!47659 Enhance ut test cast

Merge pull request !47659 from ZPaC/add-scalar-to-tensor-ut
This commit is contained in:
i-robot 2023-01-10 01:23:51 +00:00 committed by Gitee
commit be02f82a51
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
4 changed files with 252 additions and 17 deletions

View File

@ -134,6 +134,18 @@ AnfNodePtr CreateRealMakeTupleByTupleUnfoldInput(const FuncGraphPtr &func_graph,
KernelBuildInfoPtr real_make_tuple_build_info = AnfAlgo::GetSelectKernelBuildInfo(real_make_tuple); KernelBuildInfoPtr real_make_tuple_build_info = AnfAlgo::GetSelectKernelBuildInfo(real_make_tuple);
MS_EXCEPTION_IF_NULL(real_make_tuple_build_info); MS_EXCEPTION_IF_NULL(real_make_tuple_build_info);
real_make_tuple_build_info->SetInputsKernelObjectType({KernelObjectType::TUPLE_UNFOLD}); real_make_tuple_build_info->SetInputsKernelObjectType({KernelObjectType::TUPLE_UNFOLD});
// Extend tuple_unfold inputs.
abstract::AbstractTuplePtr tuple_unfold_abs =
node_with_tuple_unfold_output->abstract()->cast<abstract::AbstractTuplePtr>();
MS_EXCEPTION_IF_NULL(tuple_unfold_abs);
auto builder = AnfAlgo::GetSelectKernelBuildInfo(real_make_tuple);
MS_EXCEPTION_IF_NULL(builder);
std::vector<std::string> inputs_format{tuple_unfold_abs->size(), builder->GetInputFormat(kIndex0)};
std::vector<TypeId> inputs_type{tuple_unfold_abs->size(), builder->GetInputDeviceType(kIndex0)};
builder->SetInputsFormat(inputs_format);
builder->SetInputsDeviceType(inputs_type);
return real_make_tuple; return real_make_tuple;
} }
@ -257,16 +269,6 @@ abstract::AbstractBasePtr GenerateAbsByOpInfer(const PrimitivePtr &primitive, co
return abs; return abs;
} }
abstract::AbstractBasePtr GenerateAbsByUserNodeInput(const CNodePtr &user_node, size_t input_index) {
MS_EXCEPTION_IF_NULL(user_node);
auto shape = AnfAlgo::GetInputDeviceShape(user_node, input_index);
auto type_id = AnfAlgo::GetInputDeviceDataType(user_node, input_index);
// Defaultly the input is a tensor. Other cases should be handled respectively.
auto abs = std::make_shared<abstract::AbstractTensor>(TypeIdToType(type_id), shape);
MS_EXCEPTION_IF_NULL(abs);
return abs;
}
std::string GenerateOutputFormatForNewCNode(const CNodePtr &cnode) { std::string GenerateOutputFormatForNewCNode(const CNodePtr &cnode) {
MS_EXCEPTION_IF_NULL(cnode); MS_EXCEPTION_IF_NULL(cnode);
if (IsPrimitiveCNode(cnode, prim::kPrimRealMakeTuple) || IsPrimitiveCNode(cnode, prim::kPrimTupleToTensor)) { if (IsPrimitiveCNode(cnode, prim::kPrimRealMakeTuple) || IsPrimitiveCNode(cnode, prim::kPrimTupleToTensor)) {
@ -559,7 +561,7 @@ AnfNodePtrList InsertTypeTransformOp::ProcessTupleUnfoldToTensor(const FuncGraph
// Data type of the tensor should be set as an attr of TupleToTensor op. // Data type of the tensor should be set as an attr of TupleToTensor op.
