!47244 Update tuple add name

Merge pull request !47244 from ZPaC/update-op-name
This commit is contained in:
i-robot 2022-12-28 03:17:17 +00:00 committed by Gitee
commit 670bc08fb8
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
4 changed files with 63 additions and 45 deletions

View File

@ -442,14 +442,16 @@ AnfNodePtrList InsertTypeTransformOp::ProcessTupleUnfoldToTensor(const FuncGraph
MS_LOG(DEBUG) << "Abstract for TupleToTensor op is " << abs->ToString();
tuple_to_tensor->set_abstract(abs);
// Need to check if input is MakeTuple node, the format and device type could be abtained or not.
SetKernelInfoForNewCNode(tuple_to_tensor);
// Data type of the tensor should be set as an attr of TupleToTensor op.
auto data_type = AnfAlgo::GetInputDeviceDataType(node, input_index);
// Attr name is to be confirmed.
common::AnfAlgo::SetNodeAttr("tensor_type", MakeValue(static_cast<int64_t>(data_type)), tuple_to_tensor);
SetKernelInfoForNewCNode(tuple_to_tensor);
// Set object type to TUPLE for TupleUnfoldToTuple pattern to be matched.
KernelBuildInfoPtr tuple_to_tensor_build_info = AnfAlgo::GetSelectKernelBuildInfo(tuple_to_tensor);
MS_EXCEPTION_IF_NULL(tuple_to_tensor_build_info);
tuple_to_tensor_build_info->SetInputsKernelObjectType({KernelObjectType::TUPLE});
return {tuple_to_tensor};
}
@ -471,6 +473,12 @@ AnfNodePtrList InsertTypeTransformOp::ProcessTupleToTensor(const FuncGraphPtr &f
MS_EXCEPTION_IF_NULL(abs);
MS_LOG(DEBUG) << "Abstract for TupleToTensor op is " << abs->ToString();
tuple_to_tensor->set_abstract(abs);
// Data type of the tensor should be set as an attr of TupleToTensor op.
auto data_type = AnfAlgo::GetInputDeviceDataType(node, input_index);
// Attr name is to be confirmed.
common::AnfAlgo::SetNodeAttr("tensor_type", MakeValue(static_cast<int64_t>(data_type)), tuple_to_tensor);
SetKernelInfoForNewCNode(tuple_to_tensor);
return {tuple_to_tensor};
}

View File

@ -461,7 +461,6 @@ constexpr auto kRealTupleGetItem = "RealTupleGetItem";
constexpr auto kRealMakeList = "RealMakeList";
constexpr auto kRealListGetItem = "RealListGetItem";
constexpr auto kTupleSetItem = "TupleSetItem";
constexpr auto kTupleAdd = "TupleAdd";
GVAR_DEF(PrimitivePtr, kPrimExtractGlimpse, std::make_shared<Primitive>(kExtractGlimpse));
//
@ -1738,7 +1737,6 @@ GVAR_DEF(PrimitivePtr, kPrimOCRDetectionPreHandle, std::make_shared<Primitive>("
GVAR_DEF(PrimitivePtr, kPrimTupleToTensor, std::make_shared<Primitive>(kTupleToTensor));
GVAR_DEF(PrimitivePtr, kPrimTensorToTuple, std::make_shared<Primitive>(kTensorToTuple));
GVAR_DEF(PrimitivