diff --git a/mindspore/_checkparam.py b/mindspore/_checkparam.py index 59f2967bbde..a3e27a4449b 100644 --- a/mindspore/_checkparam.py +++ b/mindspore/_checkparam.py @@ -26,10 +26,6 @@ from mindspore import log as logger from mindspore.common import dtype as mstype -# Named string regular expression -_name_re = r"^\w+[0-9a-zA-Z\_\.]*$" - - class Rel(Enum): """Numerical relationship between variables, logical relationship enumeration definition of range.""" # scalar compare @@ -114,7 +110,7 @@ class Validator: @staticmethod def check_integer(arg_name, arg_value, value, rel, prim_name=None): - """Integer value judgment.""" + """Check argument is integer""" rel_fn = Rel.get_fns(rel) type_mismatch = not isinstance(arg_value, int) or isinstance(arg_value, bool) excp_cls = TypeError if type_mismatch else ValueError @@ -125,6 +121,7 @@ class Validator: f' with type `{type(arg_value).__name__}`.') return arg_value + @staticmethod def check_number(arg_name, arg_value, value, rel, prim_name): """Number value judgment.""" @@ -142,10 +139,11 @@ class Validator: return arg_value @staticmethod - def check_bool(arg_name, arg_value): - """Check arg isinstance of bool""" + def check_bool(arg_value, arg_name=None): + """Check argument is instance of bool""" if not isinstance(arg_value, bool): - raise ValueError(f'The `{arg_name}` should be isinstance of bool, but got {arg_value}.') + arg_name = arg_name if arg_name else "Parameter" + raise TypeError(f'`{arg_name}` should be isinstance of bool, but got `{arg_value}`.') return arg_value @staticmethod @@ -170,15 +168,14 @@ class Validator: return arg_value @staticmethod - def check_string(arg_name, arg_value, valid_values, prim_name): + def check_string(arg_value, valid_values, arg_name=None, prim_name=None): """Checks whether a string is in some value list""" if isinstance(arg_value, str) and arg_value in valid_values: return arg_value - if len(valid_values) == 1: - raise ValueError(f'For \'{prim_name}\' the `{arg_name}` should be str and must be {valid_values[0]},' - f' but got {arg_value}.') - raise ValueError(f'For \'{prim_name}\' the `{arg_name}` should be str and must be one of {valid_values},' - f' but got {arg_value}.') + arg_name = arg_name if arg_name else "Parameter" + msg_prefix = f'For \'{prim_name}\' the' if prim_name else "The" + raise ValueError(f'{msg_prefix} `{arg_name}` should be str and must be in `{valid_values}`,' + f' but got `{arg_value}`.') @staticmethod def check_pad_value_by_mode(pad_mode, padding, prim_name): @@ -404,24 +401,6 @@ def check_int_zero_one(input_param): raise ValueError("The data must be 0 or 1.") -def check_bool(input_param): - """Bool type judgment.""" - if isinstance(input_param, bool): - return input_param - raise TypeError("Input type must be bool!") - - -def check_string(input_param, valid_values): - """String type judgment.""" - if isinstance(input_param, str) and input_param in valid_values: - return input_param - if len(valid_values) == 1: - raise ValueError(f'Input should be str and must be {valid_values[0]},' - f' but got {input_param}.') - raise ValueError(f'Input should be str and must be one of {valid_values},' - f' but got {input_param}.') - - def check_input_format(input_param): """Judge input format.""" if input_param == "NCHW": @@ -587,7 +566,8 @@ def check_shape(arg_name, arg_value): def _check_str_by_regular(target, reg=None, flag=re.ASCII): if reg is None: - reg = _name_re + # Named string regular expression + reg = r"^\w+[0-9a-zA-Z\_\.]*$" if re.match(reg, target, flag) is None: raise ValueError("'{}' is illegal, it should be match regular'{}' by flags'{}'".format(target, reg, flag)) return True diff --git a/mindspore/nn/layer/basic.py b/mindspore/nn/layer/basic.py index 904340edef6..4acca2e9c26 100644 --- a/mindspore/nn/layer/basic.py +++ b/mindspore/nn/layer/basic.py @@ -27,7 +27,7 @@ from mindspore.ops.operations import _inner_ops as inner from mindspore.ops.primitive import constexpr from mindspore.common.parameter import Parameter from mindspore._extends import cell_attr_register -from mindspore._checkparam import Rel, Validator as validator, check_int_positive, check_bool +from mindspore._checkparam import Rel, Validator, check_int_positive from mindspore.common.api import ms_function from mindspore import context from ..cell import Cell @@ -86,8 +86,8 @@ class Dropout(Cell): super(Dropout, self).__init__() if keep_prob <= 0 or keep_prob > 1: raise ValueError("dropout probability should be a number in range (0, 1], but got {}".format(keep_prob)) - validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name) - validator.check_value_type('keep_prob', keep_prob, [float], self.cls_name) + Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name) + Validator.check_value_type('keep_prob', keep_prob, [float], self.cls_name) self.keep_prob = keep_prob seed0 = get_seed() self.seed0 = seed0 if seed0 is not None else 0 @@ -205,7 +205,7 @@ class Dense(Cell): super(Dense, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) - self.has_bias = check_bool(has_bias) + self.has_bias = Validator.check_bool(has_bias) if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \ @@ -348,7 +348,7 @@ class Norm(Cell): def __init__(self, axis=(), keep_dims=False): super(Norm, self).__init__() - validator.check_value_type("keep_dims", keep_dims, [bool], self.cls_name) + Validator.check_value_type("keep_dims", keep_dims, [bool], self.cls_name) self.axis = axis self.keep_dims = keep_dims self.reduce_sum = P.ReduceSum(True) @@ -472,7 +472,7 @@ class Pad(Cell): super(Pad, self).