!48273 清理门禁未使用的st/tbe_network用例

Merge pull request !48273 from DavidFFFan/gate_clean
This commit is contained in:
i-robot 2023-02-02 06:47:34 +00:00 committed by Gitee
commit bfbdbc1627
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
12 changed files with 1 additions and 983 deletions

View File

@ -26,7 +26,7 @@ from mindspore import Tensor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
from tests.st.tbe_networks.resnet import resnet50
from tests.st.networks.models.resnetv1_5 import resnet50
context.set_context(mode=context.GRAPH_MODE, memory_optimize_level='O0')

View File

@ -1,20 +0,0 @@
#!/bin/bash
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
export LOCAL_HIAI=/usr/local/Ascend
export TBE_IMPL_PATH=${LOCAL_HIAI}/latest/opp/built-in/op_impl/ai_core/tbe/impl/
export LD_LIBRARY_PATH=${LOCAL_HIAI}/latest/lib64/:${LD_LIBRARY_PATH}
export PATH=${LOCAL_HIAI}/latest/compiler/ccec_compiler/bin/:${PATH}
export PYTHONPATH=${LOCAL_HIAI}/latest/opp/built-in/op_impl/ai_core/tbe/:${PYTHONPATH}

View File

@ -1,27 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from resnet_torch import resnet50
from mindspore import Tensor
from mindspore.train.serialization import context, export
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
def test_resnet50_export(batch_size=1, num_classes=5):
input_np = np.random.uniform(0.0, 1.0, size=[batch_size, 3, 224, 224]).astype(np.float32)
net = resnet50(batch_size, num_classes)
export(net, Tensor(input_np), file_name="./me_resnet50.pb", file_format="AIR")

View File

@ -1,43 +0,0 @@
{
"board_id": "0x3000",
"chip_info": "910",
"deploy_mode": "lab",
"group_count": "1",
"group_list": [
{
"device_num": "2",
"server_num": "1",
"group_name": "",
"instance_count": "2",
"instance_list": [
{
"devices": [
{
"device_id": "0",
"device_ip": "[device_ip]"
}
],
"rank_id": "0",
"server_id": "[sever_id]"
},
{
"devices": [
{
"device_id": "1",
"device_ip": "[device_ip]"
}
],
"rank_id": "1",
"server_id": "[sever_id]"
}
]
}
],
"para_plane_nic_location": "device",
"para_plane_nic_name": [
"eth0",
"eth1"
],
"para_plane_nic_num": "2",
"status": "completed"
}

View File

@ -1,43 +0,0 @@
{
"board_id": "0x0000",
"chip_info": "910",
"deploy_mode": "lab",
"group_count": "1",
"group_list": [
{
"device_num": "2",
"server_num": "1",
"group_name": "",
"instance_count": "2",
"instance_list": [
{
"devices": [
{
"device_id": "0",
"device_ip": "[device_ip]"
}
],
"rank_id": "0",
"server_id": "[sever_id]"
},
{
"devices": [
{
"device_id": "1",
"device_ip": "[device_ip]"
}
],
"rank_id": "1",
"server_id": "[sever_id]"
}
]
}
],
"para_plane_nic_location": "device",
"para_plane_nic_name": [
"eth0",
"eth1"
],
"para_plane_nic_num": "2",
"status": "completed"
}

