forked from mindspore-Ecosystem/mindspore
Add random functions
This commit is contained in:
parent
fdc60712df
commit
a98cf3177f
|
@ -404,6 +404,12 @@ Tensor创建
|
|||
mindspore.ops.gamma
|
||||
mindspore.ops.laplace
|
||||
mindspore.ops.multinomial
|
||||
mindspore.ops.rand
|
||||
mindspore.ops.rand_like
|
||||
mindspore.ops.randint
|
||||
mindspore.ops.randint_like
|
||||
mindspore.ops.randn
|
||||
mindspore.ops.randn_like
|
||||
mindspore.ops.random_poisson
|
||||
mindspore.ops.random_categorical
|
||||
mindspore.ops.random_gamma
|
||||
|
|
|
@ -0,0 +1,20 @@
|
|||
mindspore.ops.rand
|
||||
===================
|
||||
|
||||
.. py:function:: mindspore.ops.rand(*size, dtype=None, seed=None)
|
||||
|
||||
返回一个Tensor,shape和dtype由输入决定,其元素为服从均匀分布的 :math:`[0, 1)` 区间的数字。
|
||||
|
||||
参数:
|
||||
- **size** (Union[int, tuple(int), list(int)]) - 输出的Tensor的shape,例如,:math:`(2, 3)` or :math:`2`。
|
||||
|
||||
关键字参数:
|
||||
- **dtype** (:class:`mindspore.dtype`,可选) - 指定的输出Tensor的dtype,必须是float类型。如果是None,`mindspore.float32` 会被使用。默认值:None。
|
||||
- **seed** (int,可选) - 随机种子,必须大于或等于0。默认值:None,值将取0。
|
||||
|
||||
返回:
|
||||
Tensor,shape和dtype由输入决定其元素为服从均匀分布的 :math:`[0, 1)` 区间的数字。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `seed` 不是非负整数。
|
||||
- **ValueError** - 如果 `dtype` 不是一个 `mstype.float_type` 类型。
|
|
@ -0,0 +1,20 @@
|
|||
mindspore.ops.rand_like
|
||||
========================
|
||||
|
||||
.. py:function:: mindspore.ops.rand_like(x, seed=None, *, dtype=None)
|
||||
|
||||
返回一个Tensor,shape和dtype由输入决定,其元素为服从均匀分布的 :math:`[0, 1)` 区间的数字。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor):输入的Tensor,用来决定输出Tensor的shape和默认的dtype。
|
||||
- **seed** (int,可选) - 随机种子,必须大于或等于0。默认值:None,值将取0。
|
||||
|
||||
关键字参数:
|
||||
- **dtype** (:class:`mindspore.dtype`,可选) - 指定的输出Tensor的dtype,必须是float类型。如果是None,`x` 的dtype会被使用。默认值:None。
|
||||
|
||||
返回:
|
||||
Tensor,shape和dtype由输入决定其元素为服从均匀分布的 :math:`[0, 1)` 区间的数字。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `seed` 不是非负整数。
|
||||
- **ValueError** - 如果 `dtype` 不是一个 `mstype.float_type` 类型。
|
|
@ -0,0 +1,24 @@
|
|||
mindspore.ops.randint
|
||||
======================
|
||||
|
||||
.. py:function:: mindspore.ops.randint(low, high, size, seed=None, *, dtype=None)
|
||||
|
||||
返回一个Tensor,其元素为 [ `low` , `high` ) 区间的随机整数。
|
||||
|
||||
参数:
|
||||
- **low** (int) - 随机区间的起始值。
|
||||
- **high** (int) - 随机区间的结束值。
|
||||
- **size** (tuple) - 新Tensor的shape。
|
||||
- **seed** (int,可选) - 随机种子,必须大于或等于0。默认值:None,值将取0。
|
||||
|
||||
关键字参数:
|
||||
- **dtype** (:class:`mindspore.dtype`,可选) - 指定的Tensor dtype,必须是int类型的dtype。如果是None,将会使用 `mindspore.int64` 。默认值:None。
|
||||
|
||||
返回:
|
||||
Tensor,shape和dtype被输入指定,其元素为 [ `low` , `high` ) 区间的随机整数。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `seed` 不是非负整数。
|
||||
- **TypeError** - 如果 `size` 不是tuple。
|
||||
- **TypeError** - 如果 `low` 或 `high` 不是整数。
|
||||
- **ValueError** - 如果 `dtype` 不是一个 `mstype.int_type` 类型。
|
|
@ -0,0 +1,23 @@
|
|||
mindspore.ops.randint_like
|
||||
===========================
|
||||
|
||||
.. py:function:: mindspore.ops.randint_like(x, low, high, *, dtype=None, seed=None)
|
||||
|
||||
返回一个Tensor,其元素为 [ `low` , `high` ) 区间的随机整数。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 输入的Tensor,用来决定输出Tensor的shape和默认的dtype。
|
||||
- **low** (int) - 随机区间的起始值。
|
||||
- **high** (int) - 随机区间的结束值。
|
||||
- **seed** (int,可选) - 随机种子,必须大于或等于0。默认值:None,值将取0。
|
||||
|
||||
关键字参数:
|
||||
- **dtype** (:class:`mindspore.dtype`,可选) - 指定的Tensor dtype,必须是int类型的dtype。如果是None,将会使用 `x` 的dtype。默认值:None。
|
||||
|
||||
返回:
|
||||
Tensor,shape和dtype被输入指定,其元素为 [ `low` , `high` ) 区间的随机整数。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `seed` 不是非负整数。
|
||||
- **TypeError** - 如果 `low` 或 `high` 不是整数。
|
||||
- **ValueError** - 如果 `dtype` 不是 `mstype.int_type` 类型。
|
|
@ -0,0 +1,21 @@
|
|||
mindspore.ops.randn
|
||||
====================
|
||||
|
||||
.. py:function:: mindspore.ops.randn(*size, dtype=None, seed=None)
|
||||
|
||||
返回一个Tensor,shape和dtype由输入决定,其元素为服从标准正态分布的 :math:`[0, 1)` 区间的数字。
|
||||
|
||||
参数:
|
||||
- **size** (Union[int, tuple(int), list(int)]) - 输出的Tensor的shape,例如,:math:`(2, 3)` or :math:`2`。
|
||||
|
||||
关键字参数:
|
||||
- **dtype** (:class:`mindspore.dtype`,可选) - 需求的输出Tensor的dtype,必须是float类型。如果是None,`mindspore.float32` 会被使用。默认值:None。
|
||||
- **seed** (int,可选) - 随机种子,必须大于或等于0。默认值:None,值将取0。
|
||||
|
||||
返回:
|
||||
Tensor,shape和dtype由输入决定其元素为服从标准正态分布的 :math:`[0, 1)` 区间的数字。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `seed` 不是非负整数。
|
||||
- **ValueError** - 如果 `dtype` 不是一个 `mstype.float_type` 类型。
|
||||
- **ValueError** - 如果 `size` 包含不合理的数字。
|
|
@ -0,0 +1,20 @@
|
|||
mindspore.ops.randn_like
|
||||
=========================
|
||||
|
||||
.. py:function:: mindspore.ops.randn_like(x, seed=None, *, dtype=None)
|
||||
|
||||
返回一个Tensor,shape和dtype由输入决定,其元素为服从标准正态分布的 :math:`[0, 1)` 区间的数字。
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - 输入的Tensor,用来决定输出Tensor的shape和默认的dtype。
|
||||
- **seed** (int,可选) - 随机种子,必须大于或等于0。默认值:None,值将取0。
|
||||
|
||||
关键字参数:
|
||||
- **dtype** (:class:`mindspore.dtype`,可选) - 需求的输出Tensor的dtype,必须是float类型。如果是None,`x` 的dtype会被使用。默认值:None。
|
||||
|
||||
返回:
|
||||
Tensor,shape和dtype由输入决定其元素为服从标准正态分布的 :math:`[0, 1)` 区间的数字。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `seed` 不是非负整数。
|
||||
- **ValueError** - 如果 `dtype` 不是一个 `mstype.float_type` 类型。
|
|
@ -404,6 +404,12 @@ Randomly Generating Functions
|
|||
mindspore.ops.gamma
|
||||
mindspore.ops.laplace
|
||||
mindspore.ops.multinomial
|
||||
mindspore.ops.rand
|
||||
mindspore.ops.rand_like
|
||||
mindspore.ops.randint
|
||||
mindspore.ops.randint_like
|
||||
mindspore.ops.randn
|
||||
mindspore.ops.randn_like
|
||||
mindspore.ops.random_poisson
|
||||
mindspore.ops.random_categorical
|
||||
mindspore.ops.random_gamma
|
||||
|
|
|
@ -512,6 +512,12 @@ from .random_func import (
|
|||
gamma,
|
||||
poisson,
|
||||
multinomial,
|
||||
rand,
|
||||
rand_like,
|
||||
randn,
|
||||
randn_like,
|
||||
randint,
|
||||
randint_like
|
||||
)
|
||||
from .grad import (
|
||||
grad_func,
|
||||
|
|
|
@ -806,6 +806,311 @@ def gamma(shape, alpha, beta, seed=None):
|
|||
return value
|
||||
|
||||
|
||||
@constexpr
|
||||
def _generate_shapes(shape):
|
||||
"""Generate shapes for randn and rand."""
