!48178 add sequence case

Merge pull request !48178 from hujiahui8/tuple
This commit is contained in:
i-robot 2023-02-07 06:37:08 +00:00 committed by Gitee
commit c5ecc39e61
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
4 changed files with 406 additions and 0 deletions

View File

@ -0,0 +1,100 @@
# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import mindspore.nn as nn
from mindspore.ops.operations import _sequence_ops as seq
from mindspore import context
from mindspore.common import mutable
from mindspore.ops.composite import GradOperation
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.seq_count = seq.SequenceCount()
def construct(self, x, y):
return self.seq_count(x, y)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_count_tuple_dy():
"""
Feature: test sequence_count op
Description: first input is dynamic sequence
Expectation: the result match with tuple result
"""
x = mutable((1, 2, 3), True)
y = 3
expect = 1
net = Net()
res = net(x, y)
assert res == expect
@pytest.mark.level1
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_count_scalar_dy():
"""
Feature: test sequence_count op
Description: second input is dynamic scalar
Expectation: the result match with tuple result
"""
x = (0, 1, 1, 2)
y = mutable(1)
expect = 2
net = Net()
res = net(x, y)
assert res == expect
@pytest.mark.level0
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_count_all_dy():
"""
Feature: test sequence_count op
Description: two inputs are dynamic sequence
Expectation: the result match with tuple result
"""
x = mutable((1, 2, 3, 3, 2, 3), True)
y = mutable(3)
expect = 3
net = Net()
res = net(x, y)
assert res == expect
@pytest.mark.level0
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_count_grad():
"""
Feature: test sequence_count grad op
Description: two inputs are dynamic sequence
Expectation: the result match with tuple result
"""
x = mutable((1, 2, 3), True)
y = mutable(2)
dout = mutable(2)
net = Net()
grad_func = GradOperation(get_all=True, sens_param=True)(net)
grad_func(x, y, dout)

View File

@ -0,0 +1,100 @@
# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import mindspore.nn as nn
from mindspore.ops.operations import _sequence_ops as seq
from mindspore import context
from mindspore.common import mutable
from mindspore.ops.composite import GradOperation
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.seq_index = seq.SequenceIndex()
def construct(self, x, y):
return self.seq_index(x, y)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_index_tuple_dy():
"""
Feature: test sequence_index op
Description: first input is dynamic sequence
Expectation: the result match with tuple result
"""
x = mutable((1, 2, 3), True)
y = 3
expect = 2
net = Net()
res = net(x, y)
assert res == expect
@pytest.mark.level1
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_index_scalar_dy():
"""
Feature: test sequence_index op
Description: second input is dynamic scalar
Expectation: the result match with tuple result
"""
x = (0, 1, 1, 2)
y = mutable(1)
expect = 1
net = Net()
res = net(x, y)
assert res == expect
@pytest.mark.level0
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_index_all_dy():
"""
Feature: test sequence_index op
Description: two inputs are dynamic sequence
Expectation: the result match with tuple result
"""
x = mutable((1, 2, 3, 3, 2, 3), True)
y = mutable(3)
expect = 2
net = Net()
res = net(x, y)
assert res == expect
@pytest.mark.level0
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_index_grad():
"""
Feature: test sequence_index grad op
Description: two inputs are dynamic sequence
Expectation: the result match with tuple result
"""
x = mutable((1, 2, 3), True)
y = mutable(2)
dout = mutable(2)
net = Net()
grad_func = GradOperation(get_all=True, sens_param=True)(net)
grad_func(x, y, dout)

View File

@ -0,0 +1,106 @@
# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import mindspore.nn as nn
from mindspore.ops.operations import _sequence_ops as seq
from mindspore import context
from mindspore.common import mutable
from mindspore.ops.composite import GradOperation
context.set_context(mode=context.GRAPH_MODE)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_real_make_tuple():
"""
Feature: test real_make_tuple op
Description: all inputs are scalar
Expectation: the result match with tuple result
"""
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.func = seq.SequenceMul()
def construct(self, *x):
make_tuple = (x[0], x[1], x[2])
return self.func(make_tuple, x[3])
x_0 = 1
x_1 = 2
x_2 = 3
x_3 = mutable(2)
expect = (1, 2, 3, 1, 2, 3)
net = Net()
res = net(x_0, x_1, x_2, x_3)
assert res == expect
@pytest.mark.level0
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_real_make_tuple_dy():
"""
Feature: test real_make_tuple op
Description: all inputs are dynamic scalar
Expectation: the result match with tuple result
"""
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.func = seq.SequenceMul()
def construct(self, *x):
make_tuple = (x[0], x[1])
return self.func(make_tuple, x[2])
x_0 = mutable(0)
x_1 = mutable(2)
x_3 = mutable(2)
expect = (0, 2, 0, 2)
net = Net()
res = net(x_0, x_1, x_3)
assert res == expect
@pytest.mark.level0
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_real_make_tuple_grad():
"""
Feature: test real_make_tuple grad op
Description: all inputs are dynamic scalar
Expectation: the result match with tuple result
"""
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.func = seq.SequenceMul()
def construct(self, *x):
make_tuple = (x[0], x[1])
return self.func(make_tuple, x[2])
x_0 = mutable(0)
x_1 = mutable(2)
x_2 = mutable(2)
dout = mutable((0, 2, 0, 2), True)
net = Net()
grad_func = GradOperation(get_all=True, sens_param=True)(net)
grad_func(x_0, x_1, x_2, dout)

View File

@ -0,0 +1,100 @@
# Copyright 2023 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import mindspore.nn as nn
from mindspore.ops.operations import _sequence_ops as seq
from mindspore import context
from mindspore.common import mutable
from mindspore.ops.composite import GradOperation
context.set_context(mode=context.GRAPH_MODE)
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.seq_mul = seq.SequenceMul()
def construct(self, x, y):
return self.seq_mul(x, y)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_mul_tuple_dy():
"""
Feature: test sequence_mul op
Description: first input is dynamic sequence
Expectation: the result match with tuple result
"""
x = mutable((1, 2, 3), True)
y = 2
expect = (1, 2, 3, 1, 2, 3)
net = Net()
res = net(x, y)
assert res == expect
@pytest.mark.level1
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_mul_scalar_dy():
"""
Feature: test sequence_mul op
Description: second input is dynamic scalar
Expectation: the result match with tuple result
"""
x = (0, 1, 1, 2)
y = mutable(1)
expect = (0, 1, 1, 2)
net = Net()
res = net(x, y)
assert res == expect
@pytest.mark.level0
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_mul_all_dy():
"""
Feature: test sequence_mul op
Description: two inputs are dynamic sequence
Expectation: the result match with tuple result
"""
x = mutable((1, 2, 3), True)
y = mutable(3)
expect = (1, 2, 3, 1, 2, 3, 1, 2, 3)
net = Net()
res = net(x, y)
assert res == expect
@pytest.mark.level0
@pytest.mark.platform_x86_gpu
@pytest.mark.env_onecard
def test_seq_mul_grad():
"""
Feature: test sequence_mul grad op
Description: two inputs are dynamic sequence
Expectation: the result match with tuple result
"""
x = mutable((1, 2, 3), True)
y = mutable(2)
dout = mutable((4, 5, 6, 7, 8, 9), True)
net = Net()
grad_func = GradOperation(get_all=True, sens_param=True)(net)
grad_func(x, y, dout)