size_t input_index = GetInputNodeIndex(input, node); size_t input_index = GetInputNodeIndex(input, node);
auto data_type = AnfAlgo::GetInputDeviceDataType(node, input_index); auto data_type = AnfAlgo::GetInputDeviceDataType(node, input_index);
common::AnfAlgo::SetNodeAttr("dtype", TypeIdToType(data_type), tuple_to_tensor); common::AnfAlgo::SetNodeAttr(kAttrDType, TypeIdToType(data_type), tuple_to_tensor);
// Set abstract for TupleToTensor op according to user node's input shape and type. // Set abstract for TupleToTensor op according to user node's input shape and type.
auto abs = GenerateAbsByOpInfer(prim::kPrimTupleToTensor, {input}); auto abs = GenerateAbsByOpInfer(prim::kPrimTupleToTensor, {input});
@ -625,7 +627,7 @@ AnfNodePtrList InsertTypeTransformOp::ProcessTupleToTensor(const FuncGraphPtr &f
// Data type of the tensor should be set as an attr of TupleToTensor op. // Data type of the tensor should be set as an attr of TupleToTensor op.
size_t input_index = GetInputNodeIndex(input, node); size_t input_index = GetInputNodeIndex(input, node);
auto data_type = AnfAlgo::GetInputDeviceDataType(node, input_index); auto data_type = AnfAlgo::GetInputDeviceDataType(node, input_index);
common::AnfAlgo::SetNodeAttr("dtype", TypeIdToType(data_type), tuple_to_tensor); common::AnfAlgo::SetNodeAttr(kAttrDType, TypeIdToType(data_type), tuple_to_tensor);
// Set abstract for TupleToTensor op according to user node's input shape and type. // Set abstract for TupleToTensor op according to user node's input shape and type.
auto abs = GenerateAbsByOpInfer(prim::kPrimTupleToTensor, {input}); auto abs = GenerateAbsByOpInfer(prim::kPrimTupleToTensor, {input});

View File

@ -105,9 +105,6 @@ abstract::AbstractBasePtr GenerateAbsByOpInfer(const PrimitivePtr &primitive);
// Generate abstract, format and object type for newly created node. // Generate abstract, format and object type for newly created node.
// They can be generated in multiple ways because new node is not processed by kernel selecting method. // They can be generated in multiple ways because new node is not processed by kernel selecting method.
// Generate abstract according to input type and shape which is already set to the user node.
abstract::AbstractBasePtr GenerateAbsByUserNodeInput(const CNodePtr &user_node, size_t input_index);
std::string GenerateOutputFormatForNewCNode(const CNodePtr &cnode); std::string GenerateOutputFormatForNewCNode(const CNodePtr &cnode);
void GenerateKernelObjectTypeForNewCNode(const CNodePtr &cnode, std::vector<KernelObjectType> *input_obj_type, void GenerateKernelObjectTypeForNewCNode(const CNodePtr &cnode, std::vector<KernelObjectType> *input_obj_type,
std::vector<KernelObjectType> *output_obj_type); std::vector<KernelObjectType> *output_obj_type);

View File

@ -22,6 +22,8 @@
#include "backend/common/optimizer/optimizer.h" #include "backend/common/optimizer/optimizer.h"
#include "backend/common/optimizer/pass_manager.h" #include "backend/common/optimizer/pass_manager.h"
#include "include/common/utils/utils.h" #include "include/common/utils/utils.h"
#include "include/common/utils/anfalgo.h"
#include "kernel/kernel_build_info.h"
#define private public #define private public
#define protected public #define protected public
@ -45,9 +47,12 @@ class TestInsertTypeTransformOp : public BackendCommon {
AnfNodePtr *split2_ptr, AnfNodePtr *addn2_ptr); AnfNodePtr *split2_ptr, AnfNodePtr *addn2_ptr);
void SetTupleUnfoldToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *make_tuple_ptr, AnfNodePtr *split_ptr, void SetTupleUnfoldToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *make_tuple_ptr, AnfNodePtr *split_ptr,
AnfNodePtr *seq_add1_ptr, AnfNodePtr *seq_add2_ptr); AnfNodePtr *seq_add1_ptr, AnfNodePtr *seq_add2_ptr);
void SetTupleUnfoldToTensorKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *make_tuple, AnfNodePtr *reshape); void SetTupleUnfoldToTensorKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *make_tuple, AnfNodePtr *reshape_ptr);
void SetTupleToTupleUnfoldKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *shape_ptr);
void SetTupleToTensorKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *reshape_ptr); void SetTupleToTensorKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *reshape_ptr);
void SetTensorToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *seq_add); void SetScalarToTensorKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *add_ptr);
void SetTensorToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *seq_add_ptr);
void SetTensorToScalarKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *scalar_to_tensor_ptr);
void SetKernelBuildInfo(const AnfNodePtr &node, const std::vector<std::string> &input_formats, void SetKernelBuildInfo(const AnfNodePtr &node, const std::vector<std::string> &input_formats,
const std::vector<TypeId> &input_types, const std::vector<std::string> &output_formats, const std::vector<TypeId> &input_types, const std::vector<std::string> &output_formats,
@ -192,6 +197,20 @@ void TestInsertTypeTransformOp::SetTupleUnfoldToTensorKernelBuildInfo(const Func
{KernelObjectType::TENSOR}, {KernelObjectType::TENSOR}); {KernelObjectType::TENSOR}, {KernelObjectType::TENSOR});
} }
void TestInsertTypeTransformOp::SetTupleToTupleUnfoldKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *shape_ptr) {
auto ret = g->get_return();
EXPECT_NE(ret->input(1), nullptr);
auto tuple_get_item = ret->input(1)->cast<CNodePtr>();
SetKernelBuildInfo(tuple_get_item, {"NCHW", "NCHW"}, {kNumberTypeFloat32, kNumberTypeInt64}, {"NCHW"},
{kNumberTypeFloat32}, {KernelObjectType::TUPLE_UNFOLD, KernelObjectType::SCALAR},
{KernelObjectType::SCALAR});
auto shape = tuple_get_item->input(1)->cast<CNodePtr>();
*shape_ptr = shape;
SetKernelBuildInfo(shape, {"NCHW"}, {kNumberTypeFloat32}, {"NCHW"}, {kNumberTypeInt64}, {KernelObjectType::SCALAR},
{KernelObjectType::TUPLE});
}
void TestInsertTypeTransformOp::SetTupleToTensorKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *reshape_ptr) { void TestInsertTypeTransformOp::SetTupleToTensorKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *reshape_ptr) {
auto ret = g->get_return(); auto ret = g->get_return();
EXPECT_NE(ret->input(1), nullptr); EXPECT_NE(ret->input(1), nullptr);
@ -209,6 +228,15 @@ void TestInsertTypeTransformOp::SetTupleToTensorKernelBuildInfo(const FuncGraphP
{KernelObjectType::TENSOR}); {KernelObjectType::TENSOR});
} }
void TestInsertTypeTransformOp::SetScalarToTensorKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *add_ptr) {
auto ret = g->get_return();
EXPECT_NE(ret->input(1), nullptr);
auto add = ret->input(1)->cast<CNodePtr>();
*add_ptr = add;
SetKernelBuildInfo(add, {"NCHW", "NCHW"}, {kNumberTypeFloat32, kNumberTypeFloat32}, {"NCHW"}, {kNumberTypeFloat32},
{KernelObjectType::TENSOR, KernelObjectType::TENSOR}, {KernelObjectType::TENSOR});
}
void TestInsertTypeTransformOp::SetTensorToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *seq_add_ptr) { void TestInsertTypeTransformOp::SetTensorToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *seq_add_ptr) {
auto ret = g->get_return(); auto ret = g->get_return();
EXPECT_NE(ret->input(1), nullptr); EXPECT_NE(ret->input(1), nullptr);
@ -226,6 +254,16 @@ void TestInsertTypeTransformOp::SetTensorToTupleKernelBuildInfo(const FuncGraphP
{KernelObjectType::TENSOR}); {KernelObjectType::TENSOR});
} }
void TestInsertTypeTransformOp::SetTensorToScalarKernelBuildInfo(const FuncGraphPtr &g,
AnfNodePtr *scalar_to_tensor_ptr) {
auto ret = g->get_return();
EXPECT_NE(ret->input(1), nullptr);
auto scalar_to_tensor = ret->input(1)->cast<CNodePtr>();
*scalar_to_tensor_ptr = scalar_to_tensor;
SetKernelBuildInfo(scalar_to_tensor, {"NCHW"}, {kNumberTypeFloat32}, {"NCHW"}, {kNumberTypeFloat32},
{KernelObjectType::SCALAR}, {KernelObjectType::TENSOR});
}
void TestInsertTypeTransformOp::SetKernelBuildInfo( void TestInsertTypeTransformOp::SetKernelBuildInfo(
const AnfNodePtr &node, const std::vector<std::string> &input_formats, const std::vector<TypeId> &input_types, const AnfNodePtr &node, const std::vector<std::string> &input_formats, const std::vector<TypeId> &input_types,
const std::vector<std::string> &output_formats, const std::vector<TypeId> &output_types, const std::vector<std::string> &output_formats, const std::vector<TypeId> &output_types,
@ -318,6 +356,12 @@ TEST_F(TestInsertTypeTransformOp, test_tuple_unfold_to_tuple_transform) {
optimizer->AddPassManager(pm); optimizer->AddPassManager(pm);
optimizer->Optimize(func_graph); optimizer->Optimize(func_graph);
auto real_make_tuple2 = func_graph->get_return()->input(1)->cast<CNodePtr>()->input(1)->cast<CNodePtr>();
ASSERT_TRUE(IsPrimitiveCNode(real_make_tuple2, prim::kPrimRealMakeTuple));
ASSERT_TRUE(real_make_tuple2->abstract()->isa<abstract::AbstractTuple>());
auto obj_type = AnfAlgo::GetOutputKernelObjectType(real_make_tuple2, 0);
ASSERT_TRUE(obj_type == KernelObjectType::TUPLE);
FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_tuple_unfold_to_tuple_transform", "after"); FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_tuple_unfold_to_tuple_transform", "after");
ASSERT_TRUE(g_after != nullptr); ASSERT_TRUE(g_after != nullptr);
EXPECT_TRUE(CheckEqualGraph(func_graph, g_after)); EXPECT_TRUE(CheckEqualGraph(func_graph, g_after));
@ -348,11 +392,51 @@ TEST_F(TestInsertTypeTransformOp, test_tuple_unfold_to_tensor_transform) {
optimizer->AddPassManager(pm); optimizer->AddPassManager(pm);
optimizer->Optimize(func_graph); optimizer->Optimize(func_graph);
auto tuple_to_tensor = func_graph->get_return()->input(1)->cast<CNodePtr>()->input(2)->cast<CNodePtr>();
ASSERT_TRUE(IsPrimitiveCNode(tuple_to_tensor, prim::kPrimTupleToTensor));
auto real_make_tuple = tuple_to_tensor->input(1);
ASSERT_TRUE(IsPrimitiveCNode(real_make_tuple, prim::kPrimRealMakeTuple));
ASSERT_TRUE(real_make_tuple->abstract()->isa<abstract::AbstractTuple>());
auto obj_type = AnfAlgo::GetOutputKernelObjectType(real_make_tuple, 0);
ASSERT_TRUE(obj_type == KernelObjectType::TUPLE);
FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_tuple_unfold_to_tensor_transform", "after"); FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_tuple_unfold_to_tensor_transform", "after");
ASSERT_TRUE(g_after != nullptr); ASSERT_TRUE(g_after != nullptr);
EXPECT_TRUE(CheckEqualGraph(func_graph, g_after)); EXPECT_TRUE(CheckEqualGraph(func_graph, g_after));
} }
/// Feature: Dynamic shape.
