回退 'Pull Request !133 : Edit loss_scale to fit GPU'

This commit is contained in:
chengang 2020-04-07 16:56:33 +08:00 committed by Gitee
parent 315036b1a5
commit cc9a0e1310
3 changed files with 12 additions and 117 deletions

View File

@ -25,7 +25,6 @@ from ...ops import operations as P
from ...ops.operations import NPUGetFloatStatus, NPUAllocFloatStatus, NPUClearFloatStatus, ReduceSum, LessEqual, \
ControlDepend
from ...common import dtype as mstype
import mindspore.context as context
_grad_scale = C.MultitypeFuncGraph("grad_scale")
reciprocal = P.Reciprocal()
@ -35,12 +34,6 @@ reciprocal = P.Reciprocal()
def tensor_grad_scale(scale, grad):
return grad * F.cast(reciprocal(scale), F.dtype(grad))
_grad_overflow = C.MultitypeFuncGraph("_grad_overflow")
grad_overflow = P.FloatStatus()
@_grad_overflow.register("Tensor")
def _tensor_grad_overflow(grad):
return grad_overflow(grad)
class DynamicLossScaleUpdateCell(Cell):
r"""
@ -204,15 +197,9 @@ class TrainOneStepWithLossScaleCell(Cell):
self.optimizer = optimizer
self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
self.hyper_map = C.HyperMap()
if context.get_context("device_target") == "GPU":
self.gpu_target = True
self.float_status = P.FloatStatus()
self.addn = P.AddN()
else:
self.gpu_target = False
self.alloc_status = NPUAllocFloatStatus()
self.get_status = NPUGetFloatStatus()
self.clear_status = NPUClearFloatStatus()
self.alloc_status = NPUAllocFloatStatus()
self.get_status = NPUGetFloatStatus()
self.clear_status = NPUClearFloatStatus()
self.reduce_sum = ReduceSum(keep_dims=False)
self.base = Tensor(1, mstype.float32)
self.less_equal = LessEqual()
@ -237,11 +224,10 @@ class TrainOneStepWithLossScaleCell(Cell):
def construct(self, data, label, sens=None):
weights = self.weights
loss = self.network(data, label)
if not self.gpu_target:
# init overflow buffer
init = self.alloc_status()
# clear overflow buffer
self.clear_status(init)
# init overflow buffer
init = self.alloc_status()
# clear overflow buffer
self.clear_status(init)
if sens is None:
scaling_sens = self.loss_scale
else:
@ -251,14 +237,10 @@ class TrainOneStepWithLossScaleCell(Cell):
if self.reducer_flag:
# apply grad reducer on grads
grads = self.grad_reducer(grads)
if not self.gpu_target:
# get the overflow buffer
self.get_status(init)
# sum overflow buffer elements, 0:not overflow , >0:overflow
flag_sum = self.reduce_sum(init, (0,))
else:
flag_sum = self.hyper_map(F.partial(_grad_overflow), grads)
flag_sum = self.addn(flag_sum)
# get the overflow buffer
self.get_status(init)
# sum overflow buffer elements, 0:not overflow , >0:overflow
flag_sum = self.reduce_sum(init, (0,))
if self.is_distributed:
# sum overflow flag over devices
flag_reduce = self.allreduce(flag_sum)

View File

@ -44,7 +44,7 @@ from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul
LogicalNot, LogicalOr, MatMul, Maximum,
Minimum, Mul, Neg, NMSWithMask, NotEqual,
NPUAllocFloatStatus, NPUClearFloatStatus,
NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus,
NPUGetFloatStatus, Pow, RealDiv,
Reciprocal, CumSum,
Sin, Sqrt, Rsqrt,
Square, Sub, TensorAdd, Sign, Round)
@ -151,10 +151,6 @@ __all__ = [
'Neg',
'Slice',
'DType',
'IsNan',
'IsInf',
'IsFinite',
'FloatStatus',
'NPUAllocFloatStatus',
'NPUGetFloatStatus',
'NPUClearFloatStatus',

View File

@ -1541,89 +1541,6 @@ class LogicalOr(_LogicBinaryOp):
def infer_dtype(self, x_dtype, y_dtype):
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,), self.prim_name())
class IsNan(PrimitiveWithInfer):
"""
Judging which elements are nan for each position
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the same shape of input.
"""
@prim_attr_register
def __init__(self):
"""init IsNan"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
return mstype.bool_
class IsInf(PrimitiveWithInfer):
"""
Judging which elements are inf or -inf for each position
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the same shape of input.
"""
@prim_attr_register
def __init__(self):
"""init IsInf"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
return mstype.bool_
class IsFinite(PrimitiveWithInfer):
"""
Judging which elements are finite for each position
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the same shape of input.
"""
@prim_attr_register
def __init__(self):
"""init IsFinite"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
return mstype.bool_
class FloatStatus(PrimitiveWithInfer):
"""
Determine if the elements contains nan, inf or -inf
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the shape of `(1,)`.
"""
@prim_attr_register
def __init__(self):
"""init FloatStatus"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return [1]
def infer_dtype(self, x_dtype):
return x_dtype
class NPUAllocFloatStatus(PrimitiveWithInfer):
"""