forked from mindspore-Ecosystem/mindspore
correct the files to fix the webpage
This commit is contained in:
parent
3c0832b22c
commit
a0cd5e0647
|
@ -17,11 +17,11 @@
|
|||
|
||||
.. note::
|
||||
- `clip_value_min` 必须小于或等于 `clip_value_max` ;
|
||||
- :math:`x` , `clip_value_min` 和 `clip_value_max`的数据类型需支持隐式类型转换,且不能同时为布尔型。
|
||||
- :math:`x` , `clip_value_min` 和 `clip_value_max` 的数据类型需支持隐式类型转换,且不能同时为布尔型。
|
||||
|
||||
|
||||
参数:
|
||||
- **x** (Tensor) - clip_by_value的输入,任意维度的Tensor。
|
||||
- **x** (Tensor) - `clip_by_value` 的输入,任意维度的Tensor。
|
||||
- **clip_value_min** (Tensor) - 指定最小值。
|
||||
- **clip_value_max** (Tensor) - 指定最大值。
|
||||
|
||||
|
|
|
@ -28,7 +28,7 @@ class MAE(Metric):
|
|||
in the input: :math:`x` and the target: :math:`y`.
|
||||
|
||||
.. math::
|
||||
\text{MAE} = \frac{\sum_{i=1}^n \|y_{pred}_i - y_i\|}{n}
|
||||
\text{MAE} = \frac{\sum_{i=1}^n \|{y\_pred}_i - y_i\|}{n}
|
||||
|
||||
where :math:`n` is batch size.
|
||||
|
||||
|
@ -104,7 +104,7 @@ class MSE(Metric):
|
|||
each element in the prediction and the ground truth: :math:`x` and: :math:`y`.
|
||||
|
||||
.. math::
|
||||
\text{MSE}(x,\ y) = \frac{\sum_{i=1}^n(y_{pred}_i - y_i)^2}{n}
|
||||
\text{MSE}(x,\ y) = \frac{\sum_{i=1}^n({y\_pred}_i - y_i)^2}{n}
|
||||
|
||||
where :math:`n` is batch size.
|
||||
|
||||
|
|
|
@ -169,11 +169,11 @@ class ROC(Metric):
|
|||
A tuple, composed of `fpr`, `tpr`, and `thresholds`.
|
||||
|
||||
- **fpr** (np.array) - False positive rate. In binary classification case, a fpr numpy array under different
|
||||
thresholds will be returned, otherwise in multiclass case, a list of
|
||||
fpr numpy arrays will be returned and each element represents one category.
|
||||
thresholds will be returned, otherwise in multiclass case, a list of
|
||||
fpr numpy arrays will be returned and each element represents one category.
|
||||
- **tpr** (np.array) - True positive rates. n binary classification case, a tps numpy array under different
|
||||
thresholds will be returned, otherwise in multiclass case, a list of tps numpy arrays
|
||||
will be returned and each element represents one category.
|
||||
thresholds will be returned, otherwise in multiclass case, a list of tps numpy arrays
|
||||
will be returned and each element represents one category.
|
||||
- **thresholds** (np.array) - Thresholds used for computing fpr and tpr.
|
||||
|
||||
Raises:
|
||||
|
|
|
@ -30,7 +30,7 @@ class Uniform(Distribution):
|
|||
and the probability density function:
|
||||
|
||||
.. math::
|
||||
f(x, a, b) = 1 / b \exp(\exp(-(x - a) / b) - x),
|
||||
f(x, a, b) = 1 / (b - a),
|
||||
|
||||
where a and b are the lower and upper bound respectively.
|
||||
|
||||
|
|
Loading…
Reference in New Issue