__init__() self.mode = mode self.paddings = paddings - validator.check_string('mode', self.mode, ["CONSTANT", "REFLECT", "SYMMETRIC"], self.cls_name) + Validator.check_string(self.mode, ["CONSTANT", "REFLECT", "SYMMETRIC"], 'mode', self.cls_name) if not isinstance(paddings, tuple): raise TypeError('Paddings must be tuple type.') for item in paddings: @@ -549,7 +549,7 @@ class Unfold(Cell): @constexpr def _get_matrix_diag_assist(x_shape, x_dtype): - validator.check_integer("x rank", len(x_shape), 1, Rel.GE, "_get_matrix_diag_assist") + Validator.check_integer("x rank", len(x_shape), 1, Rel.GE, "_get_matrix_diag_assist") base_eye = np.eye(x_shape[-1], x_shape[-1]).reshape(-1) assist = np.tile(base_eye, x_shape[:-1]).reshape(x_shape + (x_shape[-1],)) return Tensor(assist, x_dtype) @@ -557,7 +557,7 @@ def _get_matrix_diag_assist(x_shape, x_dtype): @constexpr def _get_matrix_diag_part_assist(x_shape, x_dtype): - validator.check_integer("x rank", len(x_shape), 2, Rel.GE, "_get_matrix_diag_part_assist") + Validator.check_integer("x rank", len(x_shape), 2, Rel.GE, "_get_matrix_diag_part_assist") base_eye = np.eye(x_shape[-2], x_shape[-1]).reshape(-1) assist = np.tile(base_eye, x_shape[:-2]).reshape(x_shape) return Tensor(assist, x_dtype) diff --git a/mindspore/nn/layer/conv.py b/mindspore/nn/layer/conv.py index c454e063886..20fe0582a81 100644 --- a/mindspore/nn/layer/conv.py +++ b/mindspore/nn/layer/conv.py @@ -21,7 +21,7 @@ from mindspore.ops.primitive import constexpr from mindspore.common.parameter import Parameter from mindspore.common.initializer import initializer, Initializer from mindspore.common.tensor import Tensor -from mindspore._checkparam import Validator, Rel, check_bool, twice, check_int_positive +from mindspore._checkparam import Validator, Rel, twice, check_int_positive from mindspore._extends import cell_attr_register from ..cell import Cell @@ -92,7 +92,7 @@ class _Conv(Cell): shape = [out_channels, in_channels // group, *kernel_size] self.weight = Parameter(initializer(self.weight_init, shape), name='weight') - if check_bool(has_bias): + if Validator.check_bool(has_bias): self.bias = Parameter(initializer(self.bias_init, [out_channels]), name='bias') else: if self.bias_init != 'zeros': @@ -566,7 +566,7 @@ class Conv2dTranspose(_Conv): self.is_valid = self.pad_mode == 'valid' self.is_same = self.pad_mode == 'same' self.is_pad = self.pad_mode == 'pad' - if check_bool(has_bias): + if Validator.check_bool(has_bias): self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias') # cause Conv2DBackpropInput's out_channel refers to Conv2D's out_channel. @@ -745,7 +745,7 @@ class Conv1dTranspose(_Conv): self.is_valid = self.pad_mode == 'valid' self.is_same = self.pad_mode == 'same' self.is_pad = self.pad_mode == 'pad' - if check_bool(has_bias): + if Validator.check_bool(has_bias): self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias') # cause Conv2DBackpropInput's out_channel refers to Conv2D's out_channel. diff --git a/mindspore/nn/layer/normalization.py b/mindspore/nn/layer/normalization.py index d669fa1f26d..3145514e934 100644 --- a/mindspore/nn/layer/normalization.py +++ b/mindspore/nn/layer/normalization.py @@ -19,7 +19,7 @@ from mindspore.common.parameter import Parameter from mindspore.common.initializer import initializer from mindspore.ops.primitive import constexpr import mindspore.context as context -from mindspore._checkparam import check_bool, check_typename, check_int_positive +from mindspore._checkparam import Validator, check_typename, check_int_positive from mindspore._extends import cell_attr_register from mindspore.communication.management import get_group_size, get_rank from mindspore.communication import management @@ -604,7 +604,7 @@ class GroupNorm(Cell): if num_channels % num_groups != 0: raise ValueError("num_channels should be divided by num_groups") self.eps = check_typename('eps', eps, (float,)) - self.affine = check_bool(affine) + self.affine = Validator.check_bool(affine) gamma = initializer(gamma_init, num_channels) beta = initializer(beta_init, num_channels) diff --git a/mindspore/nn/layer/pooling.py b/mindspore/nn/layer/pooling.py index 35e94815ded..542222c4b42 100644 --- a/mindspore/nn/layer/pooling.py +++ b/mindspore/nn/layer/pooling.py @@ -27,7 +27,7 @@ class _PoolNd(Cell): def __init__(self, kernel_size, stride, pad_mode): super(_PoolNd, self).__init__() - self.pad_mode = validator.check_string('pad_mode', pad_mode.upper(), ['VALID', 'SAME'], self.cls_name) + self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.cls_name) def _check_int_or_tuple(arg_name, arg_value): validator.check_value_type(arg_name, arg_value, [int, tuple], self.cls_name) @@ -270,7 +270,7 @@ class AvgPool1d(_PoolNd): super(AvgPool1d, self).__init__(kernel_size, stride, pad_mode) validator.check_value_type('kernel_size', kernel_size, [int], self.cls_name) validator.check_value_type('stride', stride, [int], self.cls_name) - self.pad_mode = validator.check_string('pad_mode', pad_mode.upper(), ['VALID', 'SAME'], self.cls_name) + self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.cls_name) validator.check_integer("kernel_size", kernel_size, 1, Rel.GE, self.cls_name) validator.check_integer("stride", stride, 1, Rel.GE, self.cls_name) self.kernel_size = (1, kernel_size) diff --git a/mindspore/nn/layer/quant.py b/mindspore/nn/layer/quant.py index 5122813fa69..793e9612b52 100644 --- a/mindspore/nn/layer/quant.py +++ b/mindspore/nn/layer/quant.py @@ -23,7 +23,7 @@ from mindspore.ops import functional as F from mindspore.common.parameter import Parameter from mindspore.common.initializer import initializer from mindspore.common.tensor import Tensor -from mindspore._checkparam import Rel, check_int_positive, check_bool, twice, Validator +from mindspore._checkparam import Validator, Rel, check_int_positive, twice import mindspore.context as context from .normalization import BatchNorm2d, BatchNorm1d from .activation import get_activation, ReLU, LeakyReLU @@ -133,7 +133,7 @@ class Conv2dBnAct(Cell): has_bias=has_bias, weight_init=weight_init, bias_init=bias_init) - self.has_bn = Validator.check_bool("has_bn", has_bn) + self.has_bn = Validator.check_bool(has_bn, "has_bn") self.has_act = activation is not None self.after_fake = after_fake if has_bn: @@ -201,7 +201,7 @@ class DenseBnAct(Cell): weight_init, bias_init, has_bias) - self.has_bn = Validator.check_bool("has_bn", has_bn) + self.has_bn = Validator.check_bool(has_bn, "has_bn") self.has_act = activation is not None self.after_fake = after_fake if has_bn: @@ -511,7 +511,7 @@ class Conv2dBnFoldQuant(Cell): channel_axis = 0 self.weight = Parameter(initializer(weight_init, weight_shape), name='weight') self.bias_add = P.BiasAdd() - if check_bool(has_bias): + if Validator.check_bool(has_bias): self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias') else: self.bias = None @@ -668,7 +668,7 @@ class Conv2dBnWithoutFoldQuant(Cell): self.quant_delay = quant_delay self.bias_add = P.BiasAdd() - if check_bool(has_bias): + if Validator.check_bool(has_bias): self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias') else: self.bias = None @@ -799,7 +799,7 @@ class Conv2dQuant(Cell): self.weight = Parameter(initializer(weight_init, weight_shape), name='weight') self.bias_add = P.BiasAdd() - if check_bool(has_bias): + if Validator.check_bool(has_bias): self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias') else: self.bias = None @@ -888,7 +888,7 @@ class DenseQuant(Cell): super(DenseQuant, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) - self.has_bias = check_bool(has_bias) + self.has_bias = Validator.check_bool(has_bias) if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \ diff --git a/mindspore/nn/optim/momentum.py b/mindspore/nn/optim/momentum.py index 926639b367b..e282733f382 100755 --- a/mindspore/nn/optim/momentum.py +++ b/mindspore/nn/optim/momentum.py @@ -18,8 +18,7 @@ from mindspore.ops import _selected_ops from mindspore.common.parameter import Parameter from mindspore.common.tensor import Tensor import mindspore.common.dtype as mstype -from mindspore._checkparam import check_bool -from mindspore._checkparam import Validator as validator +from mindspore._checkparam import Validator from .optimizer import Optimizer _momentum_opt = C.MultitypeFuncGraph("momentum_opt") @@ -126,12 +125,12 @@ class Momentum(Optimizer): """ def __init__(self, params, learning_rate, momentum, weight_decay=0.0, loss_scale=1.0, use_nesterov=False): super(Momentum, self).__init__(learning_rate, params, weight_decay, loss_scale) - validator.check_value_type("momentum", momentum, [float], self.cls_name) + Validator.check_value_type("momentum", momentum, [float], self.cls_name) if isinstance(momentum, float) and momentum < 0.0: raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum)) self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum") self.params = self.parameters - self.use_nesterov = check_bool(use_nesterov) + self.use_nesterov = Validator.check_bool(use_nesterov) self.moments = self.params.clone(prefix="moments", init='zeros') self.hyper_map = C.HyperMap() self.opt = _selected_ops.ApplyMomentum(use_nesterov=self.use_nesterov) diff --git a/mindspore/nn/probability/bnn_layers/dense_variational.py b/mindspore/nn/probability/bnn_layers/dense_variational.py index 20e9be8d530..c4bc16c602d 100644 --- a/mindspore/nn/probability/bnn_layers/dense_variational.py +++ b/mindspore/nn/probability/bnn_layers/dense_variational.py @@ -15,7 +15,7 @@ """dense_variational""" from mindspore.ops import operations as P from mindspore.common.tensor import Tensor -from mindspore._checkparam import check_int_positive, check_bool +from mindspore._checkparam import check_int_positive, Validator from ...cell import Cell from ...layer.activation import get_activation from .layer_distribution import NormalPrior, NormalPosterior @@ -41,7 +41,7 @@ class _DenseVariational(Cell): super(_DenseVariational, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) - self.has_bias = check_bool(has_bias) + self.has_bias = Validator.check_bool(has_bias) if isinstance(weight_prior_fn, Cell): self.weight_prior = weight_prior_fn diff --git a/mindspore/nn/probability/toolbox/uncertainty_evaluation.py b/mindspore/nn/probability/toolbox/uncertainty_evaluation.py index c802972a27c..f2de2cb4bdb 100644 --- a/mindspore/nn/probability/toolbox/uncertainty_evaluation.py +++ b/mindspore/nn/probability/toolbox/uncertainty_evaluation.py @@ -16,7 +16,7 @@ from copy import deepcopy import numpy as np -from mindspore._checkparam import check_int_positive, check_bool +from mindspore._checkparam import check_int_positive, Validator from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore.train import Model @@ -84,7 +84,7 @@ class UncertaintyEvaluation: self.epochs = check_int_positive(epochs) self.epi_uncer_model_path = epi_uncer_model_path self.ale_uncer_model_path = ale_uncer_model_path - self.save_model = check_bool(save_model) + self.save_model = Validator.check_bool(save_model) self.epi_uncer_model = None self.ale_uncer_model = None self.concat = P.Concat(axis=0) diff --git a/mindspore/ops/operations/_grad_ops.py b/mindspore/ops/operations/_grad_ops.py index a5bd9ebc84e..2e9b21d3e20 100644 --- a/mindspore/ops/operations/_grad_ops.py +++ b/mindspore/ops/operations/_grad_ops.py @@ -216,7 +216,7 @@ class KLDivLossGrad(PrimitiveWithInfer): @prim_attr_register def __init__(self, reduction='mean'): - self.reduction = validator.check_string('reduction', reduction, ['none', 'mean', 'sum'], self.name) + self.reduction = validator.check_string(reduction, ['none', 'mean', 'sum'], 'reduction', self.name) def infer_shape(self, x_shape, y_shape, doutput_shape): validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name) @@ -233,7 +233,7 @@ class BinaryCrossEntropyGrad(PrimitiveWithInfer): @prim_attr_register def __init__(self, reduction='mean'): - self.reduction = validator.check_string('reduction', reduction, ['none', 'mean', 'sum'], self.name) + self.reduction = validator.check_string(reduction, ['none', 'mean', 'sum'], 'reduction', self.name) def infer_shape(self, x_shape, y_shape, doutput_shape, weight_shape): validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name) @@ -609,7 +609,7 @@ class _PoolGrad(PrimitiveWithInfer): validator.check_value_type('ksize', ksize, [int, tuple], self.name) validator.check_value_type('strides', strides, [int, tuple], self.name) - self.padding = validator.check_string('padding', padding.upper(), ['VALID', 'SAME'], self.name) + self.padding = validator.check_string(padding.upper(), ['VALID', 'SAME'], 'padding', self.name) self.add_prim_attr("padding", self.padding) self.is_maxpoolgradwithargmax = (self.name == "MaxPoolGradWithArgmax") if not self.is_maxpoolgradwithargmax: @@ -1457,7 +1457,7 @@ class MirrorPadGrad(PrimitiveWithInfer): @prim_attr_register def __init__(self, mode="REFLECT"): """Initialize MirrorPad""" - validator.check_string('mode', mode, ['REFLECT', 'SYMMETRIC'], self.name) + validator.check_string(mode, ['REFLECT', 'SYMMETRIC'], 'mode', self.name) self.mode = mode def __infer__(self, dout, paddings): @@ -1570,7 +1570,7 @@ class BasicLSTMCellCStateGrad(PrimitiveWithInfer): @prim_attr_register def __init__(self, forget_bias, activation): self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name) - self.activation = validator.check_string("activation", activation, ['tanh'], self.name) + self.activation = validator.check_string(activation, ['tanh'], "activation", self.name) self.add_prim_attr("io_format", "ND") def infer_shape(self, c_shape, dht_shape, dct_shape, it_shape, jt_shape, ft_shape, ot_shape, tanhct_shape): diff --git a/mindspore/ops/operations/_inner_ops.py b/mindspore/ops/operations/_inner_ops.py index f1b97329fa7..a62aad32241 100644 --- a/mindspore/ops/operations/_inner_ops.py +++ b/mindspore/ops/operations/_inner_ops.py @@ -67,7 +67,7 @@ class