!226 expend conv stride and dilation to 2d

Merge pull request !226 from wangnan39/expend_conv_stride_to_2d
This commit is contained in:
mindspore-ci-bot 2020-04-14 14:58:22 +08:00 committed by Gitee
commit 94589ce611
17 changed files with 362 additions and 290 deletions

View File

@ -35,8 +35,22 @@ void Conv2dCPUKernel::InitKernel(const CNodePtr &kernel_node) {
dnnl::memory::desc dst_desc = GetDefaultMemDesc(dst_shape);
int kernel_size = SizeToInt(weight_shape[3]);
int stride = AnfAlgo::GetNodeAttr<int>(kernel_node, STRIDE);
int dilation = AnfAlgo::GetNodeAttr<int>(kernel_node, DILATION);
auto stride_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, STRIDE);
auto dilation_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, DILATION);
if (stride_ori.size() != 4 || stride_ori[2] != stride_ori[3]) {
MS_LOG(EXCEPTION) << "conv2d only support equal stride, and stride must be 4d!";
}
if (stride_ori[0] != 1 || stride_ori[1] != 1) {
MS_LOG(EXCEPTION) << "conv2d stride only support 1 in N axis and C axis!";
}
if (dilation_ori.size() != 4 || dilation_ori[2] != 1 || dilation_ori[3] != 1) {
MS_LOG(EXCEPTION) << "conv2d dilation only support 1, and dilation must be 4d!";
}
if (dilation_ori[0] != 1 || dilation_ori[1] != 1) {
MS_LOG(EXCEPTION) << "conv2d dilation only support 1 in N axis and C axis!";
}
int stride = stride_ori[2];
int dilation = dilation_ori[2];
dnnl::memory::dims strides{stride, stride};
dnnl::memory::dims dilates{dilation - 1, dilation - 1};

View File

@ -35,8 +35,19 @@ void Conv2dGradFilterCPUKernel::InitKernel(const CNodePtr &kernel_node) {
dnnl::memory::desc dst_desc = GetDefaultMemDesc(dst_shape);
int kernel_size = SizeToInt(weight_shape[3]);
int stride = AnfAlgo::GetNodeAttr<int>(kernel_node, STRIDE);
int dilation = AnfAlgo::GetNodeAttr<int>(kernel_node, DILATION);
auto stride_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, STRIDE);
auto dilation_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, DILATION);
if (stride_ori.size() != 2 || stride_ori[0] != stride_ori[1]) {
MS_LOG(EXCEPTION) << "Conv2dGradFilterCPUKernel only support equal stride, and stride must be 2d!";
}
if (dilation_ori.size() != 4 || dilation_ori[2] != 1 || dilation_ori[3] != 1) {
MS_LOG(EXCEPTION) << "Conv2dGradFilterCPUKernel dilation only support 1, and dilation must be 4d!";
}
if (dilation_ori[0] != 1 || dilation_ori[1] != 1) {
MS_LOG(EXCEPTION) << "Conv2dGradFilterCPUKernel dilation only support 1 in N axis and C axis!";
}
int stride = stride_ori[0];
int dilation = dilation_ori[2];
dnnl::memory::dims strides{stride, stride};
dnnl::memory::dims dilates{dilation - 1, dilation - 1};

View File

@ -35,8 +35,19 @@ void Conv2dGradInputCPUKernel::InitKernel(const CNodePtr &kernel_node) {
dnnl::memory::desc dst_desc = GetDefaultMemDesc(dst_shape);
int kernel_size = SizeToInt(weight_shape[3]);
int stride = AnfAlgo::GetNodeAttr<int>(kernel_node, STRIDE);
int dilation = AnfAlgo::GetNodeAttr<int>(kernel_node, DILATION);
auto stride_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, STRIDE);
auto dilation_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, DILATION);
if (stride_ori.size() != 2 || stride_ori[0] != stride_ori[1]) {
MS_LOG(EXCEPTION) << "Conv2dGradInputCPUKernel only support equal stride, and stride must be 2d!";
}
if (dilation_ori.size() != 4 || dilation_ori[2] != 1 || dilation_ori[3] != 1) {
MS_LOG(EXCEPTION) << "Conv2dGradInputCPUKernel dilation only support 1, and dilation must be 4d!";
}
if (dilation_ori[0] != 1 || dilation_ori[1] != 1) {
MS_LOG(EXCEPTION) << "Conv2dGradInputCPUKernel dilation only support 1 in N axis and C axis!";
}
int stride = stride_ori[0];
int dilation = dilation_ori[2];
dnnl::memory::dims strides{stride, stride};
dnnl::memory::dims dilates{dilation - 1, dilation - 1};
std::vector<int> int_padding_l;

View File

@ -113,9 +113,24 @@ class Conv2dGpuFwdKernel : public GpuKernel {
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetConvolutionGroupCount(conv_desc_, group_), "cudnnSetConvGroupCount failed");
pad_height_ = GetAttr<int>(kernel_node, "pad");
pad_width_ = pad_height_;
stride_ = GetAttr<int>(kernel_node, "stride");
dilation_ = GetAttr<int>(kernel_node, "dilation");
pad_mode_ = GetAttr<std::string>(kernel_node, "pad_mode");
auto stride_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, "stride");
auto dilation_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, "dilation");
if (stride_ori.size() != 4 || stride_ori[2] != stride_ori[3]) {
MS_LOG(EXCEPTION) << "conv2d only support equal stride, and stride must be 4d!";
}
if (stride_ori[0] != 1 || stride_ori[1] != 1) {
MS_LOG(EXCEPTION) << "conv2d stride only support 1 in N axis and C axis!";
}
if (dilation_ori.size() != 4 || dilation_ori[2] != dilation_ori[3]) {
MS_LOG(EXCEPTION) << "conv2d only support equal dilation, and dilation must be 4d!";
}
if (dilation_ori[0] != 1 || dilation_ori[1] != 1) {
MS_LOG(EXCEPTION) << "conv2d dilation only support 1 in N axis and C axis!";
}
stride_ = stride_ori[2];
dilation_ = dilation_ori[2];
cudnnTensorDescriptor_t input_descriptor_real = nullptr;
if (pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) {
SetPad(in_shape, kernel_node);

View File

@ -116,9 +116,20 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
pad_height_ = GetAttr<int>(kernel_node, "pad");
pad_width_ = pad_height_;
stride_ = GetAttr<int>(kernel_node, "stride");
dilation_ = GetAttr<int>(kernel_node, "dilation");
pad_mode_ = GetAttr<std::string>(kernel_node, "pad_mode");
auto stride_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, "stride");
auto dilation_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, "dilation");
if (stride_ori.size() != 2 || stride_ori[0] != stride_ori[1]) {
MS_LOG(EXCEPTION) << "ConvGradFilterGpuBkwKernel only support equal stride, and stride must be 2d!";
}
if (dilation_ori.size() != 4 || dilation_ori[2] != dilation_ori[3]) {
MS_LOG(EXCEPTION) << "ConvGradFilterGpuBkwKernel only support equal dilation, and dilation must be 4d!";
}
if (dilation_ori[0] != 1 || dilation_ori[1] != 1) {
MS_LOG(EXCEPTION) << "ConvGradFilterGpuBkwKernel dilation only support 1 in N axis and C axis!";
}
stride_ = stride_ori[0];
dilation_ = dilation_ori[2];
cudnnTensorDescriptor_t x_desc_real = nullptr;
if (pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) {
SetPad(in_shape, kernel_node);

View File

@ -117,9 +117,20 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
pad_height_ = GetAttr<int>(kernel_node, "pad");
pad_width_ = pad_height_;
stride_ = GetAttr<int>(kernel_node, "stride");
dilation_ = GetAttr<int>(kernel_node, "dilation");
pad_mode_ = GetAttr<std::string>(kernel_node, "pad_mode");
auto stride_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, "stride");
auto dilation_ori = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, "dilation");
if (stride_ori.size() != 2 || stride_ori[0] != stride_ori[1]) {
MS_LOG(EXCEPTION) << "ConvGradInputGpuBkwKernel only support equal stride, and stride must be 2d!";
}
if (dilation_ori.size() != 4 || dilation_ori[2] != dilation_ori[3]) {
MS_LOG(EXCEPTION) << "ConvGradInputGpuBkwKernel only support equal dilation, and dilation must be 4d!";
}
if (dilation_ori[0] != 1 || dilation_ori[1] != 1) {
MS_LOG(EXCEPTION) << "ConvGradInputGpuBkwKernel dilation only support 1 in N axis and C axis!";
}
stride_ = stride_ori[0];
dilation_ = dilation_ori[2];
cudnnTensorDescriptor_t dx_desc_real = nullptr;
if (pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) {
SetPad(input_shape, kernel_node);

View File

@ -150,9 +150,6 @@ void TbeAdapter::InputOrderPass(const std::string &op_name, std::vector<std::vec
}
std::map<std::string, FAttrsPass> TbeAdapter::build_json_attr_pass_map_ = {
{"Conv2D", TbeAdapter::Conv2DAttrJsonPass},
{"Conv2DBackpropFilter", TbeAdapter::Conv2DBackpropFilterAttrJsonPass},
{"Conv2DBackpropInput", TbeAdapter::Conv2DBackpropInputAttrJsonPass},
{"MaximumGrad", TbeAdapter::MaximumGradAttrJsonPass},
{"MinimumGrad", TbeAdapter::MinimumGradAttrJsonPass},
{"Cast", TbeAdapter::CastAttrJsonPass}};
@ -170,135 +167,6 @@ bool TbeAdapter::RunAttrPass(const mindspore::AnfNodePtr &anf_node,
return false;
}
void TbeAdapter::Conv2DAttrJsonPass(const mindspore::AnfNodePtr &anf_node,
const std::vector<std::shared_ptr<mindspore::kernel::OpAttr>> &op_info_attrs,
nlohmann::json *attrs_json) {
MS_EXCEPTION_IF_NULL(anf_node);
MS_EXCEPTION_IF_NULL(attrs_json);
auto attr_num = op_info_attrs.size();
auto primitive = AnfAlgo::GetCNodePrimitive(anf_node);
MS_EXCEPTION_IF_NULL(primitive);
for (size_t i = 0; i < attr_num; i++) {
nlohmann::json attr_obj;
MS_EXCEPTION_IF_NULL(op_info_attrs[i]);
std::string attr_name = op_info_attrs[i]->name();
std::vector<int> attr_value;
if (primitive->GetAttr(attr_name) != nullptr) {
auto value = primitive->GetAttr(attr_name);
int data = GetValue<int>(value);
size_t list_int_size = 0;
if (attr_name == "stride") {
list_int_size = 4;
} else if (attr_name == "dilation") {
list_int_size = 4;
} else if (attr_name == "pad") {
value = primitive->GetAttr("pad_list");
attr_value = GetValue<std::vector<int>>(value);
}
for (size_t j = 0; j < list_int_size; j++) {
attr_value.push_back(data);
}
attr_obj["value"] = attr_value;
} else {
attr_obj["value"] = 0;
}
attr_obj["name"] = attr_name;
attr_obj["valid"] = true;
(*attrs_json).push_back(attr_obj);
}
MS_LOG(INFO) << "Conv2DAttrPass done.";
}
void TbeAdapter::Conv2DBackpropFilterAttrJsonPass(
const mindspore::AnfNodePtr &anf_node, const std::vector<std::shared_ptr<mindspore::kernel::OpAttr>> &op_info_attrs,
nlohmann::json *attrs_json) {
MS_EXCEPTION_IF_NULL(anf_node);
MS_EXCEPTION_IF_NULL(attrs_json);
auto attr_num = op_info_attrs.size();
auto primitive = AnfAlgo::GetCNodePrimitive(anf_node);
MS_EXCEPTION_IF_NULL(primitive);
for (size_t i = 0; i < attr_num; i++) {
nlohmann::json attr_obj;
MS_EXCEPTION_IF_NULL(op_info_attrs[i]);
std::string attr_name = op_info_attrs[i]->name();
if (primitive->GetAttr(attr_name) != nullptr) {
auto value = primitive->GetAttr(attr_name);
if (attr_name == "pad_mode") {
std::string attr_value = GetValue<std::string>(value);
(void)transform(attr_value.begin(), attr_value.end(), attr_value.begin(), ::toupper);
attr_obj["value"] = attr_value;
} else if (attr_name == "filter_sizes") {
std::vector<int> attr_value = GetValue<std::vector<int>>(value);
attr_obj["value"] = attr_value;
} else {
std::vector<int> attr_value;
int data = GetValue<int>(value);
size_t list_int_size = 0;
if (attr_name == "stride") {
list_int_size = 2;
} else if (attr_name == "dilation") {
list_int_size = 4;
}
for (size_t j = 0; j < list_int_size; j++) {
attr_value.push_back(data);
}
attr_obj["value"] = attr_value;
}
attr_obj["valid"] = true;
} else {
attr_obj["valid"] = false;
}
attr_obj["name"] = attr_name;
attrs_json->push_back(attr_obj);
}
MS_LOG(INFO) << "Conv2DBackpropFilterAttrJsonPass done.";
}
void TbeAdapter::Conv2DBackpropInputAttrJsonPass(
const mindspore::AnfNodePtr &anf_node, const std::vector<std::shared_ptr<mindspore::kernel::OpAttr>> &op_info_attrs,
nlohmann::json *attrs_json) {
MS_EXCEPTION_IF_NULL(anf_node);
MS_EXCEPTION_IF_NULL(attrs_json);
auto attr_num = op_info_attrs.size();
auto primitive = AnfAlgo::GetCNodePrimitive(anf_node);
MS_EXCEPTION_IF_NULL(primitive);
for (size_t i = 0; i < attr_num; i++) {
nlohmann::json attr_obj;
MS_EXCEPTION_IF_NULL(op_info_attrs[i]);
std::string attr_name = op_info_attrs[i]->name();
if (primitive->GetAttr(attr_name) != nullptr) {
auto value = primitive->GetAttr(attr_name);
if (attr_name == "pad_mode") {
std::string attr_value = GetValue<std::string>(value);
(void)transform(attr_value.begin(), attr_value.end(), attr_value.begin(), ::toupper);
attr_obj["value"] = attr_value;
} else if (attr_name == "input_sizes") {
std::vector<int> attr_value = GetValue<std::vector<int>>(value);
attr_obj["value"] = attr_value;
} else {
std::vector<int> attr_value;
int data = GetValue<int>(value);
size_t list_int_size = 0;
if (attr_name == "stride") {
list_int_size = 2;
} else if (attr_name == "dilation") {
list_int_size = 4;
}
for (size_t j = 0; j < list_int_size; j++) {
attr_value.push_back(data);
}
attr_obj["value"] = attr_value;
}
attr_obj["valid"] = true;
} else {
attr_obj["valid"] = false;
}
attr_obj["name"] = attr_name;
attrs_json->push_back(attr_obj);
}
MS_LOG(INFO) << "Conv2DBackpropInputAttrJsonPass done.";
}
void TbeAdapter::MaximumGradAttrJsonPass(const mindspore::AnfNodePtr &anf_node,
const std::vector<std::shared_ptr<mindspore::kernel::OpAttr>> &op_info_attrs,
nlohmann::json *attrs_json) {