View File

@ -1,281 +0,0 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
def weight_variable_0(shape):
zeros = np.zeros(shape).astype(np.float32)
return Tensor(zeros)
def weight_variable_1(shape):
ones = np.ones(shape).astype(np.float32)
return Tensor(ones)
def conv3x3(in_channels, out_channels, stride=1, padding=0):
"""3x3 convolution """
return nn.Conv2d(in_channels, out_channels,
kernel_size=3, stride=stride, padding=padding, weight_init='XavierUniform',
has_bias=False, pad_mode="same")
def conv1x1(in_channels, out_channels, stride=1, padding=0):
"""1x1 convolution"""
return nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=stride, padding=padding, weight_init='XavierUniform',
has_bias=False, pad_mode="same")
def conv7x7(in_channels, out_channels, stride=1, padding=0):
"""1x1 convolution"""
return nn.Conv2d(in_channels, out_channels,
kernel_size=7, stride=stride, padding=padding, weight_init='Uniform',
has_bias=False, pad_mode="same")
def bn_with_initialize(out_channels):
shape = (out_channels)
mean = weight_variable_0(shape)
var = weight_variable_1(shape)
beta = weight_variable_0(shape)
bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init='Uniform',
beta_init=beta, moving_mean_init=mean, moving_var_init=var)
return bn
def bn_with_initialize_last(out_channels):
shape = (out_channels)
mean = weight_variable_0(shape)
var = weight_variable_1(shape)
beta = weight_variable_0(shape)
bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init='Uniform',
beta_init=beta, moving_mean_init=mean, moving_var_init=var)
return bn
def fc_with_initialize(input_channels, out_channels):
return nn.Dense(input_channels, out_channels, weight_init='XavierUniform', bias_init='Uniform')
class ResidualBlock(nn.Cell):
expansion = 4
def __init__(self,
in_channels,
out_channels,
stride=1):
super(ResidualBlock, self).__init__()
out_chls = out_channels // self.expansion
self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
self.bn1 = bn_with_initialize(out_chls)
self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=0)
self.bn2 = bn_with_initialize(out_chls)
self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
self.bn3 = bn_with_initialize_last(out_channels)
self.relu = P.ReLU()
self.add = P.Add()
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.add(out, identity)
out = self.relu(out)
return out
class ResidualBlockWithDown(nn.Cell):
expansion = 4
def __init__(self,
in_channels,
out_channels,
stride=1,
down_sample=False):
super(ResidualBlockWithDown, self).__init__()
out_chls = out_channels // self.expansion
self.conv1 = conv1x1(in_channels, out_chls, stride=stride, padding=0)
self.bn1 = bn_with_initialize(out_chls)
self.conv2 = conv3x3(out_chls, out_chls, stride=1, padding=0)
self.bn2 = bn_with_initialize(out_chls)
self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
self.bn3 = bn_with_initialize_last(out_channels)
self.relu = P.ReLU()
self.downSample = down_sample
self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0)
self.bn_down_sample = bn_with_initialize(out_channels)
self.add = P.Add()
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
identity = self.conv_down_sample(identity)
identity = self.bn_down_sample(identity)
out = self.add(out, identity)
out = self.relu(out)
return out
class MakeLayer0(nn.Cell):
def __init__(self, block, in_channels, out_channels, stride):
super(MakeLayer0, self).__init__()
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True)
self.b = block(out_channels, out_channels, stride=stride)
self.c = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)
return x
class MakeLayer1(nn.Cell):
def __init__(self, block, in_channels, out_channels, stride):
super(MakeLayer1, self).__init__()
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
self.b = block(out_channels, out_channels, stride=1)
self.c = block(out_channels, out_channels, stride=1)
self.d = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)
x = self.d(x)
return x
class MakeLayer2(nn.Cell):
def __init__(self, block, in_channels, out_channels, stride):
super(MakeLayer2, self).__init__()
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
self.b = block(out_channels, out_channels, stride=1)
self.c = block(out_channels, out_channels, stride=1)
self.d = block(out_channels, out_channels, stride=1)
self.e = block(out_channels, out_channels, stride=1)
self.f = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)
x = self.d(x)
x = self.e(x)
x = self.f(x)
return x
class MakeLayer3(nn.Cell):
def __init__(self, block, in_channels, out_channels, stride):
super(MakeLayer3, self).__init__()
self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
self.b = block(out_channels, out_channels, stride=1)
self.c = block(out_channels, out_channels, stride=1)
def construct(self, x):
x = self.a(x)
x = self.b(x)
x = self.c(x)
return x
class ResNet(nn.Cell):
def __init__(self, block, num_classes=100, batch_size=32):
super(ResNet, self).__init__()
self.batch_size = batch_size
self.num_classes = num_classes
self.conv1 = conv7x7(3, 64, stride=2, padding=0)
self.bn1 = bn_with_initialize(64)
self.relu = P.ReLU()
self.maxpool = P.MaxPoolWithArgmax(kernel_size=3, strides=2, pad_mode="SAME")
self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1)
self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2)
self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2)
self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2)
self.pool = P.ReduceMean(keep_dims=True)
self.squeeze = P.Squeeze(axis=(2, 3))
self.fc = fc_with_initialize(512 * block.expansion, num_classes)
def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)[0]
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.pool(x, (2, 3))
x = self.squeeze(x)
x = self.fc(x)
return x
def resnet50(batch_size, num_classes):
return ResNet(ResidualBlock, num_classes, batch_size)

