forked from mindspore-Ecosystem/mindspore
parent
fdc60712df
commit
b8b3018125
|
@ -68,19 +68,6 @@ def test_reluv2(dtype, mode):
|
|||
assert np.allclose(dx.asnumpy(), expect_dx)
|
||||
|
||||
|
||||
class ReluForwardNet(nn.Cell):
|
||||
"""ReluForwardNet"""
|
||||
def __init__(self):
|
||||
"""init"""
|
||||
super(ReluForwardNet, self).__init__()
|
||||
self.relu = P.ReLU()
|
||||
|
||||
def construct(self, x):
|
||||
"""construct"""
|
||||
y = self.relu(x)
|
||||
return y
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -97,13 +84,20 @@ def test_reluv2_uint(dtype, mode):
|
|||
x = Tensor(np.array([[[[1, 1, 10],
|
||||
[1, 1, 1],
|
||||
[10, 1, 1]]]]).astype(dtype))
|
||||
dy = Tensor(np.array([[[[1, 0, 3],
|
||||
[0, 1, 0],
|
||||
[2, 1, 1]]]]).astype(dtype))
|
||||
expect_y = np.array([[[[1, 1, 10],
|
||||
[1, 1, 1],
|
||||
[10, 1, 1.]]]]).astype(dtype)
|
||||
net = ReluForwardNet()
|
||||
y = net(Tensor(x))
|
||||
expect_dx = np.array([[[[1, 0, 3],
|
||||
[0, 1, 0],
|
||||
[2, 1, 1]]]]).astype(dtype)
|
||||
net = ReluNet()
|
||||
y, dx = net(Tensor(x), Tensor(dy))
|
||||
|
||||
assert np.allclose(y.asnumpy(), expect_y)
|
||||
assert np.allclose(dx.asnumpy(), expect_dx)
|
||||
|
||||
|
||||
class AddReluNet(nn.Cell):
|
||||
|
|
Loading…
Reference in New Issue