modify format

This commit is contained in:
huodagu 2023-01-20 11:45:04 +08:00
parent 9e0108a31a
commit b8dcbdbde3
6 changed files with 22 additions and 26 deletions

View File

@ -20,7 +20,6 @@
异常: 异常:
- **TypeError** - `op``group` 不是str或者输入的数据类型是bool。 - **TypeError** - `op``group` 不是str或者输入的数据类型是bool。
- **ValueError** - `op` 为"prod"。
样例: 样例:

View File

@ -28,13 +28,10 @@ mindspore.ops.norm
- **ord** (Union[int, float, inf, -inf, 'fro', 'nuc'], 可选) - norm的模式。行为参考上表。默认值None。 - **ord** (Union[int, float, inf, -inf, 'fro', 'nuc'], 可选) - norm的模式。行为参考上表。默认值None。
- **dim** (Union[int, Tuple(int)], 可选) - 计算向量范数或矩阵范数的维度。默认值None。 - **dim** (Union[int, Tuple(int)], 可选) - 计算向量范数或矩阵范数的维度。默认值None。
- 当 `dim` 为int时会按向量范数计算。 - 当 `dim` 为int时会按向量范数计算。
- 当 `dim` 为一个二元组时,会按矩阵范数计算。
- 当 `dim` 为一个二元组时,会按矩阵范数计算。 - 当 `dim` 为None且 `ord` 为None`A` 将会被展平为1D并计算向量的2-范数。
- 当 `dim` 为None且 `ord` 不为None`A` 必须为1D或者2D。
- 当 `dim` 为None且 `ord` 为None`A` 将会被展平为1D并计算向量的2-范数。
- 当 `dim` 为None且 `ord` 不为None`A` 必须为1D或者2D。
- **keepdim** (bool) - 输出Tensor是否保留原有的维度。默认值False。 - **keepdim** (bool) - 输出Tensor是否保留原有的维度。默认值False。

View File

@ -5640,7 +5640,7 @@ def topk(input_x, k, dim=None, largest=True, sorted=True):
k (int): The number of top or bottom elements to be computed along the last dimension, constant input is needed. k (int): The number of top or bottom elements to be computed along the last dimension, constant input is needed.
dim (int, optional): The dimension to sort along. Default: None. dim (int, optional): The dimension to sort along. Default: None.
largest (bool, optional): If largest is False then the k smallest elements are returned. Default: True. largest (bool, optional): If largest is False then the k smallest elements are returned. Default: True.
sorted (bool): If True, the obtained elements will be sorted by the values in descending order. sorted (bool, optional): If True, the obtained elements will be sorted by the values in descending order.
If False, the obtained elements will be sorted by the values in ascending order. Default: True. If False, the obtained elements will be sorted by the values in ascending order. Default: True.
Returns: Returns:

View File

@ -101,7 +101,7 @@ def pinv(x, *, atol=None, rtol=None, hermitian=False):
atol or rtol is float. atol or rtol is float.
If atol or rtol is a Tensor, its shape must be broadcast to the singular value returned by If atol or rtol is a Tensor, its shape must be broadcast to the singular value returned by
`x.svd <https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.svd.html>`_ . `x.svd <https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.svd.html>`_ .
If x.shape is :math:`(B, M, N)`, and the shape of atol or rtol is :math: `(K, B)`, the output If x.shape is :math:`(B, M, N)`, and the shape of atol or rtol is :math:`(K, B)`, the output
shape is :math:`(K, B, N, M)`. shape is :math:`(K, B, N, M)`.
When the Hermitian is True, temporary support only real domain, x is treated as a real symmetric, so x is When the Hermitian is True, temporary support only real domain, x is treated as a real symmetric, so x is
not checked internally, and only use the lower triangular part in the computations. not checked internally, and only use the lower triangular part in the computations.

View File

@ -7214,21 +7214,21 @@ def norm(A, ord=None, dim=None, keepdim=False, *, dtype=None):
`ord` is the calculation mode of norm. The following norm modes are supported. `ord` is the calculation mode of norm. The following norm modes are supported.
====================== ========================= ======================================================== ====================== ================================ ==========================================
`ord` norm for matrices norm for vectors `ord` norm for matrices norm for vectors
====================== ========================= ======================================================== ====================== ================================ ==========================================
`None` (default) Frobenius norm `2`-norm (see below) `None` (default) Frobenius norm `2`-norm (see below)
`'fro'` Frobenius norm -- not supported -- `'fro'` Frobenius norm -- not supported --
`'nuc'` nuclear norm -- not supported -- `'nuc'` nuclear norm -- not supported --
`inf` :math:`max(sum(abs(x), dim=1))` :math:`max(abs(x))` `inf` :math:`max(sum(abs(x), dim=1))` :math:`max(abs(x))`
`-inf` :math:`min(sum(abs(x), dim=1))` :math:`min(abs(x))` `-inf` :math:`min(sum(abs(x), dim=1))` :math:`min(abs(x))`
`0` -- not supported -- :math:`sum(x != 0)` `0` -- not supported -- :math:`sum(x != 0)`
`1` :math:`max(sum(abs(x), dim=0))` as below `1` :math:`max(sum(abs(x), dim=0))` as below
`-1` :math:`min(sum(abs(x), dim=0))` as below `-1` :math:`min(sum(abs(x), dim=0))` as below
`2` largest singular value as below `2` largest singular value as below
`-2` smallest singular value as below `-2` smallest singular value as below
other `int` or `float` -- not supported -- :math:`sum(abs(x)^{ord})^{(1 / ord)}` other `int` or `float` -- not supported -- :math:`sum(abs(x)^{ord})^{(1 / ord)}`
====================== ========================= ======================================================== ====================== ================================ ==========================================
Args: Args:
A (Tensor): Tensor of shape :math:`(*, n)` or :math:`(*, m, n)` where * is zero or more batch dimensions. A (Tensor): Tensor of shape :math:`(*, n)` or :math:`(*, m, n)` where * is zero or more batch dimensions.

View File

@ -7822,7 +7822,7 @@ class TopK(Primitive):
If the two compared elements are the same, the one with the smaller index value is returned first. If the two compared elements are the same, the one with the smaller index value is returned first.
Args: Args:
sorted (bool): If True, the obtained elements will be sorted by the values in descending order. sorted (bool, optional): If True, the obtained elements will be sorted by the values in descending order.
If False, the obtained elements will be sorted by the values in ascending order. Default: True. If False, the obtained elements will be sorted by the values in ascending order. Default: True.
Inputs: Inputs: