diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index 784598b8dfb..ebaf77a215c 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -5187,7 +5187,7 @@ class SparseApplyProximalAdagrad(PrimitiveWithCheck): - **grad** (Tensor) - A tensor of the same type as `var`, for the gradient. - **indices** (Tensor) - A tensor of indices in the first dimension of `var` and `accum`. If there are duplicates in `indices`, the behavior is undefined. Must be one of the - following types: int16, int32, int64, uint16, uint32, uint64. + following types: int32, int64. Outputs: Tuple of 2 tensors, the updated parameters. @@ -5253,8 +5253,7 @@ class SparseApplyProximalAdagrad(PrimitiveWithCheck): validator.check_scalar_or_tensor_types_same({"lr": lr_dtype}, [mstype.float16, mstype.float32], self.name) validator.check_scalar_or_tensor_types_same({"l1": l1_dtype}, [mstype.float16, mstype.float32], self.name) validator.check_scalar_or_tensor_types_same({"l2": l2_dtype}, [mstype.float16, mstype.float32], self.name) - valid_dtypes = [mstype.int16, mstype.int32, mstype.int64, - mstype.uint16, mstype.uint32, mstype.uint64] + valid_dtypes = [mstype.int32, mstype.int64] validator.check_tensor_dtype_valid('indices', indices_dtype, valid_dtypes, self.name)