View File

@ -179,7 +179,7 @@ OPERATOR_ONNX_CONVERT_DEFINE(Squeeze, Squeeze,
OPERATOR_ONNX_CONVERT_DEFINE(
Conv2D, Conv,
OpNameInfo()
.Attr("dilation", "dilations", onnx::AttributeProto_AttributeType_INTS, SetAttrValueToProto<Int32Imm, 2>)
.Attr("dilation", "dilations", onnx::AttributeProto_AttributeType_INTS, SetAttrTupleValueToProto<2>)
.Attr("group", "group", onnx::AttributeProto_AttributeType_INT, SetAttrValueToProto<Int32Imm>)
.Attr("kernel_size", "kernel_shape", onnx::AttributeProto_AttributeType_INTS, SetAttrTupleValueToProto<0>)
.Attr("pad_mode", "auto_pad", onnx::AttributeProto_AttributeType_STRING,
@ -197,8 +197,7 @@ OPERATOR_ONNX_CONVERT_DEFINE(
prim);
}
})
.Attr("stride", "strides", onnx::AttributeProto_AttributeType_INTS, SetAttrValueToProto<Int32Imm, 2>))
.Attr("stride", "strides", onnx::AttributeProto_AttributeType_INTS, SetAttrTupleValueToProto<2>))
OPERATOR_ONNX_CONVERT_DEFINE(BiasAdd, Add, OpNameInfo())
OPERATOR_ONNX_CONVERT_DEFINE(MatMul, Gemm,
OpNameInfo()

View File

@ -764,9 +764,9 @@ OUTPUT_MAP(MaxPoolGradWithArgmax) = {{0, OUTPUT_DESC(y)}};
// Conv2D
INPUT_MAP(Conv2D) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(filter)}};
ATTR_MAP(Conv2D) = {
{"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
{"stride", ATTR_DESC(strides, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"pad_list", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
};
OUTPUT_MAP(Conv2D) = {{0, OUTPUT_DESC(y)}};
@ -776,8 +776,8 @@ INPUT_ATTR_MAP(Conv2DBackpropInputD) = {
{3, ATTR_DESC(input_sizes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
ATTR_MAP(Conv2DBackpropInputD) = {
{"pad_list", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"stride", ATTR_DESC(strides, "strides", AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
{"stride", ATTR_DESC(strides, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
};
OUTPUT_MAP(Conv2DBackpropInputD) = {{0, OUTPUT_DESC(y)}};
@ -787,17 +787,17 @@ INPUT_ATTR_MAP(Conv2DBackpropFilterD) = {
{3, ATTR_DESC(filter_sizes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
ATTR_MAP(Conv2DBackpropFilterD) = {
{"pad_list", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"stride", ATTR_DESC(strides, "strides", AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
{"stride", ATTR_DESC(strides, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
};
OUTPUT_MAP(Conv2DBackpropFilterD) = {{0, OUTPUT_DESC(y)}};
// DepthwiseConv2D
INPUT_MAP(DepthwiseConv2D) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(filter)}};
ATTR_MAP(DepthwiseConv2D) = {
{"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
{"stride", ATTR_DESC(strides, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"pads", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())},
};
OUTPUT_MAP(DepthwiseConv2D) = {{0, OUTPUT_DESC(y)}};
@ -807,9 +807,9 @@ INPUT_MAP(DepthwiseConv2DBackpropInputD) = {{2, INPUT_DESC(filter)}, {3, INPUT_D
INPUT_ATTR_MAP(DepthwiseConv2DBackpropInputD) = {
{1, ATTR_DESC(input_size, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
ATTR_MAP(DepthwiseConv2DBackpropInputD) = {
{"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
{"stride", ATTR_DESC(strides, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"pads", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
};
OUTPUT_MAP(DepthwiseConv2DBackpropInputD) = {{0, OUTPUT_DESC(input_grad)}};
@ -818,9 +818,9 @@ INPUT_MAP(DepthwiseConv2DBackpropFilterD) = {{1, INPUT_DESC(input)}, {3, INPUT_D
INPUT_ATTR_MAP(DepthwiseConv2DBackpropFilterD) = {
{2, ATTR_DESC(filter_size, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
ATTR_MAP(DepthwiseConv2DBackpropFilterD) = {
{"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
{"stride", ATTR_DESC(strides, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"pads", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
{"dilation", ATTR_DESC(dilations, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
};
OUTPUT_MAP(DepthwiseConv2DBackpropFilterD) = {{0, OUTPUT_DESC(filter_grad)}};