|
||||
if not shape:
|
||||
size = (1,)
|
||||
elif len(shape) == 1:
|
||||
if isinstance(shape[0], int):
|
||||
size = shape
|
||||
elif isinstance(shape[0], list):
|
||||
size = tuple(shape[0])
|
||||
elif isinstance(shape[0], tuple):
|
||||
size = shape[0]
|
||||
else:
|
||||
raise TypeError("If the length of the argument 'shape' is 1, the type of the argument 'shape' must be "
|
||||
"one of ['int', 'list', 'tuple'], but got ", shape[0])
|
||||
else:
|
||||
for value in shape:
|
||||
if not isinstance(value, int):
|
||||
raise TypeError("If the length of the argument 'shape' is > 1, the type of the argument 'shape' must "
|
||||
"all be int, but got ", value)
|
||||
size = shape
|
||||
return size
|
||||
|
||||
|
||||
@_function_forbid_reuse
|
||||
def rand(*size, dtype=None, seed=None):
|
||||
r"""
|
||||
Returns a new Tensor with given shape and dtype, filled with random numbers from the uniform distribution on the
|
||||
interval :math:`[0, 1)`.
|
||||
|
||||
Args:
|
||||
*size (Union[int, tuple(int), list(int)]): Shape of the new tensor, e.g. :math:`(2, 3)` or :math:`2`.
|
||||
|
||||
Keyword Args:
|
||||
dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be float type. If None,
|
||||
`mindspore.float32` will be applied. Default: None.
|
||||
seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
|
||||
|
||||
Returns:
|
||||
Tensor, with the designated shape and dtype, filled with random numbers from the uniform distribution on
|
||||
the interval :math:`[0, 1)`.
|
||||
|
||||
Raises:
|
||||
TypeError: `seed` is not a non-negative integer.
|
||||
ValueError: If `dtype` is not a `mstype.float_type` type.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.ops as ops
|
||||
>>> print(ops.rand((2,3)))
|
||||
[[4.1702199e-01 9.9718481e-01 7.2032452e-01]
|
||||
[9.3255734e-01 1.1438108e-04 1.2812445e-01]]
|
||||
"""
|
||||
if dtype is None:
|
||||
dtype = mstype.float32
|
||||
elif dtype not in mstype.float_type:
|
||||
raise ValueError(f"For 'rand', the 'dtype' must be a float type, but got {dtype}.")
|
||||
shape = _generate_shapes(size)
|
||||
cast_ = P.Cast()
|
||||
seed1, seed2 = _get_seed(seed, 'rand')
|
||||
rand_op = P.UniformReal(seed1, seed2)
|
||||
output = rand_op(shape)
|
||||
return cast_(output, dtype)
|
||||
|
||||
|
||||
@_function_forbid_reuse
|
||||
def rand_like(x, seed=None, *, dtype=None):
|
||||
r"""
|
||||
Returns a new Tensor with the shape and dtype as `x`, filled with random numbers from the uniform distribution on
|
||||
the interval :math:`[0, 1)`.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input Tensor to specify the output shape and its default dtype.
|
||||
seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
|
||||
|
||||
Keyword Args:
|
||||
dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be float type. If None,
|
||||
the same dtype of `x` will be applied. Default: None.
|
||||
|
||||
Returns:
|
||||
Tensor, with the designated shape and dtype, filled with random numbers from the uniform distribution on
|
||||
the interval :math:`[0, 1)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `seed` is not a non-negative integer.
|
||||
ValueError: If `dtype` is not a `mstype.float_type` type.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore as ms
|
||||
>>> from mindspore import Tensor, ops
|
||||
>>> a = Tensor([[2, 3, 4], [1, 2, 3]])
|
||||
>>> print(ops.rand_like(a, dtype=ms.float32))
|
||||
[[4.1702199e-01 9.9718481e-01 7.2032452e-01]
|
||||
[9.3255734e-01 1.1438108e-04 1.2812445e-01]]
|
||||
"""
|
||||
|
||||
if dtype is None:
|
||||
dtype = x.dtype
|
||||
elif dtype not in mstype.float_type:
|
||||
raise ValueError(f"For 'rand_like', the 'dtype' must be a float type, but got {dtype}.")
