fix mobilenetv2 model for micro

This commit is contained in:
z00512249 2021-03-22 10:15:24 +08:00
parent 958ec1c85b
commit 73bce8e237
7 changed files with 329 additions and 136 deletions

View File

@ -76,6 +76,7 @@ set(CODER_OPCODERS_SRC
${MICRO_DIR}/coder/opcoders/nnacl/fp32/batchnorm_fp32_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/fp32/biasadd_fp32_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/fp32/concat_fp32_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/fp32/conv2d_delegate_fp32_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/fp32/convolution_fp32_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/fp32/convolution_winograd_fp32_coder.cc
${MICRO_DIR}/coder/opcoders/nnacl/fp32/convolution_depthwise_fp32_coder.cc

View File

@ -20,23 +20,80 @@
#include "nnacl/fp32/winograd_utils.h"
#include "nnacl/int8/quantize.h"
#include "coder/log.h"
namespace mindspore::lite::micro {
namespace {
int MallocConvQuantParams(ConvQuantArg *quant_arg, size_t input_arg_num, size_t filter_arg_num, size_t output_arg_num) {
Conv2DBaseCoder::~Conv2DBaseCoder() {
FreeConvQuantParams();
conv_param_ = nullptr;
conv_quant_arg_ = nullptr;
filter_tensor_ = nullptr;
bias_tensor_ = nullptr;
}
void Conv2DBaseCoder::FreeConvQuantParams() {
if (conv_quant_arg_ == nullptr) {
return;
}
if (conv_quant_arg_->real_multiplier_ != nullptr) {
free(conv_quant_arg_->real_multiplier_);
conv_quant_arg_->real_multiplier_ = nullptr;
}
if (conv_quant_arg_->left_shift_ != nullptr) {
free(conv_quant_arg_->left_shift_);
conv_quant_arg_->left_shift_ = nullptr;
}
if (conv_quant_arg_->right_shift_ != nullptr) {
free(conv_quant_arg_->right_shift_);
conv_quant_arg_->right_shift_ = nullptr;
}
if (conv_quant_arg_->quant_multiplier_ != nullptr) {
free(conv_quant_arg_->quant_multiplier_);
conv_quant_arg_->quant_multiplier_ = nullptr;
}
if (conv_quant_arg_->out_act_min_ != nullptr) {
free(conv_quant_arg_->out_act_min_);
conv_quant_arg_->out_act_min_ = nullptr;
}
if (conv_quant_arg_->out_act_max_ != nullptr) {
free(conv_quant_arg_->out_act_max_);
conv_quant_arg_->out_act_max_ = nullptr;
}
if (conv_quant_arg_->input_quant_args_ != nullptr) {
free(conv_quant_arg_->input_quant_args_);
conv_quant_arg_->input_quant_args_ = nullptr;
}
if (conv_quant_arg_->filter_quant_args_ != nullptr) {
free(conv_quant_arg_->filter_quant_args_);
conv_quant_arg_->filter_quant_args_ = nullptr;
}
if (conv_quant_arg_->output_quant_args_ != nullptr) {
free(conv_quant_arg_->output_quant_args_);
conv_quant_arg_->output_quant_args_ = nullptr;
}
}
int Conv2DBaseCoder::MallocConvQuantParams(size_t input_arg_num, size_t filter_arg_num, size_t output_arg_num) {
MS_CHECK_TRUE(input_arg_num > 0, "invalid value of input_arg_num");
MS_CHECK_TRUE(filter_arg_num > 0, "invalid value of filter_arg_num");
MS_CHECK_TRUE(output_arg_num > 0, "invalid value of output_arg_num");
quant_arg->input_quant_args_ = static_cast<QuantArg *>(malloc(input_arg_num * sizeof(struct QuantArg)));
MS_CHECK_PTR(quant_arg->input_quant_args_);