View File

@ -17,7 +17,7 @@ from mindspore import log as logger
from mindspore.ops import operations as P
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
from mindspore._checkparam import check_bool, twice, check_int_positive, check_int_non_negative, check_int
from mindspore._checkparam import check_bool, twice, check_int_positive, check_int_non_negative
from mindspore._extends import cell_attr_register
from ..cell import Cell
@ -42,17 +42,23 @@ class _Conv(Cell):
self.in_channels = check_int_positive(in_channels)
self.out_channels = check_int_positive(out_channels)
self.kernel_size = kernel_size
self.stride = check_int_positive(stride)
self.stride = stride
self.pad_mode = pad_mode
self.padding = check_int_non_negative(padding)
self.dilation = check_int(dilation)
self.dilation = dilation
self.group = check_int_positive(group)
self.has_bias = has_bias
if (not isinstance(kernel_size, tuple)) or len(kernel_size) != 2 or \
(not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \
kernel_size[0] < 1 or kernel_size[1] < 1:
if (not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \
kernel_size[0] < 1 or kernel_size[1] < 1:
raise ValueError("Attr 'kernel_size' of 'Conv2D' Op passed "
+ str(self.kernel_size) + ", should be a int or tuple and equal to or greater than 1.")
if (not isinstance(stride[0], int)) or (not isinstance(stride[1], int)) or stride[0] < 1 or stride[1] < 1:
raise ValueError("Attr 'stride' of 'Conv2D' Op passed "
+ str(self.stride) + ", should be a int or tuple and equal to or greater than 1.")
if (not isinstance(dilation[0], int)) or (not isinstance(dilation[1], int)) or \
dilation[0] < 1 or dilation[1] < 1:
raise ValueError("Attr 'dilation' of 'Conv2D' Op passed "
+ str(self.dilation) + ", should equal to or greater than 1.")
if in_channels % group != 0:
raise ValueError("Attr 'in_channels' of 'Conv2D' Op must be divisible by "
"attr 'group' of 'Conv2D' Op.")
@ -107,12 +113,13 @@ class Conv2d(_Conv):
Args:
in_channels (int): The number of input channel :math:`C_{in}`.
out_channels (int): The number of output channel :math:`C_{out}`.
kernel_size (Union[int, tuple]): The data type is int or tuple with 2 integers. Specifies the height
kernel_size (Union[int, tuple[int]]): The data type is int or tuple with 2 integers. Specifies the height
and width of the 2D convolution window. Single int means the value if for both height and width of
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
width of the kernel.
stride (int): Specifies stride for all spatial dimensions with the same value. Value of stride should be
greater or equal to 1 but bounded by the height and width of the input. Default: 1.
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the height and width of movement are both strides, or a tuple of two int numbers that
represent height and width of movement respectively. Default: 1.
pad_mode (str): Specifies padding mode. The optional values are
"same", "valid", "pad". Default: "same".
@ -130,9 +137,11 @@ class Conv2d(_Conv):
Tensor borders. `padding` should be greater than or equal to 0.
padding (int): Implicit paddings on both sides of the input. Default: 0.
dilation (int): Specifying the dilation rate to use for dilated convolution. If set to be :math:`k > 1`,
there will be :math:`k - 1` pixels skipped for each sampling location. Its value should be greater
or equal to 1 and bounded by the height and width of the input. Default: 1.
dilation (Union[int, tuple[int]]): The data type is int or tuple with 2 integers. Specifies the dilation rate
to use for dilated convolution. If set to be :math:`k > 1`, there will
be :math:`k - 1` pixels skipped for each sampling location. Its value should
be greater or equal to 1 and bounded by the height and width of the
input. Default: 1.
group (int): Split filter into groups, `in_ channels` and `out_channels` should be
divisible by the number of groups. Default: 1.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
@ -172,6 +181,8 @@ class Conv2d(_Conv):
weight_init='normal',
bias_init='zeros'):
kernel_size = twice(kernel_size)
stride = twice(stride)
dilation = twice(dilation)
super(Conv2d, self).__init__(
in_channels,
out_channels,
@ -241,7 +252,9 @@ class Conv2dTranspose(_Conv):
and width of the 2D convolution window. Single int means the value is for both height and width of
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
width of the kernel.
stride (int): Specifies the same value for all spatial dimensions. Default: 1.
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the height and width of movement are both strides, or a tuple of two int numbers that
represent height and width of movement respectively. Default: 1.
pad_mode (str): Select the mode of the pad. The optional values are
"pad", "same", "valid". Default: "same".
@ -251,8 +264,11 @@ class Conv2dTranspose(_Conv):
- valid: Adopted the way of discarding.
padding (int): Implicit paddings on both sides of the input. Default: 0.
dilation (int): Specifies the dilation rate to use for dilated
convolution. Default: 1.
dilation (Union[int, tuple[int]]): The data type is int or tuple with 2 integers. Specifies the dilation rate
to use for dilated convolution. If set to be :math:`k > 1`, there will
be :math:`k - 1` pixels skipped for each sampling location. Its value should
be greater or equal to 1 and bounded by the height and width of the
input. Default: 1.
group (int): Split filter into groups, `in_channels` and `out_channels` should be
divisible by the number of groups. Default: 1.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
@ -290,6 +306,8 @@ class Conv2dTranspose(_Conv):
weight_init='normal',
bias_init='zeros'):
kernel_size = twice(kernel_size)
stride = twice(stride)
dilation = twice(dilation)
# out_channels and in_channels swap.
# cause Conv2DBackpropInput's out_channel refers to Conv2D's out_channel,
# then Conv2dTranspose's out_channel refers to Conv2DBackpropInput's in_channel.
@ -333,26 +351,26 @@ class Conv2dTranspose(_Conv):
self.conv2d_transpose.set_strategy(strategy)
return self
def _deconv_output_length(self, input_length, filter_size):
def _deconv_output_length(self, input_length, filter_size, stride_size, dilation_size):
"""Calculate the width and height of output."""
length = 0
if self.is_valid:
if filter_size - self.stride > 0:
length = input_length * self.stride + filter_size - self.stride
if filter_size - stride_size > 0:
length = input_length * stride_size + filter_size - stride_size
else:
length = input_length * self.stride
length = input_length * stride_size
elif self.is_same:
length = input_length * self.stride
length = input_length * stride_size
elif self.is_pad:
length = input_length * self.stride - 2 * self.padding + filter_size + \
(filter_size - 1) * (self.dilation - 1) - self.stride
length = input_length * stride_size - 2 * self.padding + filter_size + \
(filter_size - 1) * (dilation_size - 1) - stride_size
return length
def construct(self, x):
n, _, h, w = self.shape(x)
h_out = self._deconv_output_length(h, self.kernel_size[0])
w_out = self._deconv_output_length(w, self.kernel_size[1])
h_out = self._deconv_output_length(h, self.kernel_size[0], self.stride[0], self.dilation[0])
w_out = self._deconv_output_length(w, self.kernel_size[1], self.stride[1], self.dilation[1])
if self.has_bias:
return self.bias_add(self.conv2d_transpose(x, self.weight, (n, self.out_channels, h_out, w_out)),
self.bias)

View File

@ -34,7 +34,7 @@ from mindspore.ops.op_info_register import op_info_register
"value": "all"
},
{
"name": "pad",
"name": "pad_list",
"param_type": "required",
"type": "listInt",
"value": "all"

View File

@ -119,8 +119,8 @@ class Conv2DBackpropFilter(PrimitiveWithInfer):
pad (int): The pad value to fill. Default: 0.
mode (int): 0 Math convolutiuon, 1 cross-correlation convolution ,
2 deconvolution, 3 depthwise convolution. Default: 1.
stride (int): The stride to apply conv filter. Default: 1.
dilation (int): Specifies the dilation rate to use for dilated convolution. Default: 1.
stride (tuple): The stride to apply conv filter. Default: (1, 1).
dilation (tuple): Specifies the dilation rate to use for dilated convolution. Default: (1, 1, 1, 1).
group (int): Splits input into groups. Default: 1.
Returns:
@ -135,8 +135,8 @@ class Conv2DBackpropFilter(PrimitiveWithInfer):
pad=0,
pad_list=(0, 0, 0, 0),
mode=1,
stride=1,
dilation=1,
stride=(1, 1),
dilation=(1, 1, 1, 1),
group=1):
"""init Convolution"""
self.init_prim_io_names(inputs=['out_backprop', 'input', 'filter_sizes'], outputs=['output'])
@ -146,7 +146,9 @@ class Conv2DBackpropFilter(PrimitiveWithInfer):
pad_mode = pad_mode.upper()
self.add_prim_attr('pad_mode', pad_mode)
self.pad = pad
self.stride = stride
if isinstance(stride, tuple) and len(stride) == 4:
self.stride = (stride[2], stride[3])
self.add_prim_attr('stride', self.stride)
self.dilation = dilation
self.group = group
self.add_prim_attr('data_format', "NCHW")