ExtractImagePatches(PrimitiveWithInfer): _check_tuple_or_list("ksize", ksizes, self.name) _check_tuple_or_list("stride", strides, self.name) _check_tuple_or_list("rate", rates, self.name) - self.padding = validator.check_string('padding', padding.upper(), ['VALID', 'SAME'], self.name) + self.padding = validator.check_string(padding.upper(), ['VALID', 'SAME'], 'padding', self.name) self.add_prim_attr("padding", self.padding) self.add_prim_attr("io_format", "NHWC") self.is_ge = context.get_context("enable_ge") @@ -206,8 +206,8 @@ class Quant(PrimitiveWithInfer): self.scale = validator.check_value_type("scale", scale, [float], self.name) self.offset = validator.check_value_type("offset", offset, [float], self.name) self.sqrt_mode = validator.check_value_type("sqrt_mode", sqrt_mode, [bool], self.name) - self.round_mode = validator.check_string("round_mode", round_mode, - ["Round", "Floor", "Ceil", "Trunc"], self.name) + self.round_mode = validator.check_string(round_mode, ["Round", "Floor", "Ceil", "Trunc"], + "round_mode", self.name) self.add_prim_attr("io_format", "ND") def infer_shape(self, x_shape): diff --git a/mindspore/ops/operations/_thor_ops.py b/mindspore/ops/operations/_thor_ops.py index e0149a6fce5..da597e49cf5 100644 --- a/mindspore/ops/operations/_thor_ops.py +++ b/mindspore/ops/operations/_thor_ops.py @@ -513,7 +513,7 @@ class Im2Col(PrimitiveWithInfer): self.dilation = _check_positive_int_or_tuple('dilation', dilation, self.name, allow_four=True, ret_four=True) self.add_prim_attr('dilation', self.dilation) validator.check_value_type('pad', pad, (int,), self.name) - self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'], self.name) + self.pad_mode = validator.check_string(pad_mode, ['valid', 'same', 'pad'], 'pad_mode', self.name) self.pad = validator.check_pad_value_by_mode(pad_mode, pad, self.name) if self.pad_mode == 'pad': validator.check_integer('pad', self.pad, 0, Rel.GE, self.name) diff --git a/mindspore/ops/operations/image_ops.py b/mindspore/ops/operations/image_ops.py index d9547c230c8..0efdc30c945 100644 --- a/mindspore/ops/operations/image_ops.py +++ b/mindspore/ops/operations/image_ops.py @@ -82,7 +82,7 @@ class CropAndResize(PrimitiveWithInfer): """Initialize CropAndResize""" self.init_prim_io_names(inputs=['x', 'boxes', 'box_index', 'crop_size'], outputs=['y']) validator.check_value_type("method", method, [str], self.name) - validator.check_string("method", method, ["bilinear", "nearest", "bilinear_v2"], self.name) + validator.check_string(method, ["bilinear", "nearest", "bilinear_v2"], "method", self.name) self.method = method validator.check_value_type("extrapolation_value", extrapolation_value, [float], self.name) self.extrapolation_value = extrapolation_value diff --git a/mindspore/ops/operations/math_ops.py b/mindspore/ops/operations/math_ops.py index 6d1cbde6376..7ec6a39cad6 100644 --- a/mindspore/ops/operations/math_ops.py +++ b/mindspore/ops/operations/math_ops.py @@ -1484,7 +1484,7 @@ class HistogramFixedWidth(PrimitiveWithInfer): self.nbins = validator.check_value_type("nbins", nbins, [int], self.name) validator.check_integer("nbins", nbins, 1, Rel.GE, self.name) valid_values = ['int32', 'int64'] - self.dtype = validator.check_string("dtype", dtype, valid_values, self.name) + self.dtype = validator.check_string(dtype, valid_values, "dtype", self.name) self.init_prim_io_names(inputs=['x', 'range'], outputs=['y']) def infer_shape(self, x_shape, range_shape): diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index 9426633642a..e5b06ed191f 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -995,7 +995,7 @@ class Conv2D(PrimitiveWithInfer): else: validator.check_integer('pad size', len(pad), 4, Rel.EQ, self.name) self.padding = pad - self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'], self.name) + self.pad_mode = validator.check_string(pad_mode, ['valid', 'same', 'pad'], 'pad_mode', self.name) if pad_mode != 'pad' and pad != (0, 0, 0, 0): raise ValueError(f"For '{self.name}', padding must be zero when pad_mode is '{pad_mode}'.") @@ -1134,7 +1134,7 @@ class DepthwiseConv2dNative(PrimitiveWithInfer): else: validator.check_integer('pad size', len(pad), 4, Rel.EQ, self.name) self.padding = pad - self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'], self.name) + self.pad_mode = validator.check_string(pad_mode, ['valid', 'same', 'pad'], 'pad_mode', self.name) if pad_mode != 'pad' and pad != (0, 0, 0, 0): raise ValueError(f"For '{self.name}', padding must be zero when pad_mode is '{pad_mode}'.") if self.pad_mode == 'pad': @@ -1216,7 +1216,7 @@ class _Pool(PrimitiveWithInfer): self.init_prim_io_names(inputs=['x'], outputs=['output']) validator.check_value_type('ksize', ksize, [int, tuple], self.name) validator.check_value_type('strides', strides, [int, tuple], self.name) - self.padding = validator.check_string('padding', padding.upper(), ['VALID', 'SAME'], self.name) + self.padding = validator.check_string(padding.upper(), ['VALID', 'SAME'], 'padding', self.name) self.add_prim_attr("padding", self.padding) self.is_maxpoolwithargmax = (self.name == "MaxPoolWithArgmax") if not self.is_maxpoolwithargmax: @@ -1521,7 +1521,7 @@ class Conv2DBackpropInput(PrimitiveWithInfer): else: validator.check_integer('pad size', len(pad), 4, Rel.EQ, self.name) self.padding = pad - self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'], self.name) + self.pad_mode = validator.check_string(pad_mode, ['valid', 'same', 'pad'], 'pad_mode', self.name) if pad_mode != 'pad' and pad != (0, 0, 0, 0): raise ValueError(f"For '{self.name}', padding must be zero when pad_mode is '{pad_mode}'.") if self.pad_mode == 'pad': @@ -1942,8 +1942,8 @@ class DataFormatDimMap(PrimitiveWithInfer): @prim_attr_register def __init__(self, src_format='NHWC', dst_format='NCHW'): valid_values = ['NHWC', 'NCHW'] - self.src_format = validator.check_string("src_format", src_format, valid_values, self.name) - self.dst_format = validator.check_string("dst_format", dst_format, valid_values, self.name) + self.src_format = validator.check_string(src_format, valid_values, "src_format", self.name) + self.dst_format = validator.check_string(dst_format, valid_values, "dst_format", self.name) self.init_prim_io_names(inputs=['input_x'], outputs=['output']) def infer_shape(self, x_shape): @@ -2961,7 +2961,7 @@ class MirrorPad(PrimitiveWithInfer): @prim_attr_register def __init__(self, mode='REFLECT'): """Initialize Pad""" - validator.check_string('mode', mode, ['REFLECT', 