diff --git a/CMakeLists.txt b/CMakeLists.txt index dc07ccae8b3..1051aeb96c7 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -7,6 +7,9 @@ endif () include(${CMAKE_SOURCE_DIR}/cmake/options.cmake) set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake/modules/") +if (NOT CMAKE_SYSTEM_NAME MATCHES "Windows") + add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0) +endif () if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin") set(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} -O2 -Werror -Wno-return-std-move -Wno-unused-private-field -Wno-unused-lambda-capture -Wno-sign-compare -Wno-overloaded-virtual -Wno-unneeded-internal-declaration -Wno-unused-variable -Wno-pessimizing-move -Wno-inconsistent-missing-override -DHALF_ENABLE_CPP11_USER_LITERALS=0 -D_FORTIFY_SOURCE=2") diff --git a/cmake/dependency_graphengine.cmake b/cmake/dependency_graphengine.cmake index 991eb2a24a3..91a471d1f26 100644 --- a/cmake/dependency_graphengine.cmake +++ b/cmake/dependency_graphengine.cmake @@ -36,6 +36,7 @@ elseif (DEFINED ENV{D_LINK_PATH}) find_library(hccl libhccl.so ${GE_LIB_PATH}) find_library(cce libcce.so ${GE_LIB_PATH}) find_library(resource libresource.so ${GE_LIB_PATH}) + find_library(error_manager liberror_manager.so ${GE_LIB_PATH}) else() # Ascend mode if(DEFINED ENV{ASCEND_CUSTOM_PATH}) @@ -54,6 +55,7 @@ else() find_library(msprof libmsprof.so ${ASCEND_RUNTIME_PATH}) find_library(register libregister.so ${ASCEND_RUNTIME_PATH}) find_library(resource libresource.so ${ASCEND_RUNTIME_PATH}) + find_library(error_manager liberror_manager.so ${ASCEND_RUNTIME_PATH}) endif() # compile libraries from following directories diff --git a/cmake/external_libs/gtest.cmake b/cmake/external_libs/gtest.cmake index df2eaec2cc2..eb64655a864 100644 --- a/cmake/external_libs/gtest.cmake +++ b/cmake/external_libs/gtest.cmake @@ -1,4 +1,4 @@ -set(gtest_CXXFLAGS "-D_FORTIFY_SOURCE=2 -O2") +set(gtest_CXXFLAGS "-D_FORTIFY_SOURCE=2 -D_GLIBCXX_USE_CXX11_ABI=0 -O2") set(gtest_CFLAGS "-D_FORTIFY_SOURCE=2 -O2") mindspore_add_pkg(gtest VER 1.8.0 diff --git a/cmake/external_libs/opencv.cmake b/cmake/external_libs/opencv.cmake index b4f8d55a9e8..4c7db821f47 100644 --- a/cmake/external_libs/opencv.cmake +++ b/cmake/external_libs/opencv.cmake @@ -8,7 +8,7 @@ elseif (${CMAKE_SYSTEM_NAME} MATCHES "Windows") set(opencv_CXXFLAGS "${opencv_CXXFLAGS} -Wno-attributes -Wno-unknown-pragmas") set(opencv_CXXFLAGS "${opencv_CXXFLAGS} -Wno-unused-value -Wno-implicit-fallthrough") else() - set(opencv_CXXFLAGS "-fstack-protector-all -Wno-maybe-uninitialized -Wno-unused-parameter -D_FORTIFY_SOURCE=2 -O2") + set(opencv_CXXFLAGS "-fstack-protector-all -Wno-maybe-uninitialized -Wno-unused-parameter -D_FORTIFY_SOURCE=2 -D_GLIBCXX_USE_CXX11_ABI=0 -O2") set(opencv_CFLAGS "-fstack-protector-all -Wno-maybe-uninitialized -Wno-unused-parameter -D_FORTIFY_SOURCE=2 -O2") set(opencv_LDFLAGS "-Wl,-z,relro,-z,now,-z,noexecstack") endif() diff --git a/cmake/external_libs/protobuf.cmake b/cmake/external_libs/protobuf.cmake index 6fe34577af3..53cbebfcb94 100644 --- a/cmake/external_libs/protobuf.cmake +++ b/cmake/external_libs/protobuf.cmake @@ -1,9 +1,12 @@ set(protobuf_USE_STATIC_LIBS ON) if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin") set(protobuf_CXXFLAGS "-fstack-protector-all -Wno-uninitialized -Wno-unused-parameter -fPIC -fvisibility=hidden -D_FORTIFY_SOURCE=2 -O2") -else() +elseif (${CMAKE_SYSTEM_NAME} MATCHES "Windows") set(protobuf_CXXFLAGS "-fstack-protector-all -Wno-maybe-uninitialized -Wno-unused-parameter -fPIC -fvisibility=hidden -D_FORTIFY_SOURCE=2 -O2") +else() + set(protobuf_CXXFLAGS "-fstack-protector-all -Wno-maybe-uninitialized -Wno-unused-parameter -fPIC -fvisibility=hidden -D_FORTIFY_SOURCE=2 -D_GLIBCXX_USE_CXX11_ABI=0 -O2") endif() + set(protobuf_LDFLAGS "-Wl,-z,relro,-z,now,-z,noexecstack") set(_ms_tmp_CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS}) set(CMAKE_CXX_FLAGS ${_ms_tmp_CMAKE_CXX_FLAGS}) diff --git a/graphengine b/graphengine index 579dcb75a99..9248a2fd15f 160000 --- a/graphengine +++ b/graphengine @@ -1 +1 @@ -Subproject commit 579dcb75a990b533f9182733a6424f2bd66f0f23 +Subproject commit 9248a2fd15ffc64d9d04b40c6b2836d1c94ca0b4 diff --git a/mindspore/ccsrc/kernel/tbe/tbe_adapter.cc b/mindspore/ccsrc/kernel/tbe/tbe_adapter.cc index 8590d25b522..023ca90c9ab 100644 --- a/mindspore/ccsrc/kernel/tbe/tbe_adapter.cc +++ b/mindspore/ccsrc/kernel/tbe/tbe_adapter.cc @@ -32,6 +32,8 @@ namespace tbe { static std::map tbe_func_adapter_map = { {"softmax", "softmax_v2"}, {"log_softmax", "log_softmax_v2"}, + {"apply_momentum", "apply_momentum_d"}, + {"apply_ftrl", "apply_ftrl_d"}, {"re_lu6", "relu6"}, {"re_lu6_grad", "relu6_grad"}, {"re_lu", "relu"}, @@ -89,7 +91,7 @@ static std::map tbe_func_adapter_map = { {"batch_to_space_nd", "batch_to_space_nd_d"}, {"resize_bilinear", "resize_bilinear_v2_d"}, {"resize_bilinear_grad", "resize_bilinear_v2_grad"}, - {"adam", "apply_adam"}, + {"adam", "apply_adam_d"}, {"r_oi_align", "roi_align"}, {"r_oi_align_grad", "roi_align_grad"}, {"i_ou", "iou"}, diff --git a/mindspore/ccsrc/pre_activate/ascend/ir_fusion/momentum_lossscale_fusion.cc b/mindspore/ccsrc/pre_activate/ascend/ir_fusion/momentum_lossscale_fusion.cc index 6b751873d68..e7a73a9c7f2 100644 --- a/mindspore/ccsrc/pre_activate/ascend/ir_fusion/momentum_lossscale_fusion.cc +++ b/mindspore/ccsrc/pre_activate/ascend/ir_fusion/momentum_lossscale_fusion.cc @@ -32,19 +32,6 @@ bool CheckValueNodeInputOfMul(const AnfNodePtr &node) { std::vector mul_input_shape = AnfAlgo::GetOutputInferShape(node, 0); return mul_input_shape.empty() || (mul_input_shape.size() == 1 && mul_input_shape[0] == 1); } -void AddInputToOutput(const FuncGraphPtr &func_graph, const CNodePtr &old_cnode, const AnfNodePtr &new_node, - std::vector *new_outputs) { - MS_EXCEPTION_IF_NULL(old_cnode); - MS_EXCEPTION_IF_NULL(new_node); - MS_EXCEPTION_IF_NULL(new_outputs); - auto node_to_output = old_cnode->input(kAccumIndex + 1); - MS_EXCEPTION_IF_NULL(node_to_output); - AbstractBasePtrList abstract_list{old_cnode->abstract(), node_to_output->abstract()}; - auto abstract_tuple = std::make_shared(abstract_list); - new_node->set_abstract(abstract_tuple); - // Create Output - CreateMultipleOutputsOfAnfNode(func_graph, new_node, kFusedMulApplyMomentumOutputNum, new_outputs); -} } // namespace const BaseRef MomentumLossscaleFusion::DefinePattern() const { @@ -94,14 +81,9 @@ const AnfNodePtr MomentumLossscaleFusion::Process(const FuncGraphPtr &func_graph input_names_value[3] = "x1"; input_names_value.emplace_back("x2"); AnfAlgo::SetNodeAttr(kAttrInputNames, MakeValue(input_names_value), new_node); + new_node->set_abstract(node->abstract()); new_node->set_scope(node->scope()); - // Create