View File

@ -531,8 +531,8 @@ class Conv2D(PrimitiveWithInfer):
2 deconvolution, 3 depthwise convolution. Default: 1.
pad_mode (str): "valid", "same", "pad" the mode to fill padding. Default: "valid".
pad (int): The pad value to fill. Default: 0.
stride (int): The stride to apply conv filter. Default: 1.
dilation (int): Specify the space to use between kernel elements. Default: 1.
stride (Union(int, tuple[int])): The stride to apply conv filter. Default: 1.
dilation (Union(int, tuple[int])): Specify the space to use between kernel elements. Default: 1.
group (int): Split input into groups. Default: 1.
Returns:
@ -559,11 +559,35 @@ class Conv2D(PrimitiveWithInfer):
group=1):
"""init Conv2D"""
self.init_prim_io_names(inputs=['x', 'w'], outputs=['output'])
self.kernel_size = kernel_size
self.kernel_size = validator.check_type('kernel_size', kernel_size, (int, tuple))
if isinstance(self.kernel_size, int):
self.kernel_size = (self.kernel_size, self.kernel_size)
validator.check_integer('length of kernel_size', len(self.kernel_size), 2, Rel.GE)
if isinstance(kernel_size, int):
self.kernel_size = (kernel_size, kernel_size)
if len(self.kernel_size) != 2 or (not isinstance(self.kernel_size[0], int)) or \
(not isinstance(self.kernel_size[1], int)) or \
self.kernel_size[0] < 1 or self.kernel_size[1] < 1:
raise ValueError(f"The \'kernel_size\' of \'Conv2D\' should be an positive int number or "
f"a tuple of two positive int numbers, but got {kernel_size}")
self.stride = validator.check_type('stride', stride, (int, tuple))
if isinstance(stride, int):
self.stride = (stride, stride)
if len(self.stride) != 2 or (not isinstance(self.stride[0], int)) or \
(not isinstance(self.stride[1], int)) or \
self.stride[0] < 1 or self.stride[1] < 1:
raise ValueError(f"The \'stride\' of \'Conv2D\' should be an positive int number or "
f"a tuple of two positive int numbers, but got {stride}")
self.add_prim_attr('stride', (1, 1, self.stride[0], self.stride[1]))
self.dilation = validator.check_type('dilation', dilation, (tuple, int))
if isinstance(dilation, int):
self.dilation = (1, 1, dilation, dilation)
elif len(dilation) == 2:
self.dilation = (1, 1, dilation[0], dilation[1])
if len(self.dilation) != 4 or (not isinstance(self.dilation[0], int) or self.dilation[0] < 1) or \
(not isinstance(self.dilation[1], int) or self.dilation[1] < 1) or \
(not isinstance(self.dilation[2], int) or self.dilation[2] < 1) or \
(not isinstance(self.dilation[3], int) or self.dilation[3] < 1):
raise ValueError(f"The \'dilation\' of \'Conv2D\' should be an positive int number or "
f"a tuple of two or four positive int numbers, but got {dilation}")
self.add_prim_attr('dilation', self.dilation)
validator.equal('type of pad', type(pad), 'not bool', not isinstance(pad, bool))
validator.equal('type of pad', type(pad), 'int', isinstance(pad, int))
self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'])
@ -575,18 +599,6 @@ class Conv2D(PrimitiveWithInfer):
self.add_prim_attr('data_format', "NCHW")
self.out_channel = validator.check_integer('out_channel', out_channel, 0, Rel.GT)
self.group = validator.check_integer('group', group, 0, Rel.GT)
self.dilation = validator.check_integer('dilation', dilation, 1, Rel.GE)
validator.check_type('kernel_size', kernel_size, [int, tuple])
if isinstance(kernel_size, int) and kernel_size < 1:
raise ValueError('Attr \'kernel_size\' of \'Conv2D\' Op passed '
+ str(self.kernel_size) + ', should be a int or tuple and equal to or greater than 1.')
if isinstance(kernel_size, tuple) and (len(kernel_size) != 2 or
(not isinstance(kernel_size[0], int)) or
(not isinstance(kernel_size[1], int)) or
kernel_size[0] < 1 or kernel_size[1] < 1):
raise ValueError('Attr \'kernel_size\' of \'Conv2D\' Op passed '
+ str(self.kernel_size) + ', should be a int or tuple and equal to or greater than 1.')
self.stride = validator.check_integer('stride', stride, 1, Rel.GE)
def infer_shape(self, x_shape, w_shape):
validator.check_integer("weight_shape", len(w_shape), 4, Rel.EQ)
@ -597,29 +609,33 @@ class Conv2D(PrimitiveWithInfer):
kernel_size_h = w_shape[2]
kernel_size_w = w_shape[3]
stride_h = self.stride[2]
stride_w = self.stride[3]
dilation_h = self.dilation[2]
dilation_w = self.dilation[3]
if self.pad_mode == "valid":
h_out = math.ceil((x_shape[2] - self.dilation * (kernel_size_h - 1)) / self.stride)
w_out = math.ceil((x_shape[3] - self.dilation * (kernel_size_w - 1)) / self.stride)
h_out = math.ceil((x_shape[2] - dilation_h * (kernel_size_h - 1)) / stride_h)
w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w)
pad_top, pad_bottom, pad_left, pad_right = 0, 0, 0, 0
elif self.pad_mode == "same":
h_out = math.ceil(x_shape[2] / self.stride)
w_out = math.ceil(x_shape[3] / self.stride)
h_out = math.ceil(x_shape[2] / stride_h)
w_out = math.ceil(x_shape[3] / stride_w)
pad_needed_h = max(0, (h_out - 1) * self.stride + self.dilation * (kernel_size_h - 1) + 1 - x_shape[2])
pad_needed_h = max(0, (h_out - 1) * stride_h + dilation_h * (kernel_size_h - 1) + 1 - x_shape[2])
pad_top = math.floor(pad_needed_h / 2)
pad_bottom = pad_needed_h - pad_top
pad_needed_w = max(0, (w_out - 1) * self.stride + self.dilation * (kernel_size_w - 1) + 1 - x_shape[3])
pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[3])
pad_left = math.floor(pad_needed_w / 2)
pad_right = pad_needed_w - pad_left
elif self.pad_mode == 'pad':
pad_top, pad_bottom, pad_left, pad_right = self.pad, self.pad, self.pad, self.pad
h_out = 1 + (x_shape[2] + 2 * self.pad - kernel_size_h - (kernel_size_h - 1) * (self.dilation - 1)) \
/ self.stride
w_out = 1 + (x_shape[3] + 2 * self.pad - kernel_size_w - (kernel_size_w - 1) * (self.dilation - 1)) \
/ self.stride
h_out = 1 + (x_shape[2] + 2 * self.pad - kernel_size_h - (kernel_size_h - 1) * (dilation_h - 1)) \
/ stride_h
w_out = 1 + (x_shape[3] + 2 * self.pad - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) \
/ stride_w
h_out = math.floor(h_out)
w_out = math.floor(w_out)
@ -651,19 +667,19 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
Args:
channel_multiplier (int): The multipiler for the original output conv.
