forked from mindspore-Ecosystem/mindspore
Add st for dump
This commit is contained in:
parent
e84f16ac7d
commit
67c98923d5
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
# Copyright 2021-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -106,7 +106,7 @@ def generate_dump_json(dump_path, json_file_name, test_key):
|
||||||
if test_key == "test_async_dump":
|
if test_key == "test_async_dump":
|
||||||
data = async_dump_dict
|
data = async_dump_dict
|
||||||
data["common_dump_settings"]["path"] = dump_path
|
data["common_dump_settings"]["path"] = dump_path
|
||||||
elif test_key == "test_e2e_dump":
|
elif test_key in ("test_e2e_dump", "test_e2e_dump_trans_false"):
|
||||||
data = e2e_dump_dict
|
data = e2e_dump_dict
|
||||||
data["common_dump_settings"]["path"] = dump_path
|
data["common_dump_settings"]["path"] = dump_path
|
||||||
elif test_key == "test_async_dump_net_multi_layer_mode1":
|
elif test_key == "test_async_dump_net_multi_layer_mode1":
|
||||||
|
@ -126,6 +126,10 @@ def generate_dump_json(dump_path, json_file_name, test_key):
|
||||||
data = async_dump_dict
|
data = async_dump_dict
|
||||||
data["common_dump_settings"]["path"] = dump_path
|
data["common_dump_settings"]["path"] = dump_path
|
||||||
data["common_dump_settings"]["file_format"] = "bin"
|
data["common_dump_settings"]["file_format"] = "bin"
|
||||||
|
elif test_key == "test_e2e_dump_trans_true":
|
||||||
|
data = e2e_dump_dict
|
||||||
|
data["common_dump_settings"]["path"] = dump_path
|
||||||
|
data["e2e_dump_settings"]["trans_flag"] = True
|
||||||
else:
|
else:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"Failed to generate dump json file. The test name value " + test_key + " is invalid.")
|
"Failed to generate dump json file. The test name value " + test_key + " is invalid.")
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -611,6 +611,23 @@ def test_ascend_full_dump():
|
||||||
run_saved_data_dump_test('test_async_dump', 'full')
|
run_saved_data_dump_test('test_async_dump', 'full')
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@security_off_wrap
|
||||||
|
def test_ascend_full_dump_kernel_by_kernel():
|
||||||
|
"""
|
||||||
|
Feature: Ascend Full Dump in kernel-by-kernel (MindRT) mode
|
||||||
|
Description: Test Ascend full dump
|
||||||
|
Expectation: Tensors are stored in npy files and their statistics stored in statistic.csv
|
||||||
|
"""
|
||||||
|
os.environ['GRAPH_OP_RUN'] = "1"
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
run_saved_data_dump_test('test_async_dump', 'full')
|
||||||
|
del os.environ['GRAPH_OP_RUN']
|
||||||
|
|
||||||
|
|
||||||
@constexpr
|
@constexpr
|
||||||
def construct_tensor(cst):
|
def construct_tensor(cst):
|
||||||
return Tensor(np.array(cst))
|
return Tensor(np.array(cst))
|
||||||
|
|
|
@ -0,0 +1,159 @@
|
||||||
|
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import tempfile
|
||||||
|
import glob
|
||||||
|
import shutil
|
||||||
|
import pytest
|
||||||
|
import numpy as np
|
||||||
|
import mindspore as ms
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
import mindspore.ops as ops
|
||||||
|
from mindspore import Tensor
|
||||||
|
from dump_test_utils import generate_dump_json, check_dump_structure
|
||||||
|
from tests.security_utils import security_off_wrap
|
||||||
|
|
||||||
|
|
||||||
|
class ConvNet(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(ConvNet, self).__init__()
|
||||||
|
self.conv2 = ops.Conv2D(out_channel=3, kernel_size=1)
|
||||||
|
|
||||||
|
def construct(self, x, weight):
|
||||||
|
return self.conv2(x, weight)
|
||||||
|
|
||||||
|
|
||||||
|
def run_trans_flag(test_name):
|
||||||
|
if sys.platform != 'linux':
|
||||||
|
return
|
||||||
|
with tempfile.TemporaryDirectory(dir='/tmp') as tmp_dir:
|
||||||
|
dump_path = os.path.join(tmp_dir, test_name)
|
||||||
|
dump_config_path = os.path.join(tmp_dir, '{}.json'.format(test_name))
|
||||||
|
generate_dump_json(dump_path, dump_config_path, test_name)
|
||||||
|
os.environ['MINDSPORE_DUMP_CONFIG'] = dump_config_path
|
||||||
|
if os.path.isdir(dump_path):
|
||||||
|
shutil.rmtree(dump_path)
|
||||||
|
net = ConvNet()
|
||||||
|
tensor = Tensor(np.ones([1, 3, 3, 3]), ms.float32)
|
||||||
|
weight = Tensor(np.ones([3, 3, 1, 1]), ms.float32)
|
||||||
|
expect = net(tensor, weight)
|
||||||
|
check_dump_structure(dump_path, dump_config_path, 1, 1, 1)
|
||||||
|
dump_data_path = os.path.join(dump_path, 'rank_0', 'Net', '0', '0')
|
||||||
|
assert os.path.exists(dump_data_path)
|
||||||
|
if test_name == "test_e2e_dump_trans_true":
|
||||||
|
# tensor data in host format.
|
||||||
|
output_name = "Conv2D.Conv2D-op*.0.0.*.output.0.DefaultFormat.npy"
|
||||||
|
output_path = glob.glob(os.path.join(dump_data_path, output_name))[0]
|
||||||
|
real_path = os.path.realpath(output_path)
|
||||||
|
output = np.load(real_path)
|
||||||
|
assert output.shape == (1, 3, 3, 3)
|
||||||
|
assert np.array_equal(output, expect)
|
||||||
|
elif test_name == "test_e2e_dump_trans_false":
|
||||||
|
# tensor data in device format.
|
||||||
|
output_name = "Conv2D.Conv2D-op*.0.0.*.output.0.NC1HWC0.npy"
|
||||||
|
output_path = glob.glob(os.path.join(dump_data_path, output_name))[0]
|
||||||
|
real_path = os.path.realpath(output_path)
|
||||||
|
output = np.load(real_path)
|
||||||
|
assert output.shape == (1, 1, 3, 3, 16)
|
||||||
|
else:
|
||||||
|
# tensor data in host format.
|
||||||
|
output_name = "Conv2D.Conv2D-op*.*.*.*.output.0.NCHW.npy"
|
||||||
|
output_path = glob.glob(os.path.join(dump_data_path, output_name))[0]
|
||||||
|
real_path = os.path.realpath(output_path)
|
||||||
|
output = np.load(real_path)
|
||||||
|
assert output.shape == (1, 3, 3, 3)
|
||||||
|
assert np.array_equal(output, expect)
|
||||||
|
del os.environ['MINDSPORE_DUMP_CONFIG']
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@security_off_wrap
|
||||||
|
def test_ascend_e2e_trans_true():
|
||||||
|
"""
|
||||||
|
Feature: Ascend e2e dump.
|
||||||
|
Description: Test e2e dump in Ascend with trans_flag is configured to true.
|
||||||
|
Expectation: Dump files has tensor data in host format (4 dimensions).
|
||||||
|
"""
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
run_trans_flag("test_e2e_dump_trans_true")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@security_off_wrap
|
||||||
|
def test_ascend_e2e_trans_false():
|
||||||
|
"""
|
||||||
|
Feature: Ascend e2e dump.
|
||||||
|
Description: Test e2e dump in Ascend with trans_flag is configured to false.
|
||||||
|
Expectation: Dump files has tensor data in device format.
|
||||||
|
"""
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
run_trans_flag("test_e2e_dump_trans_false")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@security_off_wrap
|
||||||
|
def test_ascend_kernel_by_kernel_trans_true():
|
||||||
|
"""
|
||||||
|
Feature: Ascend kernel by kernel dump.
|
||||||
|
Description: Test kernel by kernel dump in Ascend with trans_flag is configured to true.
|
||||||
|
Expectation: Dump files has tensor data in host format (4 dimensions).
|
||||||
|
"""
|
||||||
|
os.environ['GRAPH_OP_RUN'] = "1"
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
run_trans_flag("test_e2e_dump_trans_true")
|
||||||
|
del os.environ['GRAPH_OP_RUN']
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@security_off_wrap
|
||||||
|
def test_ascend_kernel_by_kernel_trans_false():
|
||||||
|
"""
|
||||||
|
Feature: Ascend kernel by kernel dump.
|
||||||
|
Description: Test kernel by kernel dump in Ascend with trans_flag is configured to false.
|
||||||
|
Expectation: Dump files has tensor data in device format.