quant_arg->filter_quant_args_ = static_cast<QuantArg *>(malloc(filter_arg_num * sizeof(QuantArg)));
MS_CHECK_PTR(quant_arg->filter_quant_args_);
quant_arg->output_quant_args_ = static_cast<QuantArg *>(malloc(output_arg_num * sizeof(QuantArg)));
MS_CHECK_PTR(quant_arg->output_quant_args_);
return mindspore::lite::RET_OK;
conv_quant_arg_->input_quant_args_ = reinterpret_cast<::QuantArg *>(malloc(input_arg_num * sizeof(::QuantArg)));
if (conv_quant_arg_->input_quant_args_ == nullptr) {
FreeConvQuantParams();
return RET_ERROR;
}
conv_quant_arg_->filter_quant_args_ = reinterpret_cast<::QuantArg *>(malloc(filter_arg_num * sizeof(::QuantArg)));
if (conv_quant_arg_->filter_quant_args_ == nullptr) {
FreeConvQuantParams();
return RET_ERROR;
}
conv_quant_arg_->output_quant_args_ = reinterpret_cast<::QuantArg *>(malloc(output_arg_num * sizeof(::QuantArg)));
if (conv_quant_arg_->output_quant_args_ == nullptr) {
FreeConvQuantParams();
return RET_ERROR;
}
return RET_OK;
}
} // namespace
namespace mindspore::lite::micro {
std::string Conv2DBaseCoder::LayoutTransformFp32(schema::Format src_format, schema::Format dst_format) {
std::string ret;
if (src_format == schema::Format_NHWC && dst_format == schema::Format_NC4HW4) {
@ -116,7 +173,7 @@ int Conv2DBaseCoder::MallocQuantParam() {
conv_quant_arg_->input_arg_num_ = input_arg_num;
conv_quant_arg_->filter_arg_num_ = filter_arg_num;
conv_quant_arg_->output_arg_num_ = output_arg_num;
MallocConvQuantParams(conv_quant_arg_, input_arg_num, filter_arg_num, output_arg_num);
MallocConvQuantParams(input_arg_num, filter_arg_num, output_arg_num);
return RET_OK;
}
@ -125,7 +182,7 @@ int Conv2DBaseCoder::SetInputTensorQuantParam() {
if (in_arg_num == kPerTensor) {
QuantArg input_quant_arg = input_tensor_->quant_params().at(0);
conv_quant_arg_->input_quant_args_[0].zp_ = input_quant_arg.zeroPoint;
conv_quant_arg_->input_quant_args_[0].scale_ = input_quant_arg.scale;
conv_quant_arg_->input_quant_args_[0].scale_ = static_cast<float>(input_quant_arg.scale);
return RET_OK;
} else {
// per channel
@ -139,12 +196,12 @@ int Conv2DBaseCoder::SetFilterTensorQuantParam() {
if (weight_arg_num == kPerTensor) {
QuantArg weight_quant_arg = filter_tensor_->quant_params().at(0);
conv_quant_arg_->filter_quant_args_[0].zp_ = weight_quant_arg.zeroPoint;
conv_quant_arg_->filter_quant_args_[0].scale_ = weight_quant_arg.scale;
conv_quant_arg_->filter_quant_args_[0].scale_ = static_cast<float>(weight_quant_arg.scale);
} else {
std::vector<QuantArg> weight_quant_arg = filter_tensor_->quant_params();
for (int i = 0; i < static_cast<int>(weight_arg_num); ++i) {
conv_quant_arg_->filter_quant_args_[i].zp_ = weight_quant_arg[i].zeroPoint;
conv_quant_arg_->filter_quant_args_[i].scale_ = weight_quant_arg[i].scale;
conv_quant_arg_->filter_quant_args_[i].scale_ = static_cast<float>(weight_quant_arg[i].scale);
}
}
return RET_OK;
@ -155,7 +212,7 @@ int Conv2DBaseCoder::SetOutputTensorQuantParam() {
if (out_arg_num == kPerTensor) {
QuantArg output_quant_arg = output_tensor_->quant_params().at(0);