kernel_size (int or tuple): The size of the conv kernel.
kernel_size (Union[int, tuple[int]]): The size of the conv kernel.
mode (int): 0 Math convolution, 1 cross-correlation convolution ,
2 deconvolution, 3 depthwise convolution. Default: 3.
pad_mode (str): "valid", "same", "pad" the mode to fill padding. Default: "valid".
pad (int): The pad value to fill. Default: 0.
stride (int): The stride to apply conv filter. Default: 1.
dilation (int): Specifies the dilation rate to use for dilated convolution. Default: 1.
stride (Union[int, tuple[int]]): The stride to apply conv filter. Default: 1.
dilation (Union[int, tuple[int]]): Specifies the dilation rate to use for dilated convolution. Default: 1.
group (int): Splits input into groups. Default: 1.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
- **weight** (Tensor) - Set size of kernel is :math:`(K_1, K_2)`, then the shape is
:math:`(C_{out}, C_{in}, K_1, K_2)`.
:math:`(channel_multiplier, C_{in}, K_1, K_2)`.
Outputs:
Tensor of shape :math:`(N, C_{in} * \text{channel_multiplier}, H_{out}, W_{out})`.
@ -681,15 +697,33 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
group=1):
"""init DepthwiseConv2dNative"""
validator.check_pad_value_by_mode(self.__class__.__name__, pad_mode, pad)
validator.check_type("kernel_size", kernel_size, (int, tuple))
self.kernel_size = validator.check_type('kernel_size', kernel_size, (int, tuple))
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
if isinstance(kernel_size, tuple) and (len(kernel_size) != 2 or
(not isinstance(kernel_size[0], int)) or
(not isinstance(kernel_size[1], int)) or
kernel_size[0] < 1 or kernel_size[1] < 1):
raise ValueError(f"Attr kernel_size of DepthwiseConv2dNative Op not passed "
f"{kernel_size}, should be a int or tuple and equal to or greater than 1.")
self.kernel_size = (kernel_size, kernel_size)
if len(self.kernel_size) != 2 or (not isinstance(self.kernel_size[0], int)) or \
(not isinstance(self.kernel_size[1], int)) or \
self.kernel_size[0] < 1 or self.kernel_size[1] < 1:
raise ValueError(f"The \'kernel_size\' of \'DepthwiseConv2dNative\' should be an positive int number or "
f"a tuple of two positive int numbers, but got {kernel_size}")
self.stride = validator.check_type('stride', stride, (int, tuple))
if isinstance(stride, int):
self.stride = (stride, stride)
if len(self.stride) != 2 or (not isinstance(self.stride[0], int)) or \
(not isinstance(self.stride[1], int)) or \
self.stride[0] < 1 or self.stride[1] < 1:
raise ValueError(f"The \'stride\' of \'DepthwiseConv2dNative\' should be an positive int number or "
f"a tuple of two positive int numbers, but got {stride}")
self.add_prim_attr('stride', (1, 1, self.stride[0], self.stride[1]))
self.dilation = validator.check_type('dilation', dilation, (tuple, int))
if isinstance(dilation, int):
self.dilation = (dilation, dilation)
if len(self.dilation) != 2 or (not isinstance(self.dilation[0], int)) or \
(not isinstance(self.dilation[1], int)) or \
self.dilation[0] < 1 or self.dilation[1] < 1:
raise ValueError(f"The \'dilation\' of \'DepthwiseConv2dNative\' should be an positive int number or "
f"a tuple of two or four positive int numbers, but got {dilation}")
self.add_prim_attr('dilation', (1, 1, self.dilation[0], self.dilation[1]))
validator.equal('type of pad', type(pad), 'not bool', not isinstance(pad, bool))
if pad_mode not in ("same", "valid", "pad"):
raise ValueError(f"Attr pad_mode of DepthwiseConv2dNative Op not passed"
f"{pad_mode} not in valid, same, pad.")
@ -698,9 +732,6 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
self.add_prim_attr('data_format', "NCHW")
self.channel_multiplier = validator.check_integer("channel_multiplier", channel_multiplier, 0, Rel.GT)
self.group = validator.check_integer("group", group, 0, Rel.GT)
self.dilation = validator.check_integer("dilation", dilation, 1, Rel.GE)
self.kernel_size = validator.check_value_on_integer("kernel_size", kernel_size, 1, Rel.GE)
self.stride = validator.check_integer("stride", stride, 1, Rel.GE)
self.pad = pad
def infer_shape(self, x_shape, w_shape):
@ -711,29 +742,33 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
kernel_size_h = w_shape[2]
kernel_size_w = w_shape[3]
stride_h = self.stride[2]
stride_w = self.stride[3]
dilation_h = self.dilation[2]
dilation_w = self.dilation[3]
if self.pad_mode == "valid":
h_out = math.ceil((x_shape[2] - self.dilation * (kernel_size_h - 1)) / self.stride)
w_out = math.ceil((x_shape[3] - self.dilation * (kernel_size_w - 1)) / self.stride)
h_out = math.ceil((x_shape[2] - dilation_h * (kernel_size_h - 1)) / stride_h)
w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w)
pad_top, pad_bottom, pad_left, pad_right = 0, 0, 0, 0
elif self.pad_mode == "same":
h_out = math.ceil(x_shape[2] / self.stride)
w_out = math.ceil(x_shape[3] / self.stride)
h_out = math.ceil(x_shape[2] / stride_h)
w_out = math.ceil(x_shape[3] / stride_w)
pad_needed_h = max(0, (h_out - 1) * self.stride + self.dilation * (kernel_size_h - 1) + 1 - x_shape[2])
pad_needed_h = max(0, (h_out - 1) * stride_h+ dilation_h * (kernel_size_h - 1) + 1 - x_shape[2])
pad_top = math.floor(pad_needed_h / 2)
pad_bottom = pad_needed_h - pad_top
pad_needed_w = max(0, (w_out - 1) * self.stride + self.dilation * (kernel_size_w - 1) + 1 - x_shape[3])
pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[3])
pad_left = math.floor(pad_needed_w / 2)
pad_right = pad_needed_w - pad_left
elif self.pad_mode == 'pad':
pad_top, pad_bottom, pad_left, pad_right = self.pad, self.pad, self.pad, self.pad
h_out = 1 + (x_shape[2] + 2 * self.pad - kernel_size_h - (kernel_size_h - 1) * (self.dilation - 1)) \
/ self.stride
w_out = 1 + (x_shape[3] + 2 * self.pad - kernel_size_w - (kernel_size_w - 1) * (self.dilation - 1)) \
/ self.stride
h_out = 1 + (x_shape[2] + 2 * self.pad - kernel_size_h - (kernel_size_h - 1) * (dilation_h - 1)) \
/ stride_h
w_out = 1 + (x_shape[3] + 2 * self.pad - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) \
/ stride_w
h_out = math.floor(h_out)
w_out = math.floor(w_out)
else:
@ -786,7 +821,7 @@ class _Pool(PrimitiveWithInfer):
(not isinstance(ksize[1], int)) or