|
||||||
|
"""
|
||||||
|
os.environ['GRAPH_OP_RUN'] = "1"
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
run_trans_flag("test_e2e_dump_trans_false")
|
||||||
|
del os.environ['GRAPH_OP_RUN']
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@security_off_wrap
|
||||||
|
def test_ascend_a_plus_m_conversion():
|
||||||
|
"""
|
||||||
|
Feature: Ascend A+M dump.
|
||||||
|
Description: Test A+M dump in Ascend and check the format of the dump data.
|
||||||
|
Expectation: Dump files has tensor data in host format (4 dimensions).
|
||||||
|
"""
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
run_trans_flag("test_async_dump_npy")
|
|
@ -1,4 +1,4 @@
|
||||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
# Copyright 2021-2022 Huawei Technologies Co., Ltd
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
|
@ -43,8 +43,12 @@ class NewAddNet(Cell):
|
||||||
super(NewAddNet, self).__init__()
|
super(NewAddNet, self).__init__()
|
||||||
self.add = P.AddN()
|
self.add = P.AddN()
|
||||||
|
|
||||||
def construct(self, x, y):
|
def construct(self, b1, b2, x, y):
|
||||||
z = self.add([x, y, y])
|
z = self.add([x, y, y])
|
||||||
|
if b1 < b2:
|
||||||
|
z = self.add([x, y, y])
|
||||||
|
else:
|
||||||
|
z = self.add([x, x, y])
|
||||||
return z
|
return z
|
||||||
|
|
||||||
|
|
||||||
|
@ -52,13 +56,29 @@ def train_addnet(epoch):
|
||||||
net = AddNet()
|
net = AddNet()
|
||||||
net2 = NewAddNet()
|
net2 = NewAddNet()
|
||||||
output_list = []
|
output_list = []
|
||||||
|
b1 = Tensor(np.array(1).astype(np.float32))
|
||||||
|
b2 = Tensor(np.array(3).astype(np.float32))
|
||||||
input_x = Tensor(np.ones([2, 1, 2, 1]).astype(np.float32))
|
input_x = Tensor(np.ones([2, 1, 2, 1]).astype(np.float32))
|
||||||
input_y = Tensor(np.ones([2, 1, 2, 1]).astype(np.float32))
|
input_y = Tensor(np.ones([2, 1, 2, 1]).astype(np.float32))
|
||||||
for _ in range(epoch):
|
for _ in range(epoch):
|
||||||
out_put = net(input_x, input_y)
|
out_put = net(input_x, input_y)
|
||||||
out2 = net2(out_put, input_x)
|
out2 = net2(b1, b2, out_put, input_x)
|
||||||
output_list.append(out2.asnumpy())
|
output_list.append(out2.asnumpy())
|
||||||
input_x = input_x + input_y
|
input_x = input_x + input_y
|
||||||
|
b1 = b1+1
|
||||||
|
return output_list
|
||||||
|
|
||||||
|
|
||||||
|
def check_graph_structure(dump_file_path, execution_order_path, graph_id, expect_steps):
|
||||||
|
dump_data_path = os.path.join(dump_file_path, graph_id)
|
||||||
|
assert sorted(os.listdir(dump_data_path)) == expect_steps
|
||||||
|
graph_history_file_path = os.path.join(
|
||||||
|
execution_order_path, 'ms_global_execution_order_graph_{}.csv'.format(graph_id))
|
||||||
|
assert path.exists(graph_history_file_path)
|
||||||
|
with open(graph_history_file_path) as csvfile:
|
||||||
|
history_graph = csv.reader(csvfile)
|
||||||
|
iter_list_graph = [row[0] for row in history_graph]
|
||||||
|
assert iter_list_graph == expect_steps
|
||||||
|
|
||||||
|
|
||||||
def run_multi_root_graph_dump(device, dump_mode, test_name):
|
def run_multi_root_graph_dump(device, dump_mode, test_name):
|
||||||
|
@ -79,31 +99,24 @@ def run_multi_root_graph_dump(device, dump_mode, test_name):
|
||||||
for _ in range(3):
|
for _ in range(3):
|
||||||
if not os.path.exists(dump_file_path):
|
if not os.path.exists(dump_file_path):
|
||||||
time.sleep(2)
|
time.sleep(2)
|
||||||
# Multi root graph script : we have 2 graphs under rank_0 dir
|
|
||||||
# Each graph should have 3 iteration
|
|
||||||
# Each graph was executed once per epoch,
|
|
||||||
# Graph 0 was executed in even iterations, graph one was executed in odd iterations
|
|
||||||
assert len(os.listdir(dump_file_path)) == 2
|
|
||||||
dump_path_graph_0 = os.path.join(dump_file_path, '0')
|
|
||||||
dump_path_graph_1 = os.path.join(dump_file_path, '1')
|
|
||||||
assert sorted(os.listdir(dump_path_graph_0)) == ['0', '2', '4']
|
|
||||||
assert sorted(os.listdir(dump_path_graph_1)) == ['1', '3', '5']
|
|
||||||
execution_order_path = os.path.join(dump_path, 'rank_0', 'execution_order')
|
execution_order_path = os.path.join(dump_path, 'rank_0', 'execution_order')
|
||||||
# Four files in execution_order dir.
|
# Multi root graph script: check dump data dir and graph history files and see if iteration number is matched.
|
||||||
# Two files for each graph (ms_execution_order and ms_global_execution_order)
|
if device == "GPU":
|
||||||
assert len(os.listdir(execution_order_path)) == 4
|
# In GPU, we have 4 kernel graphs folders under rank_0 dir.
|
||||||
global_exec_order_graph_0 = os.path.join(execution_order_path, 'ms_global_execution_order_graph_0.csv')
|
# In graph history dir, there are 2 files for each graph (ms_execution_order and ms_global_execution_order).
|
||||||
assert path.exists(global_exec_order_graph_0)
|
assert len(os.listdir(dump_file_path)) == 4
|
||||||
with open(global_exec_order_graph_0) as csvfile:
|
assert len(os.listdir(execution_order_path)) == 8
|
||||||
history_graph_0 = csv.reader(csvfile)
|
check_graph_structure(dump_file_path, execution_order_path, '0', ['0', '2', '4'])
|
||||||
iter_list_graph_0 = list(history_graph_0)
|
check_graph_structure(dump_file_path, execution_order_path, '1', ['1', '3', '5'])
|
||||||
assert iter_list_graph_0 == [['0'], ['2'], ['4']]
|
else:
|
||||||
global_exec_order_graph_1 = os.path.join(execution_order_path, 'ms_global_execution_order_graph_1.csv')
|
# In Ascend, we have 2 root graphs folders under rank_0 dir.
|
||||||
assert path.exists(global_exec_order_graph_1)
|
# In graph history dir, there are 4 ms_execution_order files and 2 ms_global_execution_order files.
|
||||||
with open(global_exec_order_graph_1) as csvfile:
|
# Each graph should have 3 iterations. Each graph was executed once per epoch.
|
||||||
history_graph_1 = csv.reader(csvfile)
|
# Graph 0 was executed in even iterations, graph 1 was executed in odd iterations.
|
||||||
iter_list_graph_1 = list(history_graph_1)
|
assert len(os.listdir(dump_file_path)) == 2
|
||||||
assert iter_list_graph_1 == [['1'], ['3'], ['5']]
|
assert len(os.listdir(execution_order_path)) == 6
|
||||||
|
check_graph_structure(dump_file_path, execution_order_path, '0', ['0', '2', '4'])
|
||||||
|
check_graph_structure(dump_file_path, execution_order_path, '1', ['1', '3', '5'])
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level0
|
@pytest.mark.level0
|
||||||
|
@ -154,5 +167,23 @@ def test_Ascend_async_multi_root_graph_dump():
|
||||||
Expectation:
|
Expectation:
|
||||||
Dump for two different graphs, graph 0 even iterations and graph 1 odd iterations.
|
Dump for two different graphs, graph 0 even iterations and graph 1 odd iterations.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
run_multi_root_graph_dump("Ascend", "async_dump", "test_Ascend_async_multi_root_graph_dump")
|
run_multi_root_graph_dump("Ascend", "async_dump", "test_Ascend_async_multi_root_graph_dump")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@security_off_wrap
|
||||||
|
def test_ascend_multi_root_graph_dump_kernel_by_kernel():
|
||||||
|
"""
|
||||||
|
Feature:
|
||||||
|
Multi root graph dump for Ascend kernel by kernel.
|
||||||
|
Description:
|
||||||
|
Test multi root graph dump in Ascend kernel by kernel.
|
||||||
|
Expectation:
|
||||||
|
Dump for two different graphs, graph 0 even iterations and graph 1 odd iterations.
|
||||||
|
"""
|
||||||
|
os.environ['GRAPH_OP_RUN'] = "1"
|
||||||
|
run_multi_root_graph_dump("Ascend", "e2e_dump", "test_Ascend_e2e_multi_root_graph_dump")
|
||||||
|
del os.environ['GRAPH_OP_RUN']
|
||||||
|
|
Loading…
Reference in New Issue