'SYMMETRIC'], self.name) + validator.check_string(mode, ['REFLECT', 'SYMMETRIC'], 'mode', self.name) self.mode = mode self.set_const_input_indexes([1]) @@ -3651,7 +3651,7 @@ class KLDivLoss(PrimitiveWithInfer): @prim_attr_register def __init__(self, reduction='mean'): - self.reduction = validator.check_string('reduction', reduction, ['none', 'mean', 'sum'], self.name) + self.reduction = validator.check_string(reduction, ['none', 'mean', 'sum'], 'reduction', self.name) def infer_shape(self, x_shape, y_shape): validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name) @@ -3727,7 +3727,7 @@ class BinaryCrossEntropy(PrimitiveWithInfer): @prim_attr_register def __init__(self, reduction='mean'): - self.reduction = validator.check_string('reduction', reduction, ['none', 'mean', 'sum'], self.name) + self.reduction = validator.check_string(reduction, ['none', 'mean', 'sum'], 'reduction', self.name) def infer_shape(self, x_shape, y_shape, weight_shape): validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name) @@ -5487,7 +5487,7 @@ class BasicLSTMCell(PrimitiveWithInfer): self.keep_prob = validator.check_number_range("keep_prob", keep_prob, 0.0, 1.0, Rel.INC_BOTH, self.name) self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name) self.state_is_tuple = validator.check_value_type("state_is_tuple", state_is_tuple, [bool], self.name) - self.activation = validator.check_string("activation", activation, ['tanh'], self.name) + self.activation = validator.check_string(activation, ['tanh'], "activation", self.name) self.add_prim_attr("io_format", "ND") def infer_shape(self, x_shape, h_shape, c_shape, w_shape, b_shape): @@ -5605,9 +5605,9 @@ class DynamicRNN(PrimitiveWithInfer): self.use_peephole = validator.check_value_type("use_peephole", use_peephole, [bool], self.name) self.time_major = validator.check_value_type("time_major", time_major, [bool], self.name) self.is_training = validator.check_value_type("is_training", is_training, [bool], self.name) - self.cell_type = validator.check_string("cell_type", cell_type, ['LSTM'], self.name) - self.direction = validator.check_string("direction", direction, ['UNIDIRECTIONAL'], self.name) - self.activation = validator.check_string("activation", activation, ['tanh'], self.name) + self.cell_type = validator.check_string(cell_type, ['LSTM'], "cell_type", self.name) + self.direction = validator.check_string(direction, ['UNIDIRECTIONAL'], "direction", self.name) + self.activation = validator.check_string(activation, ['tanh'], "activation", self.name) self.add_prim_attr("io_format", "ND") def infer_shape(self, x_shape, w_shape, b_shape, seq_shape, h_shape, c_shape): @@ -5720,7 +5720,7 @@ class LRN(PrimitiveWithInfer): validator.check_value_type("alpha", alpha, [float], self.name) validator.check_value_type("beta", beta, [float], self.name) validator.check_value_type("norm_region", norm_region, [str], self.name) - validator.check_string('norm_region', norm_region, ['ACROSS_CHANNELS'], self.name) + validator.check_string(norm_region, ['ACROSS_CHANNELS'], 'norm_region', self.name) validator.check_integer("depth_radius", depth_radius, 0, Rel.GE, self.name) def infer_dtype(self, x_dtype): diff --git a/mindspore/train/callback/_checkpoint.py b/mindspore/train/callback/_checkpoint.py index 91eba0b8ba9..36a09b46e81 100644 --- a/mindspore/train/callback/_checkpoint.py +++ b/mindspore/train/callback/_checkpoint.py @@ -21,7 +21,7 @@ import time import threading import mindspore.context as context from mindspore import log as logger -from mindspore._checkparam import check_bool, check_int_non_negative +from mindspore._checkparam import Validator, check_int_non_negative from mindspore.train._utils import _make_directory from mindspore.train.serialization import save_checkpoint, _save_graph from mindspore.parallel._ps_context import _is_role_pserver, _get_ps_mode_rank @@ -132,8 +132,8 @@ class CheckpointConfig: if not self._keep_checkpoint_per_n_minutes or self._keep_checkpoint_per_n_minutes == 0: self._keep_checkpoint_max = 1 - self._integrated_save = check_bool(integrated_save) - self._async_save = check_bool(async_save) + self._integrated_save = Validator.check_bool(integrated_save) + self._async_save = Validator.check_bool(async_save) @property def save_checkpoint_steps(self): diff --git a/mindspore/train/dataset_helper.py b/mindspore/train/dataset_helper.py index 634a014665e..34b1d87027d 100644 --- a/mindspore/train/dataset_helper.py +++ b/mindspore/train/dataset_helper.py @@ -16,7 +16,7 @@ import math import os -from mindspore._checkparam import check_bool, check_int +from mindspore._checkparam import Validator, check_int from .. import context, nn from ._utils import _exec_datagraph, _get_types_and_shapes, _construct_tensor_list from ..nn.wrap import GetNextSingleOp @@ -123,7 +123,7 @@ class DatasetHelper: """ def __init__(self, dataset, dataset_sink_mode=True, sink_size=-1, epoch_num=1): - check_bool(dataset_sink_mode) + dataset_sink_mode = Validator.check_bool(dataset_sink_mode) check_int(sink_size) if sink_size < -1 or sink_size == 0: raise ValueError("The sink_size must be -1 or positive, but got sink_size {}.".format(sink_size)) diff --git a/mindspore/train/model.py b/mindspore/train/model.py index adf7495eb86..aba9a3a52dd 100755 --- a/mindspore/train/model.py +++ b/mindspore/train/model.py @@ -22,7 +22,7 @@ import numpy as np from mindspore import log as logger from ..common.tensor import Tensor from ..nn.metrics import get_metrics -from .._checkparam import check_input_data, check_output_data, check_int_positive, check_bool, check_int +from .._checkparam import check_input_data, check_output_data, check_int_positive, Validator, check_int from .callback import _InternalCallbackParam, RunContext, _CallbackManager from .. import context from ..parallel._utils import _get_parallel_mode, _get_device_num, _get_global_rank, \ @@ -548,7 +548,7 @@ class Model: >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager) >>> model.train(2, dataset) """ - check_bool(dataset_sink_mode) + dataset_sink_mode = Validator.check_bool(dataset_sink_mode) if sink_size == -1: sink_size = train_dataset.get_dataset_size() check_int(sink_size) @@ -664,7 +664,7 @@ class Model: >>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'}) >>> model.eval(dataset) """ - check_bool(dataset_sink_mode) + dataset_sink_mode = Validator.check_bool(dataset_sink_mode) _device_number_check(self._parallel_mode, self._device_number) if not self._metric_fns: raise