ksize[0] <= 0 or
ksize[1] <= 0):
raise ValueError(f"The 'ksize' passed to operator {self.name} should be an positive int number or"
raise ValueError(f"The 'ksize' passed to operator {self.name} should be an positive int number or "
f"a tuple of two positive int numbers, but got {ksize}")
self.ksize = (1, 1, ksize[0], ksize[1])
if self.is_maxpoolwithargmax:
@ -802,7 +837,7 @@ class _Pool(PrimitiveWithInfer):
(not isinstance(strides[1], int)) or
strides[0] <= 0 or
strides[1] <= 0):
raise ValueError(f"The 'strides' passed to operator {self.name} should be an positive int number or"
raise ValueError(f"The 'strides' passed to operator {self.name} should be an positive int number or "
f"a tuple of two positive int numbers, but got {strides}")
self.strides = (1, 1, strides[0], strides[1])
if self.is_maxpoolwithargmax:
@ -924,7 +959,6 @@ class MaxPoolWithArgmax(_Pool):
- **output** (Tensor) - Maxpooling result, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
- **mask** (Tensor) - Max values' index represented by the mask.
"""
def __init__(self, ksize=1, strides=1, padding="valid"):
super(MaxPoolWithArgmax, self).__init__(ksize, strides, padding)
self.is_tbe = context.get_context("device_target") == "Ascend"
@ -1015,8 +1049,8 @@ class Conv2DBackpropInput(PrimitiveWithInfer):
pad (int): The pad value to fill. Default: 0.
mode (int): 0 Math convolutiuon, 1 cross-correlation convolution ,
2 deconvolution, 3 depthwise convolution. Default: 1.
stride (int): The stride to apply conv filter. Default: 1.
dilation (int): Specifies the dilation rate to use for dilated convolution. Default: 1.
stride (Union[int. tuple[int]]): The stride to apply conv filter. Default: 1.
dilation (Union[int. tuple[int]]): Specifies the dilation rate to use for dilated convolution. Default: 1.
group (int): Splits input into groups. Default: 1.
Returns:
@ -1038,25 +1072,41 @@ class Conv2DBackpropInput(PrimitiveWithInfer):
self.init_prim_io_names(inputs=['out_backprop', 'filter', 'input_sizes'], outputs=['output'])
self.out_channel = validator.check_integer('out_channel', out_channel, 0, Rel.GT)
self.kernel_size = validator.check_type('kernel_size', kernel_size, (int, tuple))
if isinstance(self.kernel_size, int):
if kernel_size < 1:
raise ValueError('Attr \'kernel_size\' of \'Conv2DBackpropInput\' Op passed '
+ str(self.kernel_size) + ', should be a int or tuple and equal to or greater than 1.')
self.kernel_size = (self.kernel_size, self.kernel_size)
elif isinstance(kernel_size, tuple) and (len(kernel_size) != 2 or
(not isinstance(kernel_size[0], int)) or
(not isinstance(kernel_size[1], int)) or
kernel_size[0] < 1 or kernel_size[1] < 1):
raise ValueError('Attr \'kernel_size\' of \'Conv2DBackpropInput\' Op passed '
+ str(self.kernel_size) + ', should be a int or tuple and equal to or greater than 1.')
if isinstance(kernel_size, int):
self.kernel_size = (kernel_size, kernel_size)
if len(self.kernel_size) != 2 or (not isinstance(self.kernel_size[0], int)) or \
(not isinstance(self.kernel_size[1], int)) or \
self.kernel_size[0] < 1 or self.kernel_size[1] < 1:
raise ValueError(f"The \'kernel_size\' of \'Conv2DBackpropInput\' should be an positive int number or "
f"a tuple of two positive int numbers, but got {kernel_size}")
self.stride = validator.check_type('stride', stride, (int, tuple))
if isinstance(stride, int):
self.stride = (stride, stride)
elif isinstance(stride, tuple) and len(stride) == 4:
self.stride = (stride[2], stride[3])
if len(self.stride) != 2 or (not isinstance(self.stride[0], int)) or (not isinstance(self.stride[1], int)) or \
self.stride[0] < 1 or self.stride[1] < 1:
raise ValueError(f"The \'stride\' of \'Conv2DBackpropInput\' should be an positive int number or "
f"a tuple of two or four positive int numbers, but got {stride}")
self.add_prim_attr('stride', self.stride)
self.dilation = validator.check_type('dilation', dilation, (tuple, int))
if isinstance(dilation, int):
self.dilation = (1, 1, dilation, dilation)
elif len(dilation) == 2:
self.dilation = (1, 1, dilation[0], dilation[1])
if len(self.dilation) != 4 or (not isinstance(self.dilation[0], int) or self.dilation[0] < 1) or \
(not isinstance(self.dilation[1], int) or self.dilation[1] < 1) or \
(not isinstance(self.dilation[2], int) or self.dilation[2] < 1) or \
(not isinstance(self.dilation[3], int) or self.dilation[3] < 1):
raise ValueError(f"The \'dilation\' of \'Conv2DBackpropInput\' should be an positive int number or "
f"a tuple of two or four positive int numbers, but got {dilation}")
self.add_prim_attr('dilation', self.dilation)
validator.equal('type of pad', type(pad), 'not bool', not isinstance(pad, bool))
validator.equal('type of pad', type(pad), 'int', isinstance(pad, int))
self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'])
self.pad = validator.check_pad_value_by_mode(self.__class__.__name__, pad_mode, pad)
self.mode = validator.check_integer('mode', mode, 1, Rel.EQ)
self.group = validator.check_integer('group', group, 0, Rel.GT)
self.dilation = validator.check_integer('dilation', dilation, 1, Rel.GE)
self.stride = validator.check_integer('stride', stride, 1, Rel.GE)
pad_mode = pad_mode.upper()
self.add_prim_attr('pad_mode', pad_mode)
self.add_prim_attr('data_format', "NCHW")
@ -1075,16 +1125,18 @@ class Conv2DBackpropInput(PrimitiveWithInfer):
dout_shape = doutput['shape']
kernel_h = self.kernel_size[0]
kernel_w = self.kernel_size[1]
stride_h = self.stride[0]
stride_w = self.stride[1]
# default pad mode is valid
pad_list = (0, 0, 0, 0)
if self.pad_list:
pad_list = tuple(self.pad_list)
elif self.pad_mode == "SAME":
pad_needed_h = max(0, (dout_shape[2] - 1) * self.stride + kernel_h - x_size_v[2])
pad_needed_h = max(0, (dout_shape[2] - 1) * stride_h + kernel_h - x_size_v[2])
pad_top = math.floor(pad_needed_h / 2)
pad_bottom = pad_needed_h - pad_top
pad_needed_w = max(0, (dout_shape[3] - 1) * self.stride + kernel_w - x_size_v[3])
pad_needed_w = max(0, (dout_shape[3] - 1) * stride_w + kernel_w - x_size_v[3])
pad_left = math.floor(pad_needed_w / 2)
pad_right = pad_needed_w - pad_left
pad_list = (pad_top, pad_bottom, pad_left, pad_right)