View File

@ -1,154 +0,0 @@
# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import random
import argparse
import numpy as np
from resnet import resnet50
import mindspore.common.dtype as mstype
import mindspore.ops.functional as F
from mindspore.train import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset as ds
import mindspore.dataset.transforms as C
import mindspore.dataset.vision as vision
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.communication.management import init
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from mindspore.context import ParallelMode
random.seed(1)
np.random.seed(1)
ds.config.set_seed(1)
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
parser.add_argument('--epoch_size', type=int, default=1, help='Epoch size.')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size.')
parser.add_argument('--num_classes', type=int, default=10, help='Num classes.')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path')
args_opt = parser.parse_args()
device_id = int(os.getenv('DEVICE_ID'))
data_home = args_opt.dataset_path
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(device_id=device_id)
def create_dataset(repeat_num=1, training=True):
data_dir = data_home + "/cifar-10-batches-bin"
if not training:
data_dir = data_home + "/cifar-10-verify-bin"
data_set = ds.Cifar10Dataset(data_dir, num_samples=32)
if args_opt.run_distribute:
rank_id = int(os.getenv('RANK_ID'))
rank_size = int(os.getenv('RANK_SIZE'))
data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, num_samples=32)
resize_height = 224
resize_width = 224
rescale = 1.0 / 255.0
shift = 0.0
# define map operations
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
random_horizontal_op = vision.RandomHorizontalFlip()
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
rescale_op = vision.Rescale(rescale, shift)
normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
changeswap_op = vision.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
c_trans = []
if training:
c_trans = [random_crop_op, random_horizontal_op]
c_trans += [resize_op, rescale_op, normalize_op,
changeswap_op]
# apply map operations on images
data_set = data_set.map(operations=type_cast_op, input_columns="label")
data_set = data_set.map(operations=c_trans, input_columns="image")
# apply repeat operations
data_set = data_set.repeat(repeat_num)
# apply shuffle operations
data_set = data_set.shuffle(buffer_size=10)
# apply batch operations
data_set = data_set.batch(batch_size=args_opt.batch_size, drop_remainder=True)
return data_set
class CrossEntropyLoss(nn.Cell):
def __init__(self):
super(CrossEntropyLoss, self).__init__()
self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
self.mean = P.ReduceMean()
self.one_hot = P.OneHot()
self.one = Tensor(1.0, mstype.float32)
self.zero = Tensor(0.0, mstype.float32)
def construct(self, logits, label):
label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
loss_func = self.cross_entropy(logits, label)[0]
loss_func = self.mean(loss_func, (-1,))
return loss_func
if __name__ == '__main__':
if not args_opt.do_eval and args_opt.run_distribute:
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
all_reduce_fusion_config=[140])
init()
context.set_context(mode=context.GRAPH_MODE)
epoch_size = args_opt.epoch_size
net = resnet50(args_opt.batch_size, args_opt.num_classes)
loss = CrossEntropyLoss()
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
if args_opt.do_train:
dataset = create_dataset(1)
batch_num = dataset.get_dataset_size()
config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=10)
ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10", directory="./", config=config_ck)
time_cb = TimeMonitor(data_size=batch_num)
loss_cb = LossMonitor()
model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb, time_cb])
if args_opt.do_eval:
if args_opt.checkpoint_path:
param_dict = load_checkpoint(args_opt.checkpoint_path)
load_param_into_net(net, param_dict)
net.set_train(False)
eval_dataset = create_dataset(1, training=False)
res = model.eval(eval_dataset)
print("result: ", res)

View File

@ -1,37 +0,0 @@
#!/bin/bash
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
set -e
BASE_PATH=$(cd "$(dirname $0)"; pwd)
export DEVICE_NUM=2
export RANK_SIZE=$DEVICE_NUM
ulimit -n 65535
export DISTRIBUTION_FILE=$BASE_PATH/tdt${DEVICE_NUM}p/tdt_
export MINDSPORE_HCCL_CONFIG_PATH=$BASE_PATH/hccl_${DEVICE_NUM}p.json
for((i=0;i<$DEVICE_NUM;i++))
do
rm -rf ./dataparallel$i
mkdir ./dataparallel$i
cp *.py ./dataparallel$i
cp -r kernel_meta ./dataparallel$i
cd ./dataparallel$i
export RANK_ID=$i
export DEVICE_ID=$i
echo "start training for device $i"
env > env$i.log
python resnet_cifar.py --run_distribute=1 --device_num=$DEVICE_NUM --epoch_size=10 >log 2>&1 &
cd ../
done

View File

@ -1,7 +0,0 @@
{
"deviceNum":2,
"deviceId":0,
"shardConfig":"RANDOM",
"shuffle":"ON",
"seed": 0
}

View File

@ -1,7 +0,0 @@
{
"deviceNum":2,
"deviceId":1,
"shardConfig":"RANDOM",
"shuffle":"ON",
"seed": 0
}

