modify format

This commit is contained in:
huodagu 2023-02-09 15:40:07 +08:00
parent 28fc7534e2
commit 76dcfd079a
8 changed files with 10 additions and 10 deletions

View File

@ -16,7 +16,7 @@ mindspore.ops.RaggedRange
输出:
- **rt_nested_splits** (Tensor) - 返回RagdTensor的嵌套拆分Tensor数据类型类型为 `Tsplits` 。shape等于输入 `starts` 的shape加1。
- **rt_dense_values** (Tensor) - 返回RagdTensor的密集值Tensor其数据类型与输入 `starts` 相同。设输入 `starts、` `limits``delta` 的大小为i。
- 如果 `starts``limits``delta` 的数据类型为int32或int64则输出 `rt_dense_values` 的shape等于 :math:`sum(abs(limits[i] - starts[i]) + abs(deltas[i]) - 1) / abs(deltas[i]))` 。
- 如果 `starts``limits``delta` 的数据类型为int32或int64则输出 `rt_dense_values` 的shape等于 :math:`sum(abs(limits[i] - starts[i]) + abs(deltas[i] - 1) / abs(deltas[i]))` 。
- 如果 `starts``limits``delta` 的数据类型为float32或者float64则输出 `rt_dense_values` 的shape等于 :math:`sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))`
异常:

View File

@ -76,7 +76,7 @@ def mutable(input_data, dynamic_len=False):
the length of the tuple or list is different for each run, it does not need to be re-compiled.
Args:
input_data (Union[int, float, Tensor, tuple, list, dict): The input data to be made mutable. If
input_data (Union[int, float, Tensor, tuple, list, dict]): The input data to be made mutable. If
'input_data' is list/tuple/dict, the type of each element should also in the valid types.
dynamic_len (bool): Whether to set the whole sequence to be dynamic length. In graph compilation, if
`dynamic_len` is True, the `input_data` must be list or tuple and the elements of `input_data` must have

View File

@ -1591,7 +1591,7 @@ class Pad(ImageTensorOperation, PyTensorOperation):
value of edge.
Raises:
TypeError: If `padding` is not of type int or Sequence[int, int], Sequence[int, int, int, int]].
TypeError: If `padding` is not of type int or Sequence[int, int], Sequence[int, int, int, int].
TypeError: If `fill_value` is not of type int or tuple[int].
TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
ValueError: If `padding` is negative.

View File

@ -1415,8 +1415,8 @@ class MaxUnpool1d(Cell):
MaxUnpool1d takes in as input the output of MaxPool1d including the indices of the maximal values
and computes a partial inverse in which all non-maximal values are set to zero. Typically the input
is of shape :math:`(N, C, H_{in})` or :math:`(C, H_{in})`, and the output is of shape :math:`(N, C, H_{out}`
or :math:`(C, H_{out}`. The operation is as follows.
is of shape :math:`(N, C, H_{in})` or :math:`(C, H_{in})`, and the output is of shape :math:`(N, C, H_{out})`
or :math:`(C, H_{out})`. The operation is as follows.
.. math::
\begin{array}{ll} \\

View File

@ -575,7 +575,7 @@ class FixedSparseAttention(nn.Cell):
queries to query the context.
- **k** (Tensor) - Tensor key ( `mstype.fp16` [batch_size, seq_length, hidden_size]): Sequence of
queries to query the context.
- **v** (Tensor) - Tensor value `mstype.fp16` [batch size, sequence length, Embedding Size]):
- **v** (Tensor) - Tensor value ( `mstype.fp16` [batch size, sequence length, Embedding Size]):
Sequence of queries to query the context.
- **attention_mask** (Tensor) - Float Tensor the mask of ( `mstype.fp32`, `mstype.fp16`
[batch_size, seq_length, seq_length]): Lower triangular matrix to pass masked information.

View File

@ -1939,7 +1939,7 @@ def interpolate(x, size=None, scale_factor=None, mode="nearest", align_corners=N
x (Tensor): Tensor to be resized.
Input tensor must be a 3-D, 4-D, or 5-D tensor with shape
`(batch, channels, [optional depth], [optional height], width)`, with data type of float.
size (Union[int, tuple[int], list[int]], optional)): The target size.
size (Union[int, tuple[int], list[int]], optional): The target size.
If size is a tuple or list, size must have the same dimensions as x.
One and only one of size and scale_factor can be set to None. Default: None.
scale_factor (Union[float, tuple[float], list[float]], optional): The scale factor of new size of the tensor.
@ -1996,7 +1996,7 @@ def interpolate(x, size=None, scale_factor=None, mode="nearest", align_corners=N
- `×` indicates that this parameter is not currently supported.
- `` indicates that this parameter is supported.
Outputs:
Returns:
Tensor, resized, whose dimensions and dtype are the same as `x`.
Raises:

View File

@ -6644,7 +6644,7 @@ class RaggedRange(Primitive):
- if type of the input `starts`, input `limits` and input `deltas`
are int32 or int64, shape of the output `rt_dense_values` is equal to
sum(abs(limits[i] - starts[i]) + abs(deltas[i]) - 1) / abs(deltas[i])),
sum(abs(limits[i] - starts[i]) + abs(deltas[i] - 1) / abs(deltas[i])),
- if type of the input `starts`, input `limits` and input `deltas`
are float32 or float64, shape of the output `rt_dense_values` is equal to
sum(ceil(abs((limits[i] - starts[i]) / deltas[i]))).

View File

@ -282,7 +282,7 @@ class SummaryLandscape:
For example, in image dataset, You can set num_samples is 2048,
which means that 2048 images are used to create loss landscape.
Default: 2048.
- intervals (List[List[int]): Specifies the interval
- intervals (List[List[int]]): Specifies the interval
in which the loss landscape. For example: If the user wants to
create loss landscape of two training processes, they are 1-5 epoch
and 6-10 epoch respectively. They can set [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]].