():
|
||||
one_hot(np.int64)
|
||||
|
|
Loading…
Reference in New Issue