forked from mindspore-Ecosystem/mindspore
!114 fix doc/comments issue merge from r0.1
Merge pull request !114 from 万万没想到/merge_from_r0.1
This commit is contained in:
commit
cc0ba93d17
|
@ -40,7 +40,7 @@ class Softmax(Cell):
|
|||
where :math:`x_{i}` is the :math:`i`-th slice along the given dim of the input Tensor.
|
||||
|
||||
Args:
|
||||
axis (Union[int, tuple[int]]): The axis to apply Softmax operation. Default: -1, means the last dimension.
|
||||
axis (Union[int, tuple[int]]): The axis to apply Softmax operation, -1 means the last dimension. Default: -1.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The input of Softmax.
|
||||
|
@ -70,7 +70,7 @@ class LogSoftmax(Cell):
|
|||
where :math:`x_{i}` is the :math:`i`-th slice along the given dim of the input Tensor.
|
||||
|
||||
Args:
|
||||
axis (int): The axis to apply LogSoftmax operation. Default: -1, means the last dimension.
|
||||
axis (int): The axis to apply LogSoftmax operation, -1 means the last dimension. Default: -1.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The input of LogSoftmax.
|
||||
|
|
|
@ -32,13 +32,13 @@ class Dropout(Cell):
|
|||
r"""
|
||||
Dropout layer for the input.
|
||||
|
||||
Randomly set some elements of the input tensor to zero with probability :math:`1 - keep_prob` during training
|
||||
Randomly set some elements of the input tensor to zero with probability :math:`1 - keep\_prob` during training
|
||||
using samples from a Bernoulli distribution.
|
||||
|
||||
Note:
|
||||
Each channel will be zeroed out independently on every construct call.
|
||||
|
||||
The outputs are scaled by a factor of :math:`\frac{1}{keep_prob}` during training so
|
||||
The outputs are scaled by a factor of :math:`\frac{1}{keep\_prob}` during training so
|
||||
that the output layer remains at a similar scale. During inference, this
|
||||
layer returns the same tensor as the input.
|
||||
|
||||
|
|
|
@ -241,7 +241,7 @@ class Conv2dTranspose(_Conv):
|
|||
in_channels (int): The number of channels in the input space.
|
||||
out_channels (int): The number of channels in the output space.
|
||||
kernel_size (Union[int, tuple]): int or tuple with 2 integers, which specifies the height
|
||||
and width of the 2D convolution window.Single int means the value if for both height and width of
|
||||
and width of the 2D convolution window. Single int means the value is for both height and width of
|
||||
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
|
||||
width of the kernel.
|
||||
stride (int): Specifies the same value for all spatial dimensions. Default: 1.
|
||||
|
|
|
@ -26,8 +26,8 @@ class Fbeta(Metric):
|
|||
Fbeta score is a weighted mean of precison and recall.
|
||||
|
||||
.. math::
|
||||
F_\beta=\frac{(1+\beta^2) \cdot true positive}
|
||||
{(1+\beta^2) \cdot true positive +\beta^2 \cdot false negative + false positive}
|
||||
F_\beta=\frac{(1+\beta^2) \cdot true\_positive}
|
||||
{(1+\beta^2) \cdot true\_positive +\beta^2 \cdot false\_negative + false\_positive}
|
||||
|
||||
Args:
|
||||
beta (float): The weight of precision.
|
||||
|
@ -123,7 +123,7 @@ class F1(Fbeta):
|
|||
Refer to class `Fbeta` for more details.
|
||||
|
||||
.. math::
|
||||
F_\beta=\frac{2\cdot true positive}{2\cdot true positive + false negative + false positive}
|
||||
F_\beta=\frac{2\cdot true\_positive}{2\cdot true\_positive + false\_negative + false\_positive}
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||
|
|
|
@ -881,7 +881,7 @@ class ScalarToTensor(PrimitiveWithInfer):
|
|||
Inputs:
|
||||
- **input_x** (Union[int, float]) - The input is a scalar. Only constant value is allowed.
|
||||
- **dtype** (mindspore.dtype) - The target data type. Default: mindspore.float32. Only
|
||||
constant value is allowed.
|
||||
constant value is allowed.
|
||||
|
||||
Outputs:
|
||||
Tensor. 0-D Tensor and the content is the input.