|
||||
shape = x.shape
|
||||
cast_ = P.Cast()
|
||||
seed1, seed2 = _get_seed(seed, 'rand_like')
|
||||
rand_op = P.UniformReal(seed1, seed2)
|
||||
output = rand_op(shape)
|
||||
return cast_(output, dtype)
|
||||
|
||||
|
||||
@_function_forbid_reuse
|
||||
def randn(*size, dtype=None, seed=None):
|
||||
r"""
|
||||
Returns a new Tensor with given shape and dtype, filled with a sample (or samples)
|
||||
from the standard normal distribution.
|
||||
|
||||
Args:
|
||||
*size (Union[int, tuple(int), list(int)]): Shape of the new tensor, e.g., :math:`(2, 3)` or :math:`2`.
|
||||
|
||||
Keyword Args:
|
||||
dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be float type. If None,
|
||||
:class:`mindspore.float32` will be used. Default: None.
|
||||
seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
|
||||
|
||||
Returns:
|
||||
Tensor, with the designated shape and dtype, filled with a sample (or samples) from the
|
||||
"standard normal" distribution.
|
||||
|
||||
Raises:
|
||||
TypeError: `seed` is not a non-negative integer.
|
||||
ValueError: If `dtype` is not a `mstype.float_type`.
|
||||
ValueError: If `size` contains invalid number.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.ops as ops
|
||||
>>> print(ops.randn((2,3)))
|
||||
[[ 0.30639967 -0.42438635 -0.20454668]
|
||||
[-0.4287376 1.3054721 0.64747655]]
|
||||
"""
|
||||
if dtype is None:
|
||||
dtype = mstype.float32
|
||||
elif dtype not in mstype.float_type:
|
||||
raise ValueError(f"For 'randn', the 'dtype' must be a float type, but got {dtype}.")
|
||||
shape = _generate_shapes(size)
|
||||
cast_ = P.Cast()
|
||||
seed1, seed2 = _get_seed(seed, 'randn')
|
||||
rand_op = P.StandardNormal(seed1, seed2)
|
||||
output = rand_op(shape)
|
||||
return cast_(output, dtype)
|
||||
|
||||
|
||||
@_function_forbid_reuse
|
||||
def randn_like(x, seed=None, *, dtype=None):
|
||||
r"""
|
||||
Returns a new Tensor with given shape and dtype, filled with a sample (or samples) from the standard normal
|
||||
distribution.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input Tensor to specify the output shape and its default dtype.
|
||||
seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
|
||||
|
||||
Keyword Args:
|
||||
dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be float type. If None,
|
||||
:class:`mindspore.float32` will be used. Default: None.
|
||||
|
||||
Returns:
|
||||
Tensor, with the designated shape and dtype, filled with a sample (or samples) from the
|
||||
"standard normal" distribution.
|
||||
|
||||
Raises:
|
||||
TypeError: `seed` is not a non-negative integer.
|
||||
ValueError: If `dtype` is not a `mstype.float_type`.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore as ms
|
||||
>>> from mindspore import Tensor, ops
|
||||
>>> a = Tensor([[1, 2, 3], [4, 5, 6]])
|
||||
>>> print(ops.randn_like(x, dtype=ms.float32))
|
||||
[[ 0.30639967 -0.42438635 -0.20454668]
|
||||
[-0.4287376 1.3054721 0.64747655]]
|
||||
"""
|
||||
if dtype is None:
|
||||
dtype = x.dtype
|
||||
elif dtype not in mstype.float_type:
|
||||
raise ValueError(f"For 'randn_like', the 'dtype' must be a float type, but got {dtype}.")
|
||||
shape = x.shape
|
||||
cast_ = P.Cast()
|
||||
seed1, seed2 = _get_seed(seed, 'randn_like')
|
||||
rand_op = P.StandardNormal(seed1, seed2)
|
||||
output = rand_op(shape)
|
||||
return cast_(output, dtype)
|
||||
|
||||
|
||||
@_function_forbid_reuse
|
||||
def randint(low, high, size, seed=None, *, dtype=None):
|
||||
r"""
|
||||
Return a Tensor whose elements are random integers from low (inclusive) to high (exclusive).
|
||||
|
||||
Args:
|
||||
low (int): Start value of interval.