Outputs - std::vector new_outputs; - AddInputToOutput(func_graph, cnode, new_node, &new_outputs); - if (new_outputs.size() != kFusedMulApplyMomentumOutputNum) { - MS_LOG(EXCEPTION) << "Failed to create outputs of " << new_node->DebugString(); - } - return new_outputs[0]; + return new_node; } } // namespace opt } // namespace mindspore diff --git a/mindspore/ccsrc/transform/convert.cc b/mindspore/ccsrc/transform/convert.cc index 94e387dbb42..00d505a7c42 100644 --- a/mindspore/ccsrc/transform/convert.cc +++ b/mindspore/ccsrc/transform/convert.cc @@ -212,7 +212,7 @@ std::unordered_map &DfGraphConvertor::get_adpt_ma {string(kNameIOU), ADPT_DESC(Iou)}, {string(kNameGreaterEqual), ADPT_DESC(GreaterEqual)}, {string(kNameSlice), ADPT_DESC(SliceD)}, - {string(kNameApplyMomentum), ADPT_DESC(ApplyMomentum)}, + {string(kNameApplyMomentum), ADPT_DESC(ApplyMomentumD)}, {string(kNameMaxPool), ADPT_DESC(MaxPool)}, {string(kNameAvgPool), ADPT_DESC(AvgPool)}, {string(kNameMaxPoolWithArgmax), ADPT_DESC(MaxPoolWithArgmax)}, @@ -395,7 +395,7 @@ std::unordered_map &DfGraphConvertor::get_adpt_ma {string(kNameDepthToSpace), ADPT_DESC(DepthToSpace)}, {string(kNameSign), ADPT_DESC(Sign)}, {string(kNameRound), ADPT_DESC(Round)}, - {string(kNameApplyFtrl), ADPT_DESC(ApplyFtrl)}, + {string(kNameApplyFtrl), ADPT_DESC(ApplyFtrlD)}, {string(kNameDiag), ADPT_DESC(Diag)}, {string(kNameDiagPart), ADPT_DESC(DiagPart)}, {string(kNameSpaceToBatch), ADPT_DESC(SpaceToBatchD)}, @@ -409,7 +409,7 @@ std::unordered_map &DfGraphConvertor::get_adpt_ma {string(kNameSquareSumAll), ADPT_DESC(SquareSumAll)}}; #ifdef ENABLE_GE adpt_map[string(kNamePrint)] = ADPT_DESC(Print); - adpt_map[string(kNameApplyAdam)] = ADPT_DESC(ApplyAdam); + adpt_map[string(kNameApplyAdam)] = ADPT_DESC(ApplyAdamD); #endif return adpt_map; } diff --git a/mindspore/ccsrc/transform/op_declare.cc b/mindspore/ccsrc/transform/op_declare.cc index 0ddfc003bf0..568c794a08c 100644 --- a/mindspore/ccsrc/transform/op_declare.cc +++ b/mindspore/ccsrc/transform/op_declare.cc @@ -127,11 +127,12 @@ INPUT_MAP(Constant) = EMPTY_INPUT_MAP; ATTR_MAP(Constant) = {{"value", ATTR_DESC(value, AnyTraits())}}; OUTPUT_MAP(Constant) = {{0, OUTPUT_DESC(y)}}; -// ApplyMomentum -INPUT_MAP(ApplyMomentum) = { +// ApplyMomentumD +INPUT_MAP(ApplyMomentumD) = { {1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(lr)}, {4, INPUT_DESC(grad)}, {5, INPUT_DESC(momentum)}}; -ATTR_MAP(ApplyMomentum) = {{"use_nesterov", ATTR_DESC(use_nesterov, AnyTraits())}}; -OUTPUT_MAP(ApplyMomentum) = {{0, OUTPUT_DESC(var)}}; +ATTR_MAP(ApplyMomentumD) = {{"use_nesterov", ATTR_DESC(use_nesterov, AnyTraits())}, + {"use_locking", ATTR_DESC(use_locking, AnyTraits())}}; +OUTPUT_MAP(ApplyMomentumD) = {{0, OUTPUT_DESC(var)}, {1, OUTPUT_DESC(accum)}}; // ScalarSummary INPUT_MAP(Summary) = {{2, INPUT_DESC(x)}}; @@ -470,7 +471,16 @@ INPUT_MAP(ApplyAdam) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(m)}, {10, INPUT_DESC(grad)}}; ATTR_MAP(ApplyAdam) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits())}, {"use_nesterov", ATTR_DESC(use_nesterov, AnyTraits())}}; -OUTPUT_MAP(ApplyAdam) = {{0, OUTPUT_DESC(var)}, {1, OUTPUT_DESC(m)}, {2, OUTPUT_DESC(v)}}; +OUTPUT_MAP(ApplyAdam) = {{0, OUTPUT_DESC(var)}}; + +// ApplyAdamD +INPUT_MAP(ApplyAdamD) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(m)}, {3, INPUT_DESC(v)}, + {4, INPUT_DESC(beta1_power)}, {5, INPUT_DESC(beta2_power)}, {6, INPUT_DESC(lr)}, + {7, INPUT_DESC(beta1)}, {8, INPUT_DESC(beta2)}, {9, INPUT_DESC(epsilon)}, + {10, INPUT_DESC(grad)}}; +ATTR_MAP(ApplyAdamD) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits())}, + {"use_nesterov", ATTR_DESC(use_nesterov, AnyTraits())}}; +OUTPUT_MAP(ApplyAdamD) = {{0, OUTPUT_DESC(var)}, {1, OUTPUT_DESC(m)}, {2, OUTPUT_DESC(v)}}; // Relu6 INPUT_MAP(Relu6) = {{1, INPUT_DESC(x)}}; @@ -823,7 +833,7 @@ OUTPUT_MAP(RealDiv) = {{0, OUTPUT_DESC(y)}}; // Cast INPUT_MAP(Cast) = {{1, INPUT_DESC(x)}}; INPUT_ATTR_MAP(Cast) = {{2, ATTR_DESC(dst_type, AnyTraits())}}; -ATTR_MAP(Cast) = {{"Truncate", ATTR_DESC(truncate, AnyTraits())}}; +ATTR_MAP(Cast) = EMPTY_ATTR_MAP; OUTPUT_MAP(Cast) = {{0, OUTPUT_DESC(y)}}; // Reciprocal @@ -1194,12 +1204,12 @@ INPUT_MAP(Round) = {{1, INPUT_DESC(x)}}; ATTR_MAP(Round) = EMPTY_ATTR_MAP; OUTPUT_MAP(Round) = {{0, OUTPUT_DESC(y)}}; -// ApplyFtrl -INPUT_MAP(ApplyFtrl) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(linear)}, - {4, INPUT_DESC(grad)}, {5, INPUT_DESC(lr)}, {6, INPUT_DESC(l1)}, - {7, INPUT_DESC(l2)}, {8, INPUT_DESC(lr_power)}}; -ATTR_MAP(ApplyFtrl) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits())}}; -OUTPUT_MAP(ApplyFtrl) = {{0, OUTPUT_DESC(var)}}; +// ApplyFtrlD +INPUT_MAP(ApplyFtrlD) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(linear)}, + {4, INPUT_DESC(grad)}, {5, INPUT_DESC(lr)}, {6, INPUT_DESC(l1)}, + {7, INPUT_DESC(l2)}, {8, INPUT_DESC(lr_power)}}; +ATTR_MAP(ApplyFtrlD) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits())}}; +OUTPUT_MAP(ApplyFtrlD) = {{0, OUTPUT_DESC(var)}, {1, OUTPUT_DESC(accum)}, {2, OUTPUT_DESC(linear)}}; // Diag INPUT_MAP(Diag) = {{1, INPUT_DESC(x)}}; diff --git a/mindspore/ccsrc/transform/op_declare.h b/mindspore/ccsrc/transform/op_declare.h index ffc572eba5c..916ae940765 100755 --- a/mindspore/ccsrc/transform/op_declare.h +++ b/mindspore/ccsrc/transform/op_declare.h @@ -120,6 +120,8 @@ DECLARE_OP_ADAPTER(ResizeNearestNeighborV2Grad) DECLARE_OP_USE_OUTPUT(ResizeNearestNeighborV2Grad) DECLARE_OP_ADAPTER(ApplyAdam) DECLARE_OP_USE_OUTPUT(ApplyAdam) +DECLARE_OP_ADAPTER(ApplyAdamD) +DECLARE_OP_USE_OUTPUT(ApplyAdamD) DECLARE_OP_ADAPTER(Relu6) DECLARE_OP_USE_OUTPUT(Relu6) DECLARE_OP_ADAPTER(Relu6Grad) @@ -319,8 +321,8 @@ DECLARE_OP_ADAPTER(Assign) DECLARE_OP_USE_OUTPUT(Assign) DECLARE_OP_ADAPTER(Constant) DECLARE_OP_USE_OUTPUT(Constant) -DECLARE_OP_ADAPTER(ApplyMomentum) -DECLARE_OP_USE_OUTPUT(ApplyMomentum) +DECLARE_OP_ADAPTER(ApplyMomentumD) +DECLARE_OP_USE_OUTPUT(ApplyMomentumD) // ** Summary Operations ** DECLARE_OP_ADAPTER(Summary) @@ -454,8 +456,8 @@ DECLARE_OP_ADAPTER(LarsV2Update) DECLARE_OP_USE_OUTPUT(LarsV2Update) DECLARE_OP_ADAPTER(Round) DECLARE_OP_USE_OUTPUT(Round) -DECLARE_OP_ADAPTER(ApplyFtrl) -DECLARE_OP_USE_OUTPUT(ApplyFtrl) +DECLARE_OP_ADAPTER(ApplyFtrlD) +DECLARE_OP_USE_OUTPUT(ApplyFtrlD) DECLARE_OP_ADAPTER(SparseApplyFtrlD) DECLARE_OP_USE_OUTPUT(SparseApplyFtrlD) DECLARE_OP_ADAPTER(Diag) diff --git a/mindspore/ops/_op_impl/tbe/apply_ftrl.py b/mindspore/ops/_op_impl/tbe/apply_ftrl.py index e37648191e3..56c6bf36121 100644 --- a/mindspore/ops/_op_impl/tbe/apply_ftrl.py +++ b/mindspore/ops/_op_impl/tbe/apply_ftrl.py @@ -32,30 +32,32 @@ apply_ftrl_op_info = TBERegOp("ApplyFtrl") \ .input(6, "l2", False, "required", "all") \ .input(7, "lr_power", False, "required", "all") \ .output(0, "var", False, "required", "all") \ + .output(1, "accum", False, "required", "all") \ + .output(2, "linear", False, "required", "all") \ .dtype_format(DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, - DataType.F16_5HD) \ + DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD) \ .dtype_format(DataType.F16_FracZ, DataType.F16_FracZ, DataType.F16_FracZ, DataType.F16_FracZ, DataType.F16_FracZ, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, - DataType.F16_FracZ) \ + DataType.F16_FracZ, DataType.F16_FracZ, DataType.F16_FracZ) \ .dtype_format(DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, - DataType.F16_C1HWNCoC0) \ + DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0) \ .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, - DataType.F16_Default) \ + DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \ .dtype_format(DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, - DataType.F32_5HD) \ + DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD) \ .dtype_format(DataType.F32_FracZ, DataType.F32_FracZ, DataType.F32_FracZ, DataType.F32_FracZ, DataType.F32_FracZ, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, - DataType.F32_FracZ) \ + DataType.F32_FracZ, DataType.F32_FracZ, DataType.F32_FracZ) \ .dtype_format(DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, - DataType.F32_C1HWNCoC0) \ + DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0) \ .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, - DataType.F32_Default) \ + DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ .get_op_info() diff --git a/mindspore/ops/_op_impl/tbe/apply_momentum.py b/mindspore/ops/_op_impl/tbe/apply_momentum.py index 42ce9d0e41a..deb8f0d3870 100644 --- a/mindspore/ops/_op_impl/tbe/apply_momentum.py +++ b/mindspore/ops/_op_impl/tbe/apply_momentum.py @@ -30,22 +30,23 @@ apply_momentum_op_info = TBERegOp("ApplyMomentum") \ .input(3, "grad", False, "required", "all") \ .input(4, "momentum", False, "required", "all") \ .output(0, "var", False, "required", "all") \ + .output(1, "accum", False, "required", "all") \ .dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, - DataType.F16_Default, DataType.F16_Default) \ + DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \ .dtype_format(DataType.F16_5HD, DataType.F16_5HD, DataType.F16_Default, DataType.F16_5HD, - DataType.F16_Default, DataType.F16_5HD) \ + DataType.F16_Default, DataType.F16_5HD, DataType.F16_5HD) \ .dtype_format(DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0, DataType.F16_Default, DataType.F16_C1HWNCoC0, - DataType.F16_Default, DataType.F16_C1HWNCoC0) \ + DataType.F16_Default, DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0) \ .dtype_format(DataType.F16_FracZ, DataType.F16_FracZ, DataType.F16_Default, DataType.F16_FracZ, - DataType.F16_Default, DataType.F16_FracZ) \ + DataType.F16_Default, DataType.F16_FracZ, DataType.F16_FracZ) \ .dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, - DataType.F32_Default, DataType.F32_Default) \ + DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ .dtype_format(DataType.F32_5HD, DataType.F32_5HD, DataType.F32_Default, DataType.F32_5HD, - DataType.F32_Default, DataType.F32_5HD) \ + DataType.F32_Default, DataType.F32_5HD, DataType.F32_5HD) \ .dtype_format(DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0, DataType.F32_Default, DataType.F32_C1HWNCoC0, - DataType.F32_Default, DataType.F32_C1HWNCoC0) \ + DataType.F32_Default, DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0) \ .dtype_format(DataType.F32_FracZ, DataType.F32_FracZ, DataType.F32_Default, DataType.F32_FracZ, - DataType.F32_Default, DataType.F32_FracZ) \ + DataType.F32_Default, DataType.F32_FracZ, DataType.F32_FracZ) \ .get_op_info() diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index 34c31647686..aa21625ec28 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -1507,8 +1507,11 @@ class ApplyMomentum(PrimitiveWithInfer): def __init__(self, use_nesterov=False, use_locking=False, gradient_scale=1.0): self.init_prim_io_names(inputs=['variable', 'accumulation', 'learning_rate', 'gradient', 'momentum'], outputs=['output']) + self.is_tbe = context.get_context("device_target") == "Ascend" def infer_shape(self, v_shape, a_shape, l_shape, g_shape, m_shape): + if self.is_tbe: + return v_shape, v_shape return v_shape def infer_dtype(self, v_dtype, a_dtype, l_dtype, g_dtype, m_dtype): @@ -1519,6 +1522,8 @@ class ApplyMomentum(PrimitiveWithInfer): validator.check_scalar_or_tensor_type_same({"l_dtype": l_dtype}, valid_types, self.name) validator.check_scalar_or_tensor_type_same({"g_dtype": g_dtype}, valid_types, self.name) validator.check_scalar_or_tensor_type_same({"m_dtype": m_dtype}, valid_types, self.name) + if self.is_tbe: + return g_dtype, g_dtype return g_dtype @@ -2810,13 +2815,13 @@ class SparseApplyAdagrad(PrimitiveWithInfer): validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name) validator.check_integer("indices rank", len(indices_shape), 1, Rel.EQ, self.name) validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name) - return var_shape + return var_shape, accum_shape def infer_dtype(self, var_type, accum_type, grad_type, indices_type): args = {'var': var_type, 'accum': accum_type, 'grad': grad_type} validator.check_tensor_type_same(args, (mstype.float32,), self.name) validator.check_tensor_type_same({'indices': indices_type}, [mstype.int32], self.name) - return var_type + return var_type, accum_type class ApplyProximalAdagrad(PrimitiveWithInfer): @@ -3074,11 +3079,14 @@ class ApplyFtrl(PrimitiveWithInfer): self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'lr', 'l1', 'l2', 'lr_power'], outputs=['output']) self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) + self.is_tbe = context.get_context("device_target") == "Ascend" def infer_shape(self, var_shape, accum_shape, linear_shape, grad_shape, lr_shape, l1_shape, l2_shape, lr_power_shape): validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name) validator.check('var shape', var_shape, 'linear shape', linear_shape, Rel.EQ, self.name) + if self.is_tbe: + return var_shape, var_shape, var_shape return var_shape def infer_dtype(self, var_type, accum_type, linear_type, grad_type, lr_type, l1_type, l2_type, lr_power_type): @@ -3090,6 +3098,8 @@ class ApplyFtrl(PrimitiveWithInfer): validator.check_scalar_or_tensor_type_same({"l1": l1_type}, valid_types, self.name) validator.check_scalar_or_tensor_type_same({"l2": l2_type}, valid_types, self.name) validator.check_scalar_or_tensor_type_same({"lr_power": lr_power_type}, valid_types, self.name) + if