/// Description: Test Tuple to TupleUnfold type transforming pass.
/// Expectation: After InsertTypeTransformOp pass, the graph is identical to the expected graph expressed by python.
TEST_F(TestInsertTypeTransformOp, DISABLED_test_tuple_to_tuple_unfold_transform) {
FuncGraphPtr g = getPyFun_.CallAndParseRet("test_tuple_to_tuple_unfold_transform", "before");
ASSERT_TRUE(g != nullptr);
std::vector<int64_t> shp_x{4, 2};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
AbstractBasePtrList args_spec_list{x_abstract};
auto func_graph = GetFuncGraph(g, args_spec_list);
ASSERT_TRUE(func_graph != nullptr);
AnfNodePtr shape;
SetTupleToTupleUnfoldKernelBuildInfo(func_graph, &shape);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
pm->AddPass(std::make_shared<opt::InsertTypeTransformOp>());
optimizer->AddPassManager(pm);
optimizer->Optimize(func_graph);
auto ret = func_graph->get_return();
auto real_tuple_get_item = ret->input(1)->cast<CNodePtr>();
ASSERT_TRUE(IsPrimitiveCNode(real_tuple_get_item, prim::kPrimRealTupleGetItem));
ASSERT_TRUE(real_tuple_get_item->abstract()->isa<abstract::AbstractScalar>());
auto obj_type = AnfAlgo::GetOutputKernelObjectType(real_tuple_get_item, 0);
ASSERT_TRUE(obj_type == KernelObjectType::SCALAR);
FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_tuple_to_tuple_unfold_transform", "after");
ASSERT_TRUE(g_after != nullptr);
EXPECT_TRUE(CheckEqualGraph(func_graph, g_after));
}
/// Feature: Dynamic shape. /// Feature: Dynamic shape.
/// Description: Test Tuple to Tensor type transforming pass. /// Description: Test Tuple to Tensor type transforming pass.
/// Expectation: After InsertTypeTransformOp pass, the graph is identical to the expected graph expressed by python. /// Expectation: After InsertTypeTransformOp pass, the graph is identical to the expected graph expressed by python.
@ -377,11 +461,52 @@ TEST_F(TestInsertTypeTransformOp, test_tuple_to_tensor_transform) {
optimizer->AddPassManager(pm); optimizer->AddPassManager(pm);
optimizer->Optimize(func_graph); optimizer->Optimize(func_graph);
auto tuple_to_tensor = func_graph->get_return()->input(1)->cast<CNodePtr>()->input(2)->cast<CNodePtr>();
ASSERT_TRUE(IsPrimitiveCNode(tuple_to_tensor, prim::kPrimTupleToTensor));
auto dtype = common::AnfAlgo::GetNodeAttr<TypePtr>(tuple_to_tensor, kAttrDType);
ASSERT_TRUE(dtype->type_id() == kNumberTypeFloat32);
ASSERT_TRUE(tuple_to_tensor->abstract()->isa<abstract::AbstractTensor>());
auto obj_type = AnfAlgo::GetOutputKernelObjectType(tuple_to_tensor, 0);
ASSERT_TRUE(obj_type == KernelObjectType::TENSOR);
FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_tuple_to_tensor_transform", "after"); FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_tuple_to_tensor_transform", "after");
ASSERT_TRUE(g_after != nullptr); ASSERT_TRUE(g_after != nullptr);
EXPECT_TRUE(CheckEqualGraph(func_graph, g_after)); EXPECT_TRUE(CheckEqualGraph(func_graph, g_after));
} }
/// Feature: Dynamic shape.
/// Description: Test Scalar to Tensor type transforming pass.
/// Expectation: After InsertTypeTransformOp pass, the graph is identical to the expected graph expressed by python.