|
||||
high (int): End value of interval.
|
||||
size (tuple): Shape of the new tensor.
|
||||
seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
|
||||
|
||||
Keyword Args:
|
||||
dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be int type. If None,
|
||||
`mindspore.int64` will be used. Default: None.
|
||||
|
||||
Returns:
|
||||
Tensor, with the designated shape and dtype, filled with random integers from low (inclusive)
|
||||
to high (exclusive).
|
||||
|
||||
Raises:
|
||||
TypeError: `seed` is not a non-negative integer.
|
||||
TypeError: `size` is not a tuple.
|
||||
TypeError: `low` or `high` is not an integer.
|
||||
ValueError: If `dtype` is not a `mstype.int_type`.
|
||||
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.ops as ops
|
||||
>>> print(ops.randint(1, 10, (2,3)))
|
||||
[[4 9 7]
|
||||
[9 1 2]]
|
||||
"""
|
||||
if dtype is None:
|
||||
dtype = mstype.int64
|
||||
elif dtype not in mstype.int_type:
|
||||
raise ValueError(f"For 'randint', the 'dtype' must be an int type, but got {dtype}.")
|
||||
if not isinstance(size, tuple):
|
||||
raise ValueError(f"For 'randint', the input 'size' must be a tuple, but got {size}.")
|
||||
if not isinstance(low, int) or not isinstance(high, int):
|
||||
raise TypeError(f"For 'randint', 'low' and 'high' must be an int, but got {type(low)} and {type(high)}.")
|
||||
seed1, seed2 = _get_seed(seed, 'randint')
|
||||
cast_ = P.Cast()
|
||||
rand_op = P.UniformInt(seed1, seed2)
|
||||
low_ = Tensor(low, mstype.int32)
|
||||
high_ = Tensor(high, mstype.int32)
|
||||
output = rand_op(size, low_, high_)
|
||||
return cast_(output, dtype)
|
||||
|
||||
|
||||
@_function_forbid_reuse
|
||||
def randint_like(x, low, high, seed=None, *, dtype=None):
|
||||
r"""
|
||||
Returns a tensor with the same shape as Tensor `x` filled with random integers generated uniformly between
|
||||
low (inclusive) and high (exclusive).
|
||||
|
||||
Args:
|
||||
x (Tensor): Input Tensor to specify the output shape and its default dtype.
|
||||
low(int): Start value of interval.
|
||||
high(int): End value of interval.
|
||||
seed (int, optional): Random seed, must be greater or equal to 0. Default: None, and 0 will be used.
|
||||
|
||||
Keyword Args:
|
||||
dtype (:class:`mindspore.dtype`, optional): Designated tensor dtype, it must be int type. If None,
|
||||
:class:`mindspore.int64` will be used. Default is :class:`mindspore.int64`.
|
||||
|
||||
Returns:
|
||||
Tensor, with the designated shape and dtype, filled with random integers from low (inclusive)
|
||||
to high (exclusive).
|
||||
|
||||
Raises:
|
||||
TypeError: `seed` is not a non-negative integer.
|
||||
TypeError: `low` or `high` is not an integer.
|
||||
ValueError: If `dtype` is not a `mstype.int_type`.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> from mindspore import Tensor, ops
|
||||
>>> a = Tensor([[1, 2, 3], [3, 2, 1]])
|
||||
>>> print(ops.randint_like(a, 1, 10))
|
||||
[[4 9 7]
|
||||
[9 1 2]]
|
||||
"""
|
||||
if dtype is None:
|
||||
dtype = x.dtype
|
||||
elif dtype not in mstype.int_type:
|
||||
raise ValueError(f"For 'randint_like', the 'dtype' must be an int type, but got {dtype}.")
|
||||
if not isinstance(low, int) or not isinstance(high, int):
|
||||
raise TypeError(f"For 'randint_like', 'low' and 'high' must be an int, but got {type(low)} and {type(high)}.")