ValueError("metric fn can not be None or empty.") diff --git a/mindspore/train/quant/quant.py b/mindspore/train/quant/quant.py index 1a2b1b4a4c2..8e375f1d36d 100644 --- a/mindspore/train/quant/quant.py +++ b/mindspore/train/quant/quant.py @@ -22,8 +22,7 @@ import mindspore.context as context from ... import log as logger from ... import nn, ops -from ..._checkparam import Validator -from ..._checkparam import Rel +from ..._checkparam import Validator, Rel from ...common import Tensor from ...common import dtype as mstype from ...common.api import _executor @@ -92,16 +91,16 @@ class ConvertToQuantNetwork: self.network = Validator.check_isinstance('network', kwargs["network"], (nn.Cell,)) self.weight_qdelay = Validator.check_integer("quant delay", kwargs["quant_delay"][0], 0, Rel.GE) self.act_qdelay = Validator.check_integer("quant delay", kwargs["quant_delay"][-1], 0, Rel.GE) - self.bn_fold = Validator.check_bool("bn fold", kwargs["bn_fold"]) + self.bn_fold = Validator.check_bool(kwargs["bn_fold"], "bn fold") self.freeze_bn = Validator.check_integer("freeze bn", kwargs["freeze_bn"], 0, Rel.GE) self.weight_bits = Validator.check_integer("weights bit", kwargs["num_bits"][0], 0, Rel.GE) self.act_bits = Validator.check_integer("activations bit", kwargs["num_bits"][-1], 0, Rel.GE) - self.weight_channel = Validator.check_bool("per channel", kwargs["per_channel"][0]) - self.act_channel = Validator.check_bool("per channel", kwargs["per_channel"][-1]) - self.weight_symmetric = Validator.check_bool("symmetric", kwargs["symmetric"][0]) - self.act_symmetric = Validator.check_bool("symmetric", kwargs["symmetric"][-1]) - self.weight_range = Validator.check_bool("narrow range", kwargs["narrow_range"][0]) - self.act_range = Validator.check_bool("narrow range", kwargs["narrow_range"][-1]) + self.weight_channel = Validator.check_bool(kwargs["per_channel"][0], "per channel") + self.act_channel = Validator.check_bool(kwargs["per_channel"][-1], "per channel") + self.weight_symmetric = Validator.check_bool(kwargs["symmetric"][0], "symmetric") + self.act_symmetric = Validator.check_bool(kwargs["symmetric"][-1], "symmetric") + self.weight_range = Validator.check_bool(kwargs["narrow_range"][0], "narrow range") + self.act_range = Validator.check_bool(kwargs["narrow_range"][-1], "narrow range") self._convert_method_map = {quant.Conv2dBnAct: self._convert_conv, quant.DenseBnAct: self._convert_dense} diff --git a/model_zoo/official/cv/resnet_thor/src/dataset_helper.py b/model_zoo/official/cv/resnet_thor/src/dataset_helper.py index b9e46a8b68c..6deb490bc3b 100644 --- a/model_zoo/official/cv/resnet_thor/src/dataset_helper.py +++ b/model_zoo/official/cv/resnet_thor/src/dataset_helper.py @@ -15,7 +15,7 @@ """Dataset help for minddata dataset""" import math import os -from mindspore._checkparam import check_bool, check_int +from mindspore._checkparam import Validator, check_int from mindspore import context from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes from mindspore.nn.wrap import GetNextSingleOp @@ -61,7 +61,7 @@ class DatasetHelper: """ def __init__(self, dataset, dataset_sink_mode=True, sink_size=-1, epoch_num=1, iter_first_order=1): - check_bool(dataset_sink_mode) + dataset_sink_mode = Validator.check_bool(dataset_sink_mode) check_int(sink_size) if sink_size < -1 or sink_size == 0: raise ValueError("The sink_size must be -1 or positive, but got sink_size {}.".format(sink_size)) diff --git a/model_zoo/official/cv/resnet_thor/src/thor.py b/model_zoo/official/cv/resnet_thor/src/thor.py index db5a794c361..6c9c8f914f0 100644 --- a/model_zoo/official/cv/resnet_thor/src/thor.py +++ b/model_zoo/official/cv/resnet_thor/src/thor.py @@ -18,8 +18,7 @@ from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter, ParameterTuple from mindspore.common.tensor import Tensor import mindspore.common.dtype as mstype -from mindspore._checkparam import check_bool -from mindspore._checkparam import Validator as validator +from mindspore._checkparam import Validator from mindspore.nn.optim.optimizer import Optimizer from mindspore.parallel._utils import _get_device_num, _get_gradients_mean from src.grad_reducer_thor import DistributedGradReducerThor @@ -53,12 +52,12 @@ class THOR_GPU(Optimizer): def __init__(self, params, learning_rate, momentum, matrix_A, matrix_G, A_inv_max, G_inv_max, weight_decay=0.0, loss_scale=1.0, use_nesterov=False, decay_filter=lambda x: x.name not in []): super(THOR_GPU, self).__init__(learning_rate, params, weight_decay, loss_scale) - validator.check_value_type("momentum", momentum, [float], self.cls_name) + Validator.check_value_type("momentum", momentum, [float], self.cls_name) if isinstance(momentum, float) and momentum < 0.0: raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum)) self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum") self.params = self.parameters - self.use_nesterov = check_bool(use_nesterov) + self.use_nesterov = Validator.check_bool(use_nesterov) self.moments = self.params.clone(prefix="moments", init='zeros') self.hyper_map = C.HyperMap() self.opt = P.ApplyMomentum(use_nesterov=self.use_nesterov) diff --git a/model_zoo/official/cv/resnet_thor/src/thor_layer.py b/model_zoo/official/cv/resnet_thor/src/thor_layer.py index f836258a802..7cc548b7110 100644 --- a/model_zoo/official/cv/resnet_thor/src/thor_layer.py +++ b/model_zoo/official/cv/resnet_thor/src/thor_layer.py @@ -16,7 +16,7 @@ import numpy as np import mindspore.common.dtype as mstype -from mindspore._checkparam import check_bool, twice, check_int_positive +from mindspore._checkparam import Validator, twice, check_int_positive from mindspore._extends import cell_attr_register from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter @@ -111,7 +111,7 @@ class _Conv(Cell): self.weight = Parameter(initializer( weight_init, [out_channels, in_channels // group, *kernel_size]), name='weight') - if check_bool(has_bias): + if Validator.check_bool(has_bias): self.bias = Parameter(_initializer( bias_init, [out_channels]), name='bias') else: @@ -294,7 +294,7 @@ class Dense_Thor_GPU(Cell): super(Dense_Thor_GPU, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) - self.has_bias = check_bool(has_bias) + self.has_bias = Validator.check_bool(has_bias) self.thor = True if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \ @@ -643,7 +643,7 @@ class Dense_Thor(Cell): super(Dense_Thor, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) - self.has_bias = check_bool(has_bias) + self.has_bias = Validator.check_bool(has_bias) self.thor = True self.batch_size = batch_size if isinstance(weight_init, Tensor): diff --git a/model_zoo/official/gnn/gat/src/gat.py b/model_zoo/official/gnn/gat/src/gat.py index 2245aae2149..08bac4d9deb 100644 --- a/model_zoo/official/gnn/gat/src/gat.py +++ b/model_zoo/official/gnn/gat/src/gat.py @@ -19,7 +19,7 @@ from mindspore.ops import functional as F from mindspore._extends import cell_attr_register from mindspore import Tensor, Parameter from mindspore.common.initializer import initializer -from mindspore._checkparam import check_int_positive, check_bool +from mindspore._checkparam import check_int_positive, Validator from mindspore.nn.layer.activation import get_activation @@ -74,7 +74,7 @@ class GNNFeatureTransform(nn.Cell): super(GNNFeatureTransform, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) - self.has_bias = check_bool(has_bias) + self.has_bias = Validator.check_bool(has_bias) if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \ @@ -284,7 +284,7 @@ class AttentionHead(nn.Cell): self.matmul = P.MatMul() self.bias_add = P.BiasAdd() self.bias = Parameter(initializer('zeros', self.out_channel), name='bias') - self.residual = check_bool(residual) + self.residual = Validator.check_bool(residual) if self.residual: if in_channel != out_channel: self.residual_transform_flag = True @@ -458,7 +458,7 @@ class GAT(nn.Cell): self.attn_drop = attn_drop self.ftr_drop = ftr_drop self.activation = activation - self.residual = check_bool(residual) + self.residual = Validator.check_bool(residual) self.layers = [] # first layer self.layers.append(AttentionAggregator( diff --git a/model_zoo/official/nlp/bert_thor/src/dataset_helper.py b/model_zoo/official/nlp/bert_thor/src/dataset_helper.py index 80529faae41..1c4e65dbadb 100644 --- a/model_zoo/official/nlp/bert_thor/src/dataset_helper.py +++ b/model_zoo/official/nlp/bert_thor/src/dataset_helper.py @@ -16,7 +16,7 @@ import os from mindspore import context -from mindspore._checkparam import check_bool, check_int +from mindspore._checkparam import Validator, check_int from mindspore.parallel._utils import _get_device_num, _need_to_full, _to_full_shapes from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes @@ -58,7 +58,7 @@ class DatasetHelper: """ def __init__(self, dataset, dataset_sink_mode=True, sink_size=-1, epoch_num=1, iter_first_order=0): - check_bool(dataset_sink_mode) + dataset_sink_mode = Validator.check_bool(dataset_sink_mode) check_int(sink_size) if sink_size < -1 or sink_size == 0: raise ValueError("The sink_size must be -1 or positive, but got sink_size {}.".format(sink_size)) diff --git a/model_zoo/official/nlp/bert_thor/src/model_thor.py b/model_zoo/official/nlp/bert_thor/src/model_thor.py index c6073a07f17..67cdff3c474 100644 --- a/model_zoo/official/nlp/bert_thor/src/model_thor.py +++ b/model_zoo/official/nlp/bert_thor/src/model_thor.py @@ -22,7 +22,7 @@ from mindspore._c_expression import init_exec_dataset from mindspore import context from mindspore import log as logger from mindspore import nn -from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, check_bool, check_int +from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, Validator, check_int from mindspore.common import dtype as mstype from mindspore.common.dtype import pytype_to_dtype from mindspore.common.tensor import Tensor @@ -603,7 +603,7 @@ class Model: >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager) >>> model.train(2, dataset) """ - check_bool(dataset_sink_mode) + dataset_sink_mode = Validator.check_bool(dataset_sink_mode) check_int(sink_size) if sink_size < -1 or sink_size == 0: raise ValueError("The sink_size must be -1 or positive, but got sink_size {}.".format(sink_size)) @@ -718,7 +718,7 @@ class Model: >>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'}) >>> model.eval(dataset) """ - check_bool(dataset_sink_mode) + dataset_sink_mode = Validator.check_bool(dataset_sink_mode) _device_number_check(self._parallel_mode, self._device_number) if not self._metric_fns: raise ValueError("metric fn can not be None or empty.") diff --git a/model_zoo/official/nlp/bert_thor/src/thor_layer.py b/model_zoo/official/nlp/bert_thor/src/thor_layer.py index dbe3821f53b..6f791ef6f1f 100644 --- a/model_zoo/official/nlp/bert_thor/src/thor_layer.py +++ b/model_zoo/official/nlp/bert_thor/src/thor_layer.py @@ -15,7 +15,7 @@ """thor_layer""" import numpy as np import mindspore.common.dtype as mstype -from mindspore._checkparam import check_bool, check_int_positive +from mindspore._checkparam import Validator, check_int_positive from mindspore.common.initializer import TruncatedNormal, initializer from mindspore.common.parameter import Parameter from mindspore.common.tensor import Tensor @@ -162,7 +162,7 @@ class Dense_Thor(Cell): super(Dense_Thor, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) - self.has_bias = check_bool(has_bias) + self.has_bias = Validator.check_bool(has_bias) self.thor = True if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \ diff --git a/tests/st/gnn/aggregator.py b/tests/st/gnn/aggregator.py index 584bdc27d90..bffacef2dc4 100644 --- a/tests/st/gnn/aggregator.py +++ b/tests/st/gnn/aggregator.py @@ -15,7 +15,7 @@ """Aggregator.""" import mindspore.nn as nn from mindspore import Tensor, Parameter -from mindspore._checkparam import check_int_positive, check_bool +from mindspore._checkparam import check_int_positive, Validator from mindspore._extends import cell_attr_register from mindspore.common.initializer import initializer from mindspore.nn.layer.activation import get_activation @@ -75,7 +75,7 @@ class GNNFeatureTransform(nn.Cell): super(GNNFeatureTransform, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) - self.has_bias = check_bool(has_bias) + self.has_bias = Validator.check_bool(has_bias) if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \ @@ -284,7 +284,7 @@ class AttentionHead(nn.Cell): self.batch_matmul = P.BatchMatMul() self.bias_add = P.BiasAdd() self.bias = Parameter(initializer('zeros', self.out_channel), name='bias') - self.residual = check_bool(residual) + self.residual = Validator.check_bool(residual) if self.residual: if in_channel != out_channel: self.residual_transform_flag = True diff --git a/tests/st/gnn/gat.py b/tests/st/gnn/gat.py index a386f562c78..3d12c48977b 100644 --- a/tests/st/gnn/gat.py +++ b/tests/st/gnn/gat.py @@ -14,7 +14,7 @@ # ============================================================================ """Graph