conv_quant_arg_->output_quant_args_[0].zp_ = output_quant_arg.zeroPoint;
conv_quant_arg_->output_quant_args_[0].scale_ = output_quant_arg.scale;
conv_quant_arg_->output_quant_args_[0].scale_ = static_cast<float>(output_quant_arg.scale);
} else {
MS_LOG(ERROR) << "Not Support Per Channel for input now.";
return RET_ERROR;
@ -170,17 +227,35 @@ int Conv2DBaseCoder::SetQuantMultiplier() {
weight_arg_num = conv_quant_arg_->filter_arg_num_;
}
conv_quant_arg_->real_multiplier_ = reinterpret_cast<double *>(malloc(weight_arg_num * sizeof(double)));
MS_CHECK_PTR(conv_quant_arg_->real_multiplier_);
if (conv_quant_arg_->real_multiplier_ == nullptr) {
FreeConvQuantParams();
return RET_ERROR;
}
conv_quant_arg_->left_shift_ = reinterpret_cast<int32_t *>(malloc(weight_arg_num * sizeof(int32_t)));
MS_CHECK_PTR(conv_quant_arg_->left_shift_);
if (conv_quant_arg_->left_shift_ == nullptr) {
FreeConvQuantParams();
return RET_ERROR;
}
conv_quant_arg_->right_shift_ = reinterpret_cast<int32_t *>(malloc(weight_arg_num * sizeof(int32_t)));
MS_CHECK_PTR(conv_quant_arg_->right_shift_);
if (conv_quant_arg_->right_shift_ == nullptr) {
FreeConvQuantParams();
return RET_ERROR;
}
conv_quant_arg_->quant_multiplier_ = reinterpret_cast<int32_t *>(malloc(weight_arg_num * sizeof(int32_t)));
MS_CHECK_PTR(conv_quant_arg_->quant_multiplier_);
if (conv_quant_arg_->quant_multiplier_ == nullptr) {
FreeConvQuantParams();
return RET_ERROR;
}
conv_quant_arg_->out_act_min_ = reinterpret_cast<int32_t *>(malloc(sizeof(int32_t)));
MS_CHECK_PTR(conv_quant_arg_->out_act_min_);
if (conv_quant_arg_->out_act_min_ == nullptr) {
FreeConvQuantParams();
return RET_ERROR;
}
conv_quant_arg_->out_act_max_ = reinterpret_cast<int32_t *>(malloc(sizeof(int32_t)));
MS_CHECK_PTR(conv_quant_arg_->out_act_max_);
if (conv_quant_arg_->out_act_max_ == nullptr) {
FreeConvQuantParams();
return RET_ERROR;
}
for (int i = 0; i < weight_arg_num; ++i) {
const auto in_scale =
static_cast<double>(conv_quant_arg_->input_quant_args_[0].scale_ * conv_quant_arg_->filter_quant_args_[i].scale_);
@ -197,7 +272,7 @@ int Conv2DBaseCoder::SetQuantMultiplier() {
return RET_OK;
}
int Conv2DBaseCoder::CheckResizeValid() const {
int Conv2DBaseCoder::CheckResizeValid() {
// ===============check in channel================= //
int32_t filter_in_channel = filter_tensor_->Channel();
int32_t resize_in_channel = input_tensor_->Channel();
@ -240,10 +315,6 @@ int Conv2DBaseCoder::SetQuantParam() {
MS_CHECK_RET_CODE(SetIfPerChannel(), "Set if per tensor channel failed.");
SetRoundingAndMultipilerMode();
MS_CHECK_RET_CODE(SetQuantMultiplier(), "Set Quant Multiplier Failed.");
// now only consider per tensor for output
MS_CHECK_PTR(conv_param_->conv_quant_arg_.out_act_min_);
MS_CHECK_PTR(conv_param_->conv_quant_arg_.out_act_max_);
MS_CHECK_PTR(conv_param_->conv_quant_arg_.output_quant_args_);
bool relu = conv_param_->act_type_ == ActType_Relu;
bool relu6 = conv_param_->act_type_ == ActType_Relu6;
CalculateActivationRangeQuantized(relu, relu6, conv_param_->conv_quant_arg_.output_quant_args_[0].zp_,