|
||||
size = x.shape
|
||||
seed1, seed2 = _get_seed(seed, 'randint_like')
|
||||
rand_op = P.UniformInt(seed1, seed2)
|
||||
cast_ = P.Cast()
|
||||
low_ = Tensor(low, mstype.int32)
|
||||
high_ = Tensor(high, mstype.int32)
|
||||
output = rand_op(size, low_, high_)
|
||||
return cast_(output, dtype)
|
||||
|
||||
|
||||
@_function_forbid_reuse
|
||||
def poisson(shape, mean, seed=None):
|
||||
r"""
|
||||
|
@ -953,6 +1258,7 @@ def _check_shape(input_shape):
|
|||
__all__ = [
|
||||
'standard_laplace', 'random_categorical', 'uniform', 'standard_normal', 'random_gamma',
|
||||
'uniform_candidate_sampler', 'random_poisson', 'log_uniform_candidate_sampler', 'shuffle', 'choice_with_mask',
|
||||
'normal', 'laplace', 'gamma', 'poisson', 'multinomial'
|
||||
'normal', 'laplace', 'gamma', 'poisson', 'multinomial', 'rand', 'rand_like', 'randn', 'randn_like', 'randint',
|
||||
'randint_like'
|
||||
]
|
||||
__all__.sort()
|
||||
|
|
|
@ -0,0 +1,127 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops as ops
|
||||
|
||||
|
||||
class Rand(nn.Cell):
|
||||
def construct(self, size, dtype):
|
||||
return ops.rand(size, dtype=dtype)
|
||||
|
||||
|
||||
class RandLike(nn.Cell):
|
||||
def construct(self, x, dtype):
|
||||
return ops.rand_like(x, dtype=dtype)
|
||||
|
||||
|
||||
class Randn(nn.Cell):
|
||||
def construct(self, size, dtype):
|
||||
return ops.randn(size, dtype=dtype)
|
||||
|
||||
|
||||
class RandnLike(nn.Cell):
|
||||
def construct(self, x, dtype):
|
||||
return ops.randn_like(x, dtype=dtype)
|
||||
|
||||
|
||||
class RandInt(nn.Cell):
|
||||
def construct(self, low, high, size, dtype):
|
||||
return ops.randint(low, high, size, dtype=dtype)
|
||||
|
||||
|
||||
class RandIntLike(nn.Cell):
|
||||
def construct(self, x, low, high, dtype):
|
||||
return ops.randint_like(x, low, high, dtype=dtype)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
@pytest.mark.parametrize('dtype', [None, ms.float32])
|
||||
def test_rand_functions(mode, dtype):
|
||||
r"""
|
||||
Feature: ops.rand, ops.randn, ops.rand_like, ops.randn_like
|
||||
Description: Verify the result of ops.rand, ops.randn, ops.rand_like, ops.randn_like
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = ms.Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), ms.float16)
|
||||
size = (2, 3)
|
||||
net1 = Rand()
|
||||
net2 = Randn()
|
||||
net3 = RandLike()
|
||||
net4 = RandnLike()
|
||||
out1 = net1(size, dtype)
|
||||
out2 = net2(size, dtype)
|
||||
out3 = net3(x, dtype)
|
||||
out4 = net4(x, dtype)
|
||||
if dtype is None:
|
||||
assert out1.dtype == ms.float32
|
||||
assert out2.dtype == ms.float32
|
||||
assert out3.dtype == ms.float16
|
||||
assert out4.dtype == ms.float16
|
||||
else:
|
||||
assert out1.dtype == dtype
|
||||
assert out2.dtype == dtype
|
||||
assert out3.dtype == dtype
|
||||
assert out4.dtype == dtype
|
||||
|
||||
assert out1.shape == size
|
||||
assert out2.shape == size
|
||||
assert out3.shape == x.shape
|
||||
assert out4.shape == x.shape
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.platform_arm_cpu
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
|
||||
@pytest.mark.parametrize('dtype', [None, ms.int32])
|
||||
def test_randint_functions(mode, dtype):
|
||||
r"""
|
||||
Feature: ops.randint, ops.randint_like
|
||||
Description: Verify the result of ops.randint, ops.randint_like
|
||||
Expectation: success
|
||||
"""
|
||||
ms.set_context(mode=mode)
|
||||
x = ms.Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), ms.int32)
|
||||
net = RandInt()
|
||||
net2 = RandIntLike()
|
||||
out = net(0, 10, (2, 3), dtype=dtype)
|
||||
out2 = net2(x, low=0, high=15, dtype=dtype)
|
||||
if dtype is None:
|
||||
assert out.dtype == ms.int64
|
||||
assert out2.dtype == ms.int32
|
||||
else:
|
||||
assert out.dtype == dtype
|
||||
assert out2.dtype == dtype
|
||||
assert out.shape == (2, 3)
|
||||
assert out2.shape == x.shape
|
||||
assert out.max() < 10 and out.min() >= 0
|
||||
assert out2.max() < 15 and out2.min() >= 0
|
Loading…
Reference in New Issue