forked from mindspore-Ecosystem/mindspore
!46152 修复Smooth l1 loss API文档
Merge pull request !46152 from 刘崇鸣/fix_smooth_l1_loss_doc
This commit is contained in:
commit
c24d7910f6
|
@ -25,12 +25,12 @@ mindspore.ops.smooth_l1_loss
|
|||
\operatorname{sum}(L_{i}), & \text{if reduction} = \text{'sum'.}
|
||||
\end{cases}
|
||||
|
||||
其中, :math:`\text{beta}` 控制损失函数从二次元变为线性的point。默认值是1.0。 :math:`N` 为batch size。
|
||||
其中, :math:`\text{beta}` 控制损失函数在线性与二次间变换的阈值, :math:`\text{beta}>0` ,默认值是1.0。 :math:`N` 为batch size。
|
||||
|
||||
参数:
|
||||
- **logits** (Tensor) - shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度。数据类型为float16,float32和float64。
|
||||
- **labels** (Tensor) - shape: :math:`(N, *)` ,与 `logits` 的shape和数据类型相同。
|
||||
- **beta** (float) - 控制损失函数在L1Loss和L2Loss间变换的阈值。默认值:1.0。
|
||||
- **beta** (float) - 控制损失函数在L1Loss和L2Loss间变换的阈值,该值必须大于0。默认值:1.0。
|
||||
- **reduction** (str) - 缩减输出的方法。默认值:'none'。其他选项:'mean'和'sum'。
|
||||
|
||||
返回:
|
||||
|
@ -40,5 +40,5 @@ mindspore.ops.smooth_l1_loss
|
|||
- **TypeError** - `beta` 不是float类型。
|
||||
- **ValueError** - `reduction` 不是'none','mean'和'sum'中的任一者。
|
||||
- **TypeError** - `logits` 或 `labels` 的数据类型不是float16,float32和float64中的任一者。
|
||||
- **ValueError** - `beta` 小于0。
|
||||
- **ValueError** - `beta` 小于等于0。
|
||||
- **ValueError** - `logits` 与 `labels` 的shape不同。
|
||||
|
|
|
@ -2939,18 +2939,18 @@ def smooth_l1_loss(logits, labels, beta=1.0, reduction='none'):
|
|||
\end{cases}
|
||||
|
||||
Here :math:`\text{beta}` controls the point where the loss function changes from quadratic to linear.
|
||||
Its default value is 1.0. :math:`N` is the batch size.
|
||||
:math:`\text{beta}>0` , its default value is 1.0. :math:`N` is the batch size.
|
||||
|
||||
Args:
|
||||
logits (Tensor): Tensor of shape :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
|
||||
labels (Tensor): Ground truth data, tensor of shape :math:`(N, *)`, same shape and dtype as the `logits`.
|
||||
beta (float): A parameter used to control the point where the function will change from
|
||||
quadratic to linear. Default: 1.0.
|
||||
beta (float): A parameter used to control the point where the function will change between
|
||||
L1 to L2 loss. The value should be greater than zero. Default: 1.0.
|
||||
reduction (str): Apply specific reduction method to the output: 'none', 'mean' or 'sum'. Default: 'none'.
|
||||
|
||||
Returns:
|
||||
Tensor, if `reduction` is 'none', then output is a tensor with the same shape as `logits`.
|
||||
Otherwise the shape of output tensor is `(1,)`.
|
||||
Otherwise, the shape of output tensor is `(1,)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `beta` is not a float.
|
||||
|
|
Loading…
Reference in New Issue