View File

@ -35,8 +35,8 @@ class Net4(nn.Cell):
pad_mode="valid",
pad=0,
mode=1,
stride=1,
dilation=1,
stride=(1, 1),
dilation=(1, 1, 1, 1),
group=1)
self.w = Parameter(initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='w')
self.x = Parameter(initializer(Tensor(np.array([[[

View File

@ -35,8 +35,8 @@ class Conv2dFilter(nn.Cell):
pad_mode="valid",
pad=0,
mode=1,
stride=1,
dilation=1,
stride=(1, 1),
dilation=(1, 1, 1, 1),
group=1)
self.get_shape = P.Shape()

View File

@ -21,17 +21,17 @@ from mindspore.common.tensor import Tensor
def im2col(img, filter_h, filter_w, stride=1, pad=0, dilation=1):
"""Rearranges an image to row vector"""
batch_num, channel, height, width = img.shape
out_h = (height + 2*pad - filter_h - (filter_h - 1) * (dilation - 1))//stride + 1
out_w = (width + 2*pad - filter_w - (filter_w - 1) * (dilation - 1))//stride + 1
out_h = (height + 2*pad - filter_h - (filter_h - 1) * (dilation[2] - 1))//stride[2] + 1
out_w = (width + 2*pad - filter_w - (filter_w - 1) * (dilation[3] - 1))//stride[3] + 1
img = np.pad(img, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')
col = np.zeros((batch_num, channel, filter_h, filter_w, out_h, out_w)).astype(img.dtype)
for y in range(filter_h):
y_max = y + stride*out_h
y_max = y + stride[2]*out_h
for x in range(filter_w):
x_max = x + stride*out_w
col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]
x_max = x + stride[2]*out_w
col[:, :, y, x, :, :] = img[:, :, y:y_max:stride[2], x:x_max:stride[2]]
col = col.transpose(0, 4, 5, 1, 2, 3).reshape(batch_num*out_h*out_w, -1)
return col
@ -42,8 +42,8 @@ def conv2d(x, weight, bias=None, stride=1, pad=0,
"""Convolution 2D"""
batch_num, _, x_h, x_w = x.shape
filter_num, _, filter_h, filter_w = weight.shape
out_h = 1 + int((x_h + 2 * pad - filter_h - (filter_h - 1) * (dilation - 1)) / stride)
out_w = 1 + int((x_w + 2 * pad - filter_w - (filter_w - 1) * (dilation - 1)) / stride)
out_h = 1 + int((x_h + 2 * pad - filter_h - (filter_h - 1) * (dilation[2] - 1)) / stride[2])
out_w = 1 + int((x_w + 2 * pad - filter_w - (filter_w - 1) * (dilation[3] - 1)) / stride[3])
col = im2col(x, filter_h, filter_w, stride, pad, dilation)
col_w = np.reshape(weight, (filter_num, -1)).T
out = np.dot(col, col_w)

View File

@ -155,23 +155,35 @@ def batch_norm_grad(dy, x, scale, save_mean, save_inv_variance):
def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
"""Rearranges a row vector to an image."""
validator.check_integer("stride", stride, 0, Rel.GT)
if isinstance(stride, int):
stride_h = stride
stride_w = stride
elif isinstance(stride, tuple) and len(stride) == 2:
stride_h = stride[0]
stride_w = stride[1]
elif isinstance(stride, tuple) and len(stride) == 3:
stride_h = stride[2]
stride_w = stride[3]
else:
raise ValueError(f"The \'stride\' should be an int number or "
f"a tuple of two or four int numbers, but got {stride}")
batch_num, channel, height, width = input_shape
out_h = (height + 2*pad - filter_h)//stride + 1
out_w = (width + 2*pad - filter_w)//stride + 1
out_h = (height + 2*pad - filter_h)//stride_h + 1
out_w = (width + 2*pad - filter_w)//stride_w + 1
col = col.reshape(batch_num, out_h, out_w, channel, filter_h, filter_w) \
.transpose(0, 3, 4, 5, 1, 2)
img = np.zeros((batch_num,
channel,
height + 2*pad + stride - 1,
width + 2*pad + stride - 1)) \
height + 2*pad + stride_h - 1,
width + 2*pad + stride_w - 1)) \
.astype(col.dtype)
for y in range(filter_h):
y_max = y + stride*out_h
y_max = y + stride_h*out_h
for x in range(filter_w):
x_max = x + stride*out_w
img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]
x_max = x + stride_h*out_w
img[:, :, y:y_max:stride_h, x:x_max:stride_h] += col[:, :, y, x, :, :]
return img[:, :, pad:height + pad, pad:width + pad]
@ -205,11 +217,35 @@ def conv2d(x, weight, bias=None, stride=1, pad=0,
dilation=1, groups=1, padding_mode='zeros'):
"""Convolution 2D."""
# pylint: disable=unused-argument
validator.check_integer("stride", stride, 0, Rel.GT)
validator.check_type('stride', stride, (int, tuple))
if isinstance(stride, int):
stride = (stride, stride)
elif len(stride) == 4:
stride = (stride[2], stride[3])
if len(stride) != 2 or (not isinstance(stride[0], int)) or \
(not isinstance(stride[1], int)) or \
stride[0] < 1 or stride[1] < 1:
raise ValueError(f"The \'stride\' of \'conv2d\' should be an positive int number or "
f"a tuple of two positive int numbers, but got {stride}")
stride_h = stride[0]
stride_w = stride[1]
validator.check_type('dilation', dilation, (int, tuple))
if isinstance(dilation, int):
dilation = (dilation, dilation)
elif len(dilation) == 4:
dilation = (dilation[2], dilation[3])
if len(dilation) != 2 or (not isinstance(dilation[0], int)) or \
(not isinstance(dilation[1], int)) or \
dilation[0] < 1 or dilation[1] < 1:
raise ValueError(f"The \'dilation\' of \'conv2d\' should be an positive int number or "
f"a tuple of two positive int numbers, but got {dilation}")
dilation_h = dilation[0]
dilation_w = dilation[1]
batch_num, _, x_h, x_w = x.shape
filter_num, _, filter_h, filter_w = weight.shape
out_h = 1 + int((x_h + 2 * pad - filter_h - (filter_h - 1) * (dilation - 1)) / stride)
out_w = 1 + int((x_w + 2 * pad - filter_w - (filter_w - 1) * (dilation - 1)) / stride)
out_h = 1 + int((x_h + 2 * pad - filter_h - (filter_h - 1) * (dilation_h - 1)) / stride_h)
out_w = 1 + int((x_w + 2 * pad - filter_w - (filter_w - 1) * (dilation_w - 1)) / stride_w)
col = im2col(x, filter_h, filter_w, stride, pad, dilation)
col_w = np.reshape(weight, (filter_num, -1)).T
out = np.dot(col, col_w)
@ -286,19 +322,43 @@ def flatten_grad(dout, x):
def im2col(img, filter_h, filter_w, stride=1, pad=0, dilation=1):
"""Rearranges an image to row vector."""
validator.check_integer("stride", stride, 0, Rel.GT)
if isinstance(stride, int):
stride_h = stride
stride_w = stride
elif isinstance(stride, tuple) and len(stride) == 2:
stride_h = stride[0]
stride_w = stride[1]
elif isinstance(stride, tuple) and len(stride) == 3:
stride_h = stride[2]
stride_w = stride[3]
else:
raise ValueError(f"The \'stride\' should be an int number or "
f"a tuple of two or four int numbers, but got {stride}")
if isinstance(dilation, int):
dilation_h = dilation
dilation_w = dilation
elif isinstance(dilation, tuple) and len(dilation) == 2:
dilation_h = dilation[0]
dilation_w = dilation[1]
elif isinstance(dilation, tuple) and len(dilation) == 3:
dilation_h = dilation[2]
dilation_w = dilation[3]
else:
raise ValueError(f"The \'dilation\' should be an int number or "
f"a tuple of two or four int numbers, but got {dilation}")
batch_num, channel, height, width = img.shape
out_h = (height + 2*pad - filter_h- (filter_h - 1) * (dilation - 1))//stride + 1
out_w = (width + 2*pad - filter_w- (filter_w - 1) * (dilation - 1))//stride + 1
out_h = (height + 2*pad - filter_h- (filter_h - 1) * (dilation_h - 1))//stride_h + 1
out_w = (width + 2*pad - filter_w- (filter_w - 1) * (dilation_w - 1))//stride_w + 1
img = np.pad(img, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')
col = np.zeros((batch_num, channel, filter_h, filter_w, out_h, out_w)).astype(img.dtype)
for y in range(filter_h):
y_max = y + stride*out_h
y_max = y + stride_h*out_h
for x in range(filter_w):
x_max = x + stride*out_w
col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]
x_max = x + stride_h*out_w
col[:, :, y, x, :, :] = img[:, :, y:y_max:stride_h, x:x_max:stride_h]
col = col.transpose(0, 4, 5, 1, 2, 3).reshape(batch_num*out_h*out_w, -1)
return col