forked from mindspore-Ecosystem/mindspore
!48178 add sequence case
Merge pull request !48178 from hujiahui8/tuple
This commit is contained in:
commit
c5ecc39e61
|
@ -0,0 +1,100 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops.operations import _sequence_ops as seq
|
||||
from mindspore import context
|
||||
from mindspore.common import mutable
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.seq_count = seq.SequenceCount()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.seq_count(x, y)
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_count_tuple_dy():
|
||||
"""
|
||||
Feature: test sequence_count op
|
||||
Description: first input is dynamic sequence
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = mutable((1, 2, 3), True)
|
||||
y = 3
|
||||
expect = 1
|
||||
net = Net()
|
||||
res = net(x, y)
|
||||
assert res == expect
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_count_scalar_dy():
|
||||
"""
|
||||
Feature: test sequence_count op
|
||||
Description: second input is dynamic scalar
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = (0, 1, 1, 2)
|
||||
y = mutable(1)
|
||||
expect = 2
|
||||
net = Net()
|
||||
res = net(x, y)
|
||||
assert res == expect
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_count_all_dy():
|
||||
"""
|
||||
Feature: test sequence_count op
|
||||
Description: two inputs are dynamic sequence
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = mutable((1, 2, 3, 3, 2, 3), True)
|
||||
y = mutable(3)
|
||||
expect = 3
|
||||
net = Net()
|
||||
res = net(x, y)
|
||||
assert res == expect
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_count_grad():
|
||||
"""
|
||||
Feature: test sequence_count grad op
|
||||
Description: two inputs are dynamic sequence
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = mutable((1, 2, 3), True)
|
||||
y = mutable(2)
|
||||
dout = mutable(2)
|
||||
net = Net()
|
||||
grad_func = GradOperation(get_all=True, sens_param=True)(net)
|
||||
grad_func(x, y, dout)
|
|
@ -0,0 +1,100 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops.operations import _sequence_ops as seq
|
||||
from mindspore import context
|
||||
from mindspore.common import mutable
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.seq_index = seq.SequenceIndex()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.seq_index(x, y)
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_index_tuple_dy():
|
||||
"""
|
||||
Feature: test sequence_index op
|
||||
Description: first input is dynamic sequence
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = mutable((1, 2, 3), True)
|
||||
y = 3
|
||||
expect = 2
|
||||
net = Net()
|
||||
res = net(x, y)
|
||||
assert res == expect
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_index_scalar_dy():
|
||||
"""
|
||||
Feature: test sequence_index op
|
||||
Description: second input is dynamic scalar
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = (0, 1, 1, 2)
|
||||
y = mutable(1)
|
||||
expect = 1
|
||||
net = Net()
|
||||
res = net(x, y)
|
||||
assert res == expect
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_index_all_dy():
|
||||
"""
|
||||
Feature: test sequence_index op
|
||||
Description: two inputs are dynamic sequence
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = mutable((1, 2, 3, 3, 2, 3), True)
|
||||
y = mutable(3)
|
||||
expect = 2
|
||||
net = Net()
|
||||
res = net(x, y)
|
||||
assert res == expect
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_index_grad():
|
||||
"""
|
||||
Feature: test sequence_index grad op
|
||||
Description: two inputs are dynamic sequence
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = mutable((1, 2, 3), True)
|
||||
y = mutable(2)
|
||||
dout = mutable(2)
|
||||
net = Net()
|
||||
grad_func = GradOperation(get_all=True, sens_param=True)(net)
|
||||
grad_func(x, y, dout)
|
|