|
||||
|
@ -1458,7 +1458,10 @@ class Select(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> select = Select()
|
||||
>>> select([True, False],[2,3],[1,2])
|
||||
>>> input_x = Tensor([True, False])
|
||||
>>> input_y = Tensor([2,3], mindspore.float32)
|
||||
>>> input_z = Tensor([1,2], mindspore.float32)
|
||||
>>> select(input_x, input_y, input_z)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
|
@ -66,11 +66,12 @@ class AllReduce(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> from mindspore.communication.management import init
|
||||
>>> import mindspore.ops.operations as P
|
||||
>>> init('nccl')
|
||||
>>> class Net(nn.Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.allreduce_sum = AllReduce(ReduceOp.SUM, group="nccl_world_group")
|
||||
>>> self.allreduce_sum = P.AllReduce(ReduceOp.SUM, group="nccl_world_group")
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> return self.allreduce_sum(x)
|
||||
|
@ -130,11 +131,12 @@ class AllGather(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> from mindspore.communication.management import init
|
||||
>>> import mindspore.ops.operations as P
|
||||
>>> init('nccl')
|
||||
>>> class Net(nn.Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.allgather = AllGather(group="nccl_world_group")
|
||||
>>> self.allgather = P.AllGather(group="nccl_world_group")
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> return self.allgather(x)
|
||||
|
@ -184,11 +186,12 @@ class ReduceScatter(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> from mindspore.communication.management import init
|
||||
>>> import mindspore.ops.operations as P
|
||||
>>> init('nccl')
|
||||
>>> class Net(nn.Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.reducescatter = ReduceScatter(ReduceOp.SUM, group="nccl_world_group")
|
||||
>>> self.reducescatter = P.ReduceScatter(ReduceOp.SUM, group="nccl_world_group")
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> return self.reducescatter(x)
|
||||
|
@ -246,11 +249,12 @@ class Broadcast(PrimitiveWithInfer):
|
|||
|
||||
Examples:
|
||||
>>> from mindspore.communication.management import init
|
||||
>>> import mindspore.ops.operations as P
|
||||
>>> init('nccl')
|
||||
>>> class Net(nn.Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(Net, self).__init__()
|
||||
>>> self.broadcast = Broadcast(1)
|
||||
>>> self.broadcast = P.Broadcast(1)
|
||||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> return self.broadcast((x,))
|
||||
|
|
|
@ -150,7 +150,6 @@ class Merge(PrimitiveWithInfer):
|
|||
raise NotImplementedError
|
||||
|
||||
def infer_shape(self, inputs):
|
||||
"""merge select one input as its output"""
|
||||
return (inputs[0], [1])
|
||||
|
||||
def infer_dtype(self, inputs):
|
||||
|
|
|
@ -1319,7 +1319,6 @@ class EqualCount(PrimitiveWithInfer):
|
|||
self.init_prim_io_names(inputs=['x', 'y'], outputs=['output'])
|
||||
|
||||
def infer_shape(self, x_shape, w_shape):
|
||||
"""Infer shape."""
|
||||
output_shape = (1,)
|
||||
return output_shape
|
||||
|
||||
|
|
|
@ -1309,6 +1309,9 @@ class SGD(PrimitiveWithInfer):
|
|||
Nesterov momentum is based on the formula from On the importance of
|
||||
initialization and momentum in deep learning.
|
||||
|
||||
Note:
|
||||
For details, please refer to `nn.SGD` source code.
|
||||
|
||||
Args:
|
||||
dampening (float): The dampening for momentum. Default: 0.0.
|
||||
weight_decay (float): Weight decay (L2 penalty). Default: 0.0.
|
||||
|
@ -1320,16 +1323,10 @@ class SGD(PrimitiveWithInfer):
|
|||
- **learning_rate** (Tensor) - Learning rate. e.g. Tensor(0.1, mindspore.float32).
|
||||
- **accum** (Tensor) - Accum(velocity) to be update.
|
||||
- **momentum** (Tensor) - Momentum. e.g. Tensor(0.1, mindspore.float32).
|
||||
- **stat** (Tensor) - States to be updated with the same shape as gradient. Default: 1.0.
|
||||
- **stat** (Tensor) - States to be updated with the same shape as gradient.
|
||||
|
||||
Outputs:
|
||||
Tensor, parameters to be update.
|
||||
|
||||
Examples:
|
||||
>>> net = ResNet50()
|
||||
>>> loss = SoftmaxCrossEntropyWithLogits()
|
||||
>>> opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=0.9)
|
||||
>>> model = Model(net, loss, opt)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -1919,7 +1916,7 @@ class LSTM(PrimitiveWithInfer):
|
|||
"""
|
||||
Performs the long short term memory(LSTM) on the input.
|
||||
|
||||
Detailed information, please refer to `nn.layer.LSTM`.
|
||||
Detailed information, please refer to `nn.LSTM`.
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
|
@ -91,13 +91,12 @@ def build_train_network(network, optimizer, loss_fn=None, level='O0', **kwargs):
|
|||
loss_fn (Union[None, Cell]): Definition of the loss_fn. If None, the `network` should have the loss inside.
|
||||
Default: None.
|
||||
optimizer (Optimizer): Optimizer to update the Parameter.
|
||||
level (str): Supports [O0, O2].
|
||||
level (str): Supports [O0, O2]. Default: "O0".
|
||||
|
||||
- O0: Do not change.
|
||||
- O2: Cast network to float16, keep batchnorm and `loss_fn` (if set) run in float32,
|
||||
using dynamic loss scale.
|
||||
|
||||
Default: "O0"
|
||||
cast_model_type (:class:`mindspore.dtype`): Supports `mstype.float16` or `mstype.float32`.
|
||||
If set to `mstype.float16`, use `float16` mode to train. If set, overwrite the level setting.
|
||||
keep_batchnorm_fp32 (bool): Keep Batchnorm run in `float32`. If set, overwrite the level setting.
|
||||
|
|
Loading…
Reference in New Issue