View File

@ -32,24 +32,7 @@ class Conv2DBaseCoder : public OperatorCoder {
const Model::Node *node, size_t node_index, Target target)
: OperatorCoder(in_tensors, out_tensors, node, node_index, target) {}
~Conv2DBaseCoder() override {
if (conv_quant_arg_ == nullptr) {
return;
}
free(conv_quant_arg_->real_multiplier_);
free(conv_quant_arg_->left_shift_);
free(conv_quant_arg_->right_shift_);
free(conv_quant_arg_->quant_multiplier_);
free(conv_quant_arg_->out_act_min_);
free(conv_quant_arg_->out_act_max_);
free(conv_quant_arg_->input_quant_args_);
free(conv_quant_arg_->filter_quant_args_);
free(conv_quant_arg_->output_quant_args_);
conv_param_ = nullptr;
conv_quant_arg_ = nullptr;
filter_tensor_ = nullptr;
bias_tensor_ = nullptr;
}
~Conv2DBaseCoder() override;
protected:
virtual int Init();
@ -68,7 +51,7 @@ class Conv2DBaseCoder : public OperatorCoder {
int SetQuantMultiplier();
int CheckResizeValid() const;
int CheckResizeValid();
int SetIfPerChannel();
@ -80,6 +63,11 @@ class Conv2DBaseCoder : public OperatorCoder {
std::string LayoutTransform(TypeId data_type, schema::Format src_format, schema::Format dst_format);
private:
int MallocConvQuantParams(size_t input_arg_num, size_t filter_arg_num, size_t output_arg_num);
void FreeConvQuantParams();
protected:
ConvParameter *conv_param_{nullptr};
ConvQuantArg *conv_quant_arg_{nullptr};