View File

@ -1,161 +0,0 @@
# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import random
import numpy as np
from resnet import resnet50
import mindspore.common.dtype as mstype
import mindspore.dataset as ds
import mindspore.dataset.transforms as C
import mindspore.dataset.vision as vision
import mindspore.nn as nn
import mindspore.ops.functional as F
from mindspore import Tensor
from mindspore import context
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import operations as P
from mindspore.train import Callback
from mindspore.train import Model
random.seed(1)
np.random.seed(1)
ds.config.set_seed(1)
data_home = "/home/workspace/mindspore_dataset"
def create_dataset(repeat_num=1, training=True, batch_size=32):
data_dir = data_home + "/cifar-10-batches-bin"
if not training:
data_dir = data_home + "/cifar-10-verify-bin"
data_set = ds.Cifar10Dataset(data_dir)
resize_height = 224
resize_width = 224
rescale = 1.0 / 255.0
shift = 0.0
# define map operations
random_crop_op = vision.RandomCrop(
(32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
random_horizontal_op = vision.RandomHorizontalFlip()
# interpolation default BILINEAR
resize_op = vision.Resize((resize_height, resize_width))
rescale_op = vision.Rescale(rescale, shift)
normalize_op = vision.Normalize(
(0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
changeswap_op = vision.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
c_trans = []
if training:
c_trans = [random_crop_op, random_horizontal_op]
c_trans += [resize_op, rescale_op, normalize_op,
changeswap_op]
# apply map operations on images
data_set = data_set.map(operations=type_cast_op, input_columns="label")
data_set = data_set.map(operations=c_trans, input_columns="image")
# apply shuffle operations
data_set = data_set.shuffle(buffer_size=1000)
# apply batch operations
data_set = data_set.batch(batch_size=batch_size, drop_remainder=True)
# apply repeat operations
data_set = data_set.repeat(repeat_num)
return data_set
class CrossEntropyLoss(nn.Cell):
def __init__(self):
super(CrossEntropyLoss, self).__init__()
self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
self.mean = P.ReduceMean()
self.one_hot = P.OneHot()
self.one = Tensor(1.0, mstype.float32)
self.zero = Tensor(0.0, mstype.float32)
def construct(self, logits, label):
label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
loss = self.cross_entropy(logits, label)[0]
loss = self.mean(loss, (-1,))
return loss
class LossGet(Callback):
def __init__(self, per_print_times=1):
super(LossGet, self).__init__()
if not isinstance(per_print_times, int) or per_print_times < 0:
raise ValueError("print_step must be int and >= 0.")
self._per_print_times = per_print_times
self._loss = 0.0
def step_end(self, run_context):
cb_params = run_context.original_args()
loss = cb_params.net_outputs
if isinstance(loss, (tuple, list)):
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
loss = loss[0]
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray):
loss = np.mean(loss.asnumpy())
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training."
.format(cb_params.cur_epoch_num, cur_step_in_epoch))
if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0:
self._loss = loss
print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num, cur_step_in_epoch, loss))
def get_loss(self):
return self._loss
def train_process(epoch_size, num_classes, batch_size):
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
net = resnet50(batch_size, num_classes)
loss = CrossEntropyLoss()
opt = Momentum(filter(lambda x: x.requires_grad,
net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
dataset = create_dataset(1, training=True, batch_size=batch_size)
loss_cb = LossGet()
model.train(epoch_size, dataset, callbacks=[loss_cb])
net.set_train(False)
eval_dataset = create_dataset(1, training=False)
res = model.eval(eval_dataset)
print("result: ", res)
return res
def test_resnet_cifar_1p():
epoch_size = 1
num_classes = 10
batch_size = 32
acc = train_process(epoch_size, num_classes, batch_size)
os.system("rm -rf kernel_meta")
print("End training...")
assert acc['acc'] > 0.20