TEST_F(TestInsertTypeTransformOp, DISABLED_test_scalar_to_tensor_transform) {
FuncGraphPtr g = getPyFun_.CallAndParseRet("test_scalar_to_tensor_transform", "before");
ASSERT_TRUE(g != nullptr);
auto x_abstract = std::make_shared<abstract::AbstractScalar>(3);
auto y_abstract = std::make_shared<abstract::AbstractScalar>(4);
AbstractBasePtrList args_spec_list{x_abstract, y_abstract};
auto func_graph = GetFuncGraph(g, args_spec_list);
ASSERT_TRUE(func_graph != nullptr);
AnfNodePtr add;
SetScalarToTensorKernelBuildInfo(func_graph, &add);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
pm->AddPass(std::make_shared<opt::InsertTypeTransformOp>());
optimizer->AddPassManager(pm);
optimizer->Optimize(func_graph);
auto scalar_to_tensor1 = func_graph->get_return()->input(1)->cast<CNodePtr>()->input(1)->cast<CNodePtr>();
ASSERT_TRUE(IsPrimitiveCNode(scalar_to_tensor1, prim::kPrimScalarToTensor));
auto dtype = common::AnfAlgo::GetNodeAttr<TypePtr>(scalar_to_tensor1, kAttrDType);
ASSERT_TRUE(dtype->type_id() == kNumberTypeInt64);
ASSERT_TRUE(scalar_to_tensor1->abstract()->isa<abstract::AbstractTensor>());
auto obj_type = AnfAlgo::GetOutputKernelObjectType(scalar_to_tensor1, 0);
ASSERT_TRUE(obj_type == KernelObjectType::TENSOR);
FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_scalar_to_tensor_transform", "after");
ASSERT_TRUE(g_after != nullptr);
EXPECT_TRUE(CheckEqualGraph(func_graph, g_after));
}
/// Feature: Dynamic shape. /// Feature: Dynamic shape.
/// Description: Test Tensor to Tuple type transforming pass. /// Description: Test Tensor to Tuple type transforming pass.
/// Expectation: After InsertTypeTransformOp pass, the graph is identical to the expected graph expressed by python. /// Expectation: After InsertTypeTransformOp pass, the graph is identical to the expected graph expressed by python.
@ -404,9 +529,46 @@ TEST_F(TestInsertTypeTransformOp, test_tensor_to_tuple_transform) {
optimizer->AddPassManager(pm); optimizer->AddPassManager(pm);
optimizer->Optimize(func_graph); optimizer->Optimize(func_graph);
auto tensor_to_tuple1 = func_graph->get_return()->input(1)->cast<CNodePtr>()->input(1)->cast<CNodePtr>();
ASSERT_TRUE(IsPrimitiveCNode(tensor_to_tuple1, prim::kPrimTensorToTuple));
ASSERT_TRUE(tensor_to_tuple1->abstract()->isa<abstract::AbstractTuple>());
auto obj_type = AnfAlgo::GetOutputKernelObjectType(tensor_to_tuple1, 0);
ASSERT_TRUE(obj_type == KernelObjectType::TUPLE);
FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_tensor_to_tuple_transform", "after"); FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_tensor_to_tuple_transform", "after");
ASSERT_TRUE(g_after != nullptr); ASSERT_TRUE(g_after != nullptr);
EXPECT_TRUE(CheckEqualGraph(func_graph, g_after)); EXPECT_TRUE(CheckEqualGraph(func_graph, g_after));
} }
/// Feature: Dynamic shape.
/// Description: Test Tensor to Scalar type transforming pass.
/// Expectation: After InsertTypeTransformOp pass, the graph is identical to the expected graph expressed by python.