View File

@ -0,0 +1,147 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "coder/opcoders/nnacl/fp32/conv2d_delegate_fp32_coder.h"
#include "src/common/version_manager.h"
#include "src/ops/populate/populate_register.h"
#include "nnacl/fp32/winograd_utils.h"
#include "coder/opcoders/nnacl/fp32/convolution_fp32_coder.h"
#include "coder/opcoders/nnacl/fp32/convolution_depthwise_fp32_coder.h"
#include "coder/opcoders/nnacl/fp32/convolution_winograd_fp32_coder.h"
using mindspore::schema::PrimitiveType_Conv2DFusion;
namespace mindspore::lite::micro::nnacl {
int ConvDelegateCoder::Prepare(CoderContext *const context) {
// Update shape info of input and output
SetInputOutputShapeInfo(reinterpret_cast<ConvParameter *>(parameter_), input_tensor_, output_tensor_);
if (conv_coder_ == nullptr) {
// need to select actual execute coder here
conv_coder_ = CPUConvolutionFP32CoderSelect(input_tensors_, output_tensors_, node_, node_index(), target_);
MS_CHECK_PTR(conv_coder_);
const void *primitive = node_->primitive_;
MS_CHECK_PTR(primitive);
int primitive_type = GetPrimitiveType(node_->primitive_);
int schema_version = VersionManager::GetInstance()->GetSchemaVersion();
ParameterGen parameter_gen =
PopulateRegistry::GetInstance()->GetParameterCreator(GetPrimitiveType(node_->primitive_), schema_version);
MS_CHECK_PTR(parameter_gen);
OpParameter *op_parameter = parameter_gen(node_->primitive_);
op_parameter->thread_num_ = thread_num_;
conv_coder_->set_type(primitive_type);
conv_coder_->set_thread_num(thread_num_);
conv_coder_->set_parameter(op_parameter);
}
return conv_coder_->Prepare(context);
}
int ConvDelegateCoder::DoCode(CoderContext *const context) { return conv_coder_->DoCode(context); }
void SetInputOutputShapeInfo(ConvParameter *conv_param, const lite::Tensor *input, const lite::Tensor *output) {
conv_param->input_batch_ = input->Batch();
conv_param->input_h_ = input->Height();
conv_param->input_w_ = input->Width();
conv_param->input_channel_ = input->Channel();
conv_param->output_batch_ = output->Batch();
conv_param->output_h_ = output->Height();
conv_param->output_w_ = output->Width();
conv_param->output_channel_ = output->Channel();
}
std::unique_ptr<OperatorCoder> CPUConvolutionFP32CoderSelect(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index,
Target target) {
const void *primitive = node->primitive_;
if (primitive == nullptr) {
return nullptr;
}
int schema_version = VersionManager::GetInstance()->GetSchemaVersion();
ParameterGen paramGen =
PopulateRegistry::GetInstance()->GetParameterCreator(GetPrimitiveType(node->primitive_), schema_version);
if (paramGen == nullptr) {
MS_LOG(ERROR) << "parameter generator is null";
return nullptr;
}
auto conv_param = reinterpret_cast<ConvParameter *>(paramGen(node->primitive_));
bool use_winograd = false;
int out_unit = 0;
int kernel_h = conv_param->kernel_h_;
int kernel_w = conv_param->kernel_w_;
conv_param->input_h_ = in_tensors.at(kInputIndex)->Height();
conv_param->input_w_ = in_tensors.at(kInputIndex)->Width();
conv_param->input_channel_ = in_tensors.at(kInputIndex)->Channel();
conv_param->output_h_ = out_tensors.at(kOutputIndex)->Height();
conv_param->output_w_ = out_tensors.at(kOutputIndex)->Width();
conv_param->output_channel_ = out_tensors.at(kOutputIndex)->Channel();
conv_param->op_parameter_.thread_num_ = 1;
use_winograd = CheckIfUseWinograd(&out_unit, conv_param);
free(conv_param);
std::unique_ptr<OperatorCoder> coder;
if (kernel_h == 1 && kernel_w == 1) {
MS_LOG(DEBUG) << "create ConvolutionFP32Coder";
coder = CPUOpCoderCreator<ConvolutionFP32Coder>(in_tensors, out_tensors, node, node_index, target);
} else if (use_winograd) {