@ -0,0 +1,106 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops.operations import _sequence_ops as seq
|
||||
from mindspore import context
|
||||
from mindspore.common import mutable
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_real_make_tuple():
|
||||
"""
|
||||
Feature: test real_make_tuple op
|
||||
Description: all inputs are scalar
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.func = seq.SequenceMul()
|
||||
|
||||
def construct(self, *x):
|
||||
make_tuple = (x[0], x[1], x[2])
|
||||
return self.func(make_tuple, x[3])
|
||||
|
||||
x_0 = 1
|
||||
x_1 = 2
|
||||
x_2 = 3
|
||||
x_3 = mutable(2)
|
||||
expect = (1, 2, 3, 1, 2, 3)
|
||||
net = Net()
|
||||
res = net(x_0, x_1, x_2, x_3)
|
||||
assert res == expect
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_real_make_tuple_dy():
|
||||
"""
|
||||
Feature: test real_make_tuple op
|
||||
Description: all inputs are dynamic scalar
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.func = seq.SequenceMul()
|
||||
|
||||
def construct(self, *x):
|
||||
make_tuple = (x[0], x[1])
|
||||
return self.func(make_tuple, x[2])
|
||||
|
||||
x_0 = mutable(0)
|
||||
x_1 = mutable(2)
|
||||
x_3 = mutable(2)
|
||||
expect = (0, 2, 0, 2)
|
||||
net = Net()
|
||||
res = net(x_0, x_1, x_3)
|
||||
assert res == expect
|
||||
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_real_make_tuple_grad():
|
||||
"""
|
||||
Feature: test real_make_tuple grad op
|
||||
Description: all inputs are dynamic scalar
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.func = seq.SequenceMul()
|
||||
|
||||
def construct(self, *x):
|
||||
make_tuple = (x[0], x[1])
|
||||
return self.func(make_tuple, x[2])
|
||||
|
||||
x_0 = mutable(0)
|
||||
x_1 = mutable(2)
|
||||
x_2 = mutable(2)
|
||||
dout = mutable((0, 2, 0, 2), True)
|
||||
net = Net()
|
||||
grad_func = GradOperation(get_all=True, sens_param=True)(net)
|
||||
grad_func(x_0, x_1, x_2, dout)
|
|
@ -0,0 +1,100 @@
|
|||
# Copyright 2023 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops.operations import _sequence_ops as seq
|
||||
from mindspore import context
|
||||
from mindspore.common import mutable
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.seq_mul = seq.SequenceMul()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.seq_mul(x, y)
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_mul_tuple_dy():
|
||||
"""
|
||||
Feature: test sequence_mul op
|
||||
Description: first input is dynamic sequence
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = mutable((1, 2, 3), True)
|
||||
y = 2
|
||||
expect = (1, 2, 3, 1, 2, 3)
|
||||
net = Net()
|
||||
res = net(x, y)
|
||||
assert res == expect
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_mul_scalar_dy():
|
||||
"""
|
||||
Feature: test sequence_mul op
|
||||
Description: second input is dynamic scalar
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = (0, 1, 1, 2)
|
||||
y = mutable(1)
|
||||
expect = (0, 1, 1, 2)
|
||||
net = Net()
|
||||
res = net(x, y)
|
||||
assert res == expect
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_mul_all_dy():
|
||||
"""
|
||||
Feature: test sequence_mul op
|
||||
Description: two inputs are dynamic sequence
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = mutable((1, 2, 3), True)
|
||||
y = mutable(3)
|
||||
expect = (1, 2, 3, 1, 2, 3, 1, 2, 3)
|
||||
net = Net()
|
||||
res = net(x, y)
|
||||
assert res == expect
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_seq_mul_grad():
|
||||
"""
|
||||
Feature: test sequence_mul grad op
|
||||
Description: two inputs are dynamic sequence
|
||||
Expectation: the result match with tuple result
|
||||
"""
|
||||
x = mutable((1, 2, 3), True)
|
||||
y = mutable(2)
|
||||
dout = mutable((4, 5, 6, 7, 8, 9), True)
|
||||
net = Net()
|
||||
grad_func = GradOperation(get_all=True, sens_param=True)(net)
|
||||
grad_func(x, y, dout)
|
Loading…
Reference in New Issue