self.is_tbe: + return var_type, var_type, var_type return var_type diff --git a/tests/st/networks/models/bert/bert_tdt_lossscale.py b/tests/st/networks/models/bert/bert_tdt_lossscale.py index ab8eef2e7d7..bda4afacaaa 100644 --- a/tests/st/networks/models/bert/bert_tdt_lossscale.py +++ b/tests/st/networks/models/bert/bert_tdt_lossscale.py @@ -199,10 +199,10 @@ def test_bert_percision(): # assertion occurs while the loss value, overflow state or loss_scale value is wrong loss_value = np.array(callback.loss_list) - assert np.allclose(loss_value[0], 12.207198, 0, 0.000001) + assert np.allclose(loss_value[0], 12.206575, 0, 0.000001) - expect_loss_value = [12.207198, 11.980881, 11.984844, 11.879381, 11.832978, 12.411333, 12.009284, - 12.621277, 12.223178, 12.427385] + expect_loss_value = [12.206575, 11.980493, 11.984225, 11.878742, 11.832555, 12.410444, 12.008799, + 12.620619, 12.22254, 12.4261055] print("loss value: {}".format(loss_value)) assert np.allclose(loss_value, expect_loss_value, 0, 0.0005) diff --git a/tests/ut/cpp/python_input/gtest_input/pre_activate/momentum_lossscale_fusion_test.py b/tests/ut/cpp/python_input/gtest_input/pre_activate/momentum_lossscale_fusion_test.py index 3568b5784b0..3302daa8790 100644 --- a/tests/ut/cpp/python_input/gtest_input/pre_activate/momentum_lossscale_fusion_test.py +++ b/tests/ut/cpp/python_input/gtest_input/pre_activate/momentum_lossscale_fusion_test.py @@ -47,6 +47,6 @@ def test_momentum_lossscale_fusion(tag): @fns def after(input0, input1, input2, input3, input4): - return make_tuple(tuple_getitem(FusedMulApplyMomentum(input0, input1, input2, input3, input4, constant), 0)) + return make_tuple(FusedMulApplyMomentum(input0, input1, input2, input3, input4, constant)) return fns[tag] diff --git a/tests/ut/cpp/stub/hccl/hccl_stub.cc b/tests/ut/cpp/stub/hccl/hccl_stub.cc index 00379ba6505..e25ccc36c62 100644 --- a/tests/ut/cpp/stub/hccl/hccl_stub.cc +++ b/tests/ut/cpp/stub/hccl/hccl_stub.cc @@ -103,7 +103,7 @@ hcclResult_t hcom_receive(const char *tag, void *outputPtr, u64 count, hcclDataT /* 获取梯度参数切分方案 */ hcclResult_t hcom_get_split_strategy(const char *group, const struct model_feature *feature, u32 maxSegmentNum, - u32 *segmentNum, u32 *segmentIdx) { + u32 *segmentNum, u32 *segmentIdx, GradSplitForceMode force) { return HCCL_SUCCESS; } diff --git a/tests/ut/python/ops/test_momentum.py b/tests/ut/python/ops/test_momentum.py index 8889feb4fbd..973da9a45e8 100644 --- a/tests/ut/python/ops/test_momentum.py +++ b/tests/ut/python/ops/test_momentum.py @@ -41,7 +41,7 @@ def tensor_run_opt(opt, iters, learning_rate, momentum, gradient, variable, moment): """ tensor_run_opt """ success = True - new_weight = opt(variable, moment, learning_rate, gradient, momentum) + new_weight = opt(variable, moment, learning_rate, gradient, momentum)[0] success = F.depend(success, F.assign(variable, new_weight)) return success diff --git a/tests/ut/python/ops/test_ops.py b/tests/ut/python/ops/test_ops.py index d1e28e1304b..03eeb9cecf5 100755 --- a/tests/ut/python/ops/test_ops.py +++ b/tests/ut/python/ops/test_ops.py @@ -1058,6 +1058,7 @@ test_case_nn_ops = [ ('SparseApplyAdagrad', { 'block': P.SparseApplyAdagrad(0.5), 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))], + 'desc_bprop': [[3, 3], [3, 3]], 'skip': ['backward']}), ('SparseApplyFtrl', { 'block': SparseApplyFtrlNet(),