forked from mindspore-Ecosystem/mindspore
!2612 delete pynative lenet test
Merge pull request !2612 from changzherui/del_test
This commit is contained in:
commit
87213648bc
|
@ -1,70 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test_lenet_model """
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn import WithGradCell
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
""" LeNet5 definition """
|
||||
|
||||
def __init__(self):
|
||||
super(LeNet5, self).__init__()
|
||||
self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
|
||||
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
|
||||
self.fc1 = nn.Dense(16 * 5 * 5, 120)
|
||||
self.fc2 = nn.Dense(120, 84)
|
||||
self.fc3 = nn.Dense(84, 10)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = P.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.max_pool2d(self.relu(self.conv1(x)))
|
||||
x = self.max_pool2d(self.relu(self.conv2(x)))
|
||||
x = self.flatten(x)
|
||||
x = self.relu(self.fc1(x))
|
||||
x = self.relu(self.fc2(x))
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="need ge backend")
|
||||
def test_lenet_pynative_train_net():
|
||||
""" test_lenet_pynative_train_net """
|
||||
data = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([1, 10]).astype(np.float32))
|
||||
dout = Tensor(np.ones([1]).astype(np.float32))
|
||||
iteration_num = 1
|
||||
verification_step = 0
|
||||
|
||||
net = LeNet5()
|
||||
|
||||
for i in range(0, iteration_num):
|
||||
# get the gradients
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False)
|
||||
grad_fn = nn.SoftmaxCrossEntropyWithLogits()
|
||||
grad_net = WithGradCell(net, grad_fn, sens=dout)
|
||||
|
||||
|
||||
def test_lenet_pynative_train_model():
|
||||
""" test_lenet_pynative_train_model """
|
||||
# get loss from model.compute_loss
|
||||
return
|
Loading…
Reference in New Issue