MS_LOG(DEBUG) << "create Conv2DWinogradFP32Coder";
coder = std::make_unique<ConvolutionWinogradFP32Coder>(in_tensors, out_tensors, node, node_index, target, out_unit);
} else {
MS_LOG(DEBUG) << "create ConvolutionFP32Coder";
coder = CPUOpCoderCreator<ConvolutionFP32Coder>(in_tensors, out_tensors, node, node_index, target);
}
return coder;
}
std::unique_ptr<OperatorCoder> CreateDelegateConv(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors, const Model::Node *node,
size_t node_index, Target target) {
return CPUOpCoderCreator<ConvDelegateCoder>(in_tensors, out_tensors, node, node_index, target);
}
std::unique_ptr<OperatorCoder> CPUConvDwFp32CoderCreator(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index, Target target) {
return CPUOpCoderCreator<ConvolutionDepthwiseFP32Coder>(in_tensors, out_tensors, node, node_index, target);
}
std::unique_ptr<OperatorCoder> CPUConv2DFusionFP32CoderCreator(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index,
Target target) {
const void *primitive = node->primitive_;
if (primitive == nullptr) {
return nullptr;
}
int schema_version = VersionManager::GetInstance()->GetSchemaVersion();
ParameterGen paramGen =
PopulateRegistry::GetInstance()->GetParameterCreator(GetPrimitiveType(node->primitive_), schema_version);
if (paramGen == nullptr) {
MS_LOG(ERROR) << "parameter generator is null";
return nullptr;
}
auto conv_param = reinterpret_cast<ConvParameter *>(paramGen(node->primitive_));
std::unique_ptr<OperatorCoder> coder;
if (conv_param->group_ == 1) {
coder = CreateDelegateConv(in_tensors, out_tensors, node, node_index, target);
} else if (conv_param->group_ == conv_param->input_channel_ && conv_param->group_ == conv_param->output_channel_) {
coder = CPUConvDwFp32CoderCreator(in_tensors, out_tensors, node, node_index, target);
} else {
// GroupConv
return nullptr;
}
return coder;
}
REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Conv2DFusion, CPUConv2DFusionFP32CoderCreator)
} // namespace mindspore::lite::micro::nnacl

View File

@ -0,0 +1,56 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_MICRO_OPCODERS_NNACL_FP32_CONV2D_DELEGATE_FP32_CODER_H
#define MINDSPORE_LITE_MICRO_OPCODERS_NNACL_FP32_CONV2D_DELEGATE_FP32_CODER_H
#include <vector>
#include <memory>
#include "coder/opcoders/op_coder.h"
#include "nnacl/conv_parameter.h"
namespace mindspore::lite::micro::nnacl {
class ConvDelegateCoder : public OperatorCoder {
public:
ConvDelegateCoder(const std::vector<Tensor *> &in_tensors, const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index, Target target)
: OperatorCoder(in_tensors, out_tensors, node, node_index, target) {}
~ConvDelegateCoder() override = default;
int Prepare(CoderContext *const context) override;
int DoCode(CoderContext *const context) override;
protected:
std::unique_ptr<OperatorCoder> conv_coder_ = nullptr;
};
void SetInputOutputShapeInfo(ConvParameter *conv_param, const lite::Tensor *input, const lite::Tensor *output);
std::unique_ptr<OperatorCoder> CPUConvolutionFP32CoderSelect(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index, Target target);
std::unique_ptr<OperatorCoder> CreateDelegateConv(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors, const Model::Node *node,
size_t node_index, Target target);
std::unique_ptr<OperatorCoder> CPUConvDwFp32CoderCreator(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index, Target target);
std::unique_ptr<OperatorCoder> CPUConv2DFusionFP32CoderCreator(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index,
Target target);
} // namespace mindspore::lite::micro::nnacl
#endif // MINDSPORE_LITE_MICRO_OPCODERS_NNACL_FP32_CONV2D_DELEGATE_FP32_CODER_H