TEST_F(TestInsertTypeTransformOp, DISABLED_test_tensor_to_scalar_transform) {
FuncGraphPtr g = getPyFun_.CallAndParseRet("test_tensor_to_scalar_transform", "before");
ASSERT_TRUE(g != nullptr);
std::vector<int64_t> shp_x{4};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
AbstractBasePtrList args_spec_list{x_abstract};
auto func_graph = GetFuncGraph(g, args_spec_list);
ASSERT_TRUE(func_graph != nullptr);
AnfNodePtr scalar_to_tensor;
SetTensorToScalarKernelBuildInfo(func_graph, &scalar_to_tensor);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
pm->AddPass(std::make_shared<opt::InsertTypeTransformOp>());
optimizer->AddPassManager(pm);
optimizer->Optimize(func_graph);
auto tensor_to_scalar = func_graph->get_return()->input(1)->cast<CNodePtr>()->input(1)->cast<CNodePtr>();
ASSERT_TRUE(IsPrimitiveCNode(tensor_to_scalar, prim::kPrimTensorToScalar));
ASSERT_TRUE(tensor_to_scalar->abstract()->isa<abstract::AbstractScalar>());
auto obj_type = AnfAlgo::GetOutputKernelObjectType(tensor_to_scalar, 0);
ASSERT_TRUE(obj_type == KernelObjectType::SCALAR);
FuncGraphPtr g_after = getPyFun_.CallAndParseRet("test_tensor_to_scalar_transform", "after");
ASSERT_TRUE(g_after != nullptr);
EXPECT_TRUE(CheckEqualGraph(func_graph, g_after));
}
} // namespace opt } // namespace opt
} // namespace mindspore } // namespace mindspore

View File

@ -127,6 +127,31 @@ def test_tuple_unfold_to_tensor_transform(tag):
return fns[tag] return fns[tag]
def test_tuple_to_tuple_unfold_transform(tag):
"""
Feature: Dynamic shape.
Description: Test Tuple to TupleUnfold transforming pass.
Expectation: The 'after' graph is identical to the graph after this pass.
"""
fns = FnDict()
shape = P.Shape()
real_tuple_get_item = Primitive('RealTupleGetItem')
@fns
def before(x):
res = shape(x)
res = res[0]
return res
@fns
def after(x):
res = shape(x, y)
res = real_tuple_get_item(res, 0)
return res
return fns[tag]
def test_tuple_to_tensor_transform(tag): def test_tuple_to_tensor_transform(tag):
""" """
Feature: Dynamic shape. Feature: Dynamic shape.
@ -151,6 +176,31 @@ def test_tuple_to_tensor_transform(tag):
return fns[tag] return fns[tag]
def test_scalar_to_tensor_transform(tag):
"""
Feature: Dynamic shape.
Description: Test Scalar to Tensor transforming pass.
Expectation: The 'after' graph is identical to the graph after this pass.
"""
fns = FnDict()
add = P.Add()
scalar_to_tensor = Primitive('ScalarToTensor')
@fns
def before(x, y):
res = add(x, y)
return res
@fns
def after(x, y):
x = scalar_to_tensor(x)
y = scalar_to_tensor(y)
res = add(x, y)
return res
return fns[tag]
def test_tensor_to_tuple_transform(tag): def test_tensor_to_tuple_transform(tag):
""" """
Feature: Dynamic shape. Feature: Dynamic shape.
@ -175,3 +225,27 @@ def test_tensor_to_tuple_transform(tag):
return res return res
return fns[tag] return fns[tag]
def test_tensor_to_scalar_transform(tag):
"""
Feature: Dynamic shape.
Description: Test Tensor to Scalar transforming pass.
Expectation: The 'after' graph is identical to the graph after this pass.
"""
fns = FnDict()
scalar_to_tensor = P.ScalarToTensor()
tensor_to_scalar = Primitive('TensorToScalar')
@fns
def before(x):
res = scalar_to_tensor(x)
return res
@fns
def after(x):
res = tensor_to_scalar(x)
res = scalar_to_tensor(res)
return res
return fns[tag]