Attention Networks.""" import mindspore.nn as nn -from mindspore._checkparam import check_bool, check_int_positive +from mindspore._checkparam import Validator, check_int_positive from aggregator import AttentionAggregator @@ -79,7 +79,7 @@ class GAT(nn.Cell): self.attn_drop = attn_drop self.ftr_drop = ftr_drop self.activation = activation - self.residual = check_bool(residual) + self.residual = Validator.check_bool(residual) self.layers = [] # first layer self.layers.append(AttentionAggregator( diff --git a/tests/st/networks/models/resnet50/src_thor/dataset_helper.py b/tests/st/networks/models/resnet50/src_thor/dataset_helper.py index e4cfc87c8a3..24823e576dd 100644 --- a/tests/st/networks/models/resnet50/src_thor/dataset_helper.py +++ b/tests/st/networks/models/resnet50/src_thor/dataset_helper.py @@ -13,7 +13,7 @@ # limitations under the License. # ============================================================================ """Dataset help for minddata dataset""" -from mindspore._checkparam import check_bool +from mindspore._checkparam import Validator from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _to_full_shapes from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes from mindspore.context import ParallelMode @@ -50,7 +50,7 @@ class DatasetHelper: """ def __init__(self, dataset, dataset_sink_mode=True, iter_first_order=0): - check_bool(dataset_sink_mode) + Validator.check_bool(dataset_sink_mode) self.iter = _DatasetIterMSLoopSink(dataset, iter_first_order) def __iter__(self): diff --git a/tests/st/networks/models/resnet50/src_thor/model_thor.py b/tests/st/networks/models/resnet50/src_thor/model_thor.py index 2bcbdb50bbe..7e31d23daa2 100644 --- a/tests/st/networks/models/resnet50/src_thor/model_thor.py +++ b/tests/st/networks/models/resnet50/src_thor/model_thor.py @@ -19,7 +19,7 @@ from mindspore import context from mindspore import log as logger from mindspore import nn from mindspore._c_expression import init_exec_dataset -from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, check_bool +from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, Validator from mindspore.common import dtype as mstype from mindspore.common.dtype import pytype_to_dtype from mindspore.common.tensor import Tensor @@ -575,7 +575,7 @@ class Model: repeat_count = train_dataset.get_repeat_count() if epoch != repeat_count and dataset_sink_mode is True: logger.warning(f"The epoch_size {epoch} is not the same with dataset repeat_count {repeat_count}") - check_bool(dataset_sink_mode) + dataset_sink_mode = Validator.check_bool(dataset_sink_mode) _device_number_check(self._parallel_mode, self._device_number) _parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast) @@ -682,7 +682,7 @@ class Model: >>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'}) >>> model.eval(dataset) """ - check_bool(dataset_sink_mode) + dataset_sink_mode = Validator.check_bool(dataset_sink_mode) _device_number_check(self._parallel_mode, self._device_number) if not self._metric_fns: raise ValueError("metric fn can not be None or empty.") diff --git a/tests/st/networks/models/resnet50/src_thor/thor_layer.py b/tests/st/networks/models/resnet50/src_thor/thor_layer.py index 6ef86de3b55..f4d76d07543 100644 --- a/tests/st/networks/models/resnet50/src_thor/thor_layer.py +++ b/tests/st/networks/models/resnet50/src_thor/thor_layer.py @@ -16,7 +16,7 @@ import numpy as np import mindspore as ms import mindspore.common.dtype as mstype -from mindspore._checkparam import check_bool, twice, check_int_positive +from mindspore._checkparam import Validator, twice, check_int_positive from mindspore._extends import cell_attr_register from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter @@ -87,7 +87,7 @@ class _Conv(Cell): self.weight = Parameter(initializer( weight_init, [out_channels, in_channels // group, *kernel_size]), name='weight') - if check_bool(has_bias): + if Validator.check_bool(has_bias): self.bias = Parameter(_initializer( bias_init, [out_channels]), name='bias') else: @@ -339,7 +339,7 @@ class Dense_Thor(Cell): super(Dense_Thor, self).__init__() self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) - self.has_bias = check_bool(has_bias) + self.has_bias = Validator.check_bool(has_bias) self.thor = True if isinstance(weight_init, Tensor): if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \ diff --git a/tests/ut/python/nn/test_checkparameter.py b/tests/ut/python/nn/test_checkparameter.py index b640dd2e29e..7a68fd1ae06 100644 --- a/tests/ut/python/nn/test_checkparameter.py +++ b/tests/ut/python/nn/test_checkparameter.py @@ -16,7 +16,7 @@ import pytest from mindspore._checkparam import check_int, check_int_positive, \ - check_input_format, check_bool, twice + check_input_format, Validator, twice kernel_size = 5 kernel_size1 = twice(kernel_size) @@ -66,26 +66,26 @@ def test_check_int_5(): def test_check_bool_1(): - assert check_bool(True) + assert Validator.check_bool(True) def test_check_bool_2(): - assert check_bool(False) is not True + assert Validator.check_bool(False) is not True def test_check_bool_3(): with pytest.raises(TypeError): - check_bool("str") + Validator.check_bool("str") def test_check_bool_4(): with pytest.raises(TypeError): - check_bool(1) + Validator.check_bool(1) def test_check_bool_5(): with pytest.raises(TypeError): - check_bool(3.5) + Validator.check_bool(3.5) def test_twice_1(): diff --git a/tests/ut/python/pynative_mode/nn/test_checkparameter.py b/tests/ut/python/pynative_mode/nn/test_checkparameter.py index a66d3202175..30a80df8ff2 100644 --- a/tests/ut/python/pynative_mode/nn/test_checkparameter.py +++ b/tests/ut/python/pynative_mode/nn/test_checkparameter.py @@ -16,7 +16,7 @@ import pytest from mindspore._checkparam import check_int, check_int_positive, \ - check_bool, check_input_format, _expand_tuple + Validator, check_input_format, _expand_tuple once = _expand_tuple(1) twice = _expand_tuple(2) @@ -60,26 +60,26 @@ def test_check_int_4(): def test_check_bool_1(): - assert check_bool(True) + assert Validator.check_bool(True) def test_check_bool_2(): - assert check_bool(False) is not True + assert Validator.check_bool(False) is not True def test_check_bool_3(): with pytest.raises(TypeError): - check_bool("str") + Validator.check_bool("str") def test_check_bool_4(): with pytest.raises(TypeError): - check_bool(1) + Validator.check_bool(1) def test_check_bool_5(): with pytest.raises(TypeError): - check_bool(3.5) + Validator.check_bool(3.5) def test_twice_1():