View File

@ -32,17 +32,14 @@ using mindspore::schema::PrimitiveType_Conv2DFusion;
namespace mindspore::lite::micro::nnacl {
int ConvolutionFP32Coder::InitTmpBuffer() {
int in_channel = conv_param_->input_channel_;
int uint_size;
if (target_ == kARM32A) {
uint_size = conv_param_->kernel_h_ * conv_param_->kernel_w_ * in_channel * C4NUM * thread_num_;
} else {
uint_size = conv_param_->kernel_h_ * conv_param_->kernel_w_ * in_channel * C12NUM * thread_num_;
}
int uint_size = conv_param_->kernel_h_ * conv_param_->kernel_w_ * in_channel * C12NUM * thread_num_;
packed_input_size_ = uint_size * sizeof(float);
packed_input_ = reinterpret_cast<float *>(allocator_->Malloc(kNumberTypeFloat32, packed_input_size_, kWorkspace));
MS_CHECK_PTR(packed_input_);
col_major_input_size_ = uint_size * sizeof(float);
col_major_input_ =
reinterpret_cast<float *>(allocator_->Malloc(kNumberTypeFloat32, col_major_input_size_, kWorkspace));
MS_CHECK_PTR(col_major_input_);
return RET_OK;
}
@ -68,12 +65,13 @@ int ConvolutionFP32Coder::InitWeightBias(CoderContext *const context) {
conv_param_->input_channel_ = in_channel;
conv_param_->output_channel_ = out_channel;
int kernel_plane = kernel_h * kernel_w;
const int oc_block = C8NUM;
int oc_block_num = UP_DIV(out_channel, C8NUM);
int pack_weight_size = oc_block_num * oc_block * in_channel * kernel_plane;
int oc_block = C8NUM;
if (target_ == kARM32A) {
oc_block = C4NUM;
}
int oc_block_num = UP_ROUND(out_channel, oc_block);
int pack_weight_size = oc_block_num * in_channel * kernel_plane;
pack_weight_size_ = pack_weight_size * sizeof(float);
auto origin_weight = reinterpret_cast<float *>(filter_tensor_->MutableData());
MS_CHECK_PTR(origin_weight);
packed_weight_ = reinterpret_cast<float *>(allocator_->Malloc(kNumberTypeFloat32, kOnlineSize, kOnlinePackWeight));
MS_CHECK_PTR(packed_weight_);
auto out_channel_size = static_cast<size_t>(out_channel);
@ -88,10 +86,15 @@ int ConvolutionFP32Coder::InitWeightBias(CoderContext *const context) {
}
init_code.CodeMallocExpression(packed_weight_, pack_weight_size_);
init_code.CodeFunction("memset", packed_weight_, 0, pack_weight_size_);
if (target_ == kARM32A) {
init_code.CodeFunction("RowMajor2Col4Major", init_weight_str, packed_weight_, out_channel_size,
in_channel * kernel_plane);
} else {
init_code.CodeFunction("RowMajor2Col8Major", init_weight_str, packed_weight_, out_channel_size,
in_channel * kernel_plane);
}
auto bias_data_size = static_cast<size_t>(oc_block_num * oc_block * sizeof(float));
auto bias_data_size = static_cast<size_t>(oc_block_num * sizeof(float));
bias_data_ = reinterpret_cast<float *>(allocator_->Malloc(kNumberTypeFloat32, kOnlineSize, kOnlinePackWeight));
MS_CHECK_PTR(bias_data_);
if (input_tensors_.size() == kInputSize2) {
@ -140,78 +143,4 @@ int ConvolutionFP32Coder::DoCode(CoderContext *const context) {
context->AppendCode(code.str());
return RET_OK;
}
std::unique_ptr<OperatorCoder> CPUConvolutionFP32CoderCreator(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index,
Target target) {
std::vector<Tensor *> inputs = in_tensors;
std::vector<Tensor *> outputs = out_tensors;
const void *primitive = node->primitive_;
if (primitive == nullptr) {
return nullptr;
}
int schema_version = VersionManager::GetInstance()->GetSchemaVersion();
ParameterGen paramGen =
PopulateRegistry::GetInstance()->GetParameterCreator(GetPrimitiveType(node->primitive_), schema_version);
if (paramGen == nullptr) {
MS_LOG(ERROR) << "parameter generator is null";
return nullptr;
}
auto conv_param = reinterpret_cast<ConvParameter *>(paramGen(node->primitive_));
int kernel_h = conv_param->kernel_h_;
int kernel_w = conv_param->kernel_w_;
conv_param->input_h_ = inputs.at(kInputIndex)->Height();
conv_param->input_w_ = inputs.at(kInputIndex)->Width();
conv_param->input_channel_ = inputs.at(kInputIndex)->Channel();
conv_param->output_h_ = outputs.at(kOutputIndex)->Height();
conv_param->output_w_ = outputs.at(kOutputIndex)->Width();
conv_param->output_channel_ = outputs.at(kOutputIndex)->Channel();
conv_param->op_parameter_.thread_num_ = 1;
int out_unit = 0;
bool use_winograd = CheckIfUseWinograd(&out_unit, conv_param);
free(conv_param);
// weight de quant
std::unique_ptr<OperatorCoder> coder;
if (kernel_h == 1 && kernel_w == 1) {
MS_LOG(DEBUG) << "create ConvolutionFP32Coder";
coder = CPUOpCoderCreator<ConvolutionFP32Coder>(in_tensors, out_tensors, node, node_index, target);
} else if (use_winograd) {
MS_LOG(DEBUG) << "create Conv2DWinogradFP32Coder";
coder = std::make_unique<ConvolutionWinogradFP32Coder>(in_tensors, out_tensors, node, node_index, target, out_unit);
} else {
MS_LOG(DEBUG) << "create ConvolutionFP32Coder";
coder = CPUOpCoderCreator<ConvolutionFP32Coder>(in_tensors, out_tensors, node, node_index, target);
}
return coder;
}
std::unique_ptr<OperatorCoder> CPUConv2DFusionFP32CoderCreator(const std::vector<Tensor *> &in_tensors,
const std::vector<Tensor *> &out_tensors,
const Model::Node *node, size_t node_index,
Target target) {
const void *primitive = node->primitive_;
if (primitive == nullptr) {
return nullptr;
}
int schema_version = VersionManager::GetInstance()->GetSchemaVersion();
ParameterGen paramGen =
PopulateRegistry::GetInstance()->GetParameterCreator(GetPrimitiveType(node->primitive_), schema_version);
if (paramGen == nullptr) {
MS_LOG(ERROR) << "parameter generator is null";
return nullptr;
}
auto conv_param = reinterpret_cast<ConvParameter *>(paramGen(node->primitive_));
std::unique_ptr<OperatorCoder> coder;
if (conv_param->group_ == 1) {
coder = CPUConvolutionFP32CoderCreator(in_tensors, out_tensors, node, node_index, target);
} else if (conv_param->group_ == conv_param->input_channel_ && conv_param->group_ == conv_param->output_channel_) {
coder = CPUOpCoderCreator<ConvolutionDepthwiseFP32Coder>(in_tensors, out_tensors, node, node_index, target);
} else {
// GroupConv
}
return coder;
}
REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Conv2DFusion, CPUConv2DFusionFP32CoderCreator)
} // namespace mindspore::lite::micro::nnacl

View File

@ -25,6 +25,7 @@ OperatorCoder::~OperatorCoder() {
if (parameter_ != nullptr) {
free(parameter_);
}
parameter_ = nullptr;
}
const std::vector<Tensor *> OperatorCoder::input_tensors() const { return input_tensors_; }