View File

@ -1,202 +0,0 @@
# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import random
from multiprocessing import Process, Queue
import numpy as np
from resnet import resnet50
import mindspore.common.dtype as mstype
import mindspore.dataset as ds
import mindspore.dataset.transforms as C
import mindspore.dataset.vision as vision
import mindspore.nn as nn
import mindspore.ops.functional as F
from mindspore import Tensor
from mindspore import context
from mindspore.communication.management import init
from mindspore.nn.optim.momentum import Momentum
from mindspore.ops import operations as P
from mindspore.train import Callback, Model
from mindspore.context import ParallelMode
random.seed(1)
np.random.seed(1)
ds.config.set_seed(1)
MINDSPORE_HCCL_CONFIG_PATH = "/home/workspace/mindspore_config/hccl/rank_table_8p.json"
data_home = "/home/workspace/mindspore_dataset"
def create_dataset(repeat_num=1, training=True, batch_size=32, rank_id=0, rank_size=1,
enable_hccl=False):
data_dir = data_home + "/cifar-10-batches-bin"
if not training:
data_dir = data_home + "/cifar-10-verify-bin"
data_set = ds.Cifar10Dataset(data_dir)
if enable_hccl:
rank_id = rank_id
rank_size = rank_size
data_set = ds.Cifar10Dataset(
data_dir, num_shards=rank_size, shard_id=rank_id)
resize_height = 224
resize_width = 224
rescale = 1.0 / 255.0
shift = 0.0
# define map operations
random_crop_op = vision.RandomCrop(
(32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
random_horizontal_op = vision.RandomHorizontalFlip()
# interpolation default BILINEAR
resize_op = vision.Resize((resize_height, resize_width))
rescale_op = vision.Rescale(rescale, shift)
normalize_op = vision.Normalize(
(0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
changeswap_op = vision.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
c_trans = []
if training:
c_trans = [random_crop_op, random_horizontal_op]
c_trans += [resize_op, rescale_op, normalize_op,
changeswap_op]
# apply map operations on images
data_set = data_set.map(operations=type_cast_op, input_columns="label")
data_set = data_set.map(operations=c_trans, input_columns="image")
# apply shuffle operations
data_set = data_set.shuffle(buffer_size=1000)
# apply batch operations
data_set = data_set.batch(batch_size=batch_size, drop_remainder=True)
# apply repeat operations
data_set = data_set.repeat(repeat_num)
return data_set
class CrossEntropyLoss(nn.Cell):
def __init__(self):
super(CrossEntropyLoss, self).__init__()
self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
self.mean = P.ReduceMean()
self.one_hot = P.OneHot()
self.one = Tensor(1.0, mstype.float32)
self.zero = Tensor(0.0, mstype.float32)
def construct(self, logits, label):
label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
loss = self.cross_entropy(logits, label)[0]
loss = self.mean(loss, (-1,))
return loss
class LossGet(Callback):
def __init__(self, per_print_times=1):
super(LossGet, self).__init__()
if not isinstance(per_print_times, int) or per_print_times < 0:
raise ValueError("print_step must be int and >= 0.")
self._per_print_times = per_print_times
self._loss = 0.0
def step_end(self, run_context):
cb_params = run_context.original_args()
loss = cb_params.net_outputs
if isinstance(loss, (tuple, list)):
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
loss = loss[0]
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray):
loss = np.mean(loss.asnumpy())
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training."
.format(cb_params.cur_epoch_num, cur_step_in_epoch))
if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0:
self._loss = loss
print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num, cur_step_in_epoch, loss))
def get_loss(self):
return self._loss
def train_process(q, device_id, epoch_size, num_classes, device_num, batch_size, enable_hccl):
os.system("mkdir " + str(device_id))
os.chdir(str(device_id))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(device_id=device_id)
os.environ['MINDSPORE_HCCL_CONFIG_PATH'] = MINDSPORE_HCCL_CONFIG_PATH
os.environ['RANK_ID'] = str(device_id)
os.environ['RANK_SIZE'] = str(device_num)
if enable_hccl:
context.set_auto_parallel_context(
device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, all_reduce_fusion_config=[140])
init()
context.set_context(mode=context.GRAPH_MODE)
net = resnet50(batch_size, num_classes)
loss = CrossEntropyLoss()
opt = Momentum(filter(lambda x: x.requires_grad,
net.get_parameters()), 0.01, 0.9)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
dataset = create_dataset(1, training=True,
batch_size=batch_size, rank_id=device_id, rank_size=device_num,
enable_hccl=enable_hccl)
loss_cb = LossGet()
model.train(epoch_size, dataset, callbacks=[loss_cb])
q.put(loss_cb.get_loss())
def test_resnet_cifar_8p():
q = Queue()
device_num = 8
epoch_size = 1
num_classes = 10
batch_size = 32
enable_hccl = True
process = []
for i in range(device_num):
device_id = i
process.append(Process(target=train_process,
args=(q, device_id, epoch_size, num_classes, device_num, batch_size, enable_hccl)))
for i in range(device_num):
process[i].start()
print("Waiting for all subprocesses done...")
for i in range(device_num):
process[i].join()
loss = 0.0
for i in range(device_num):
loss += q.get()
loss = loss / device_num
for i in range(device_num):
os.system("rm -rf " + str(i))
print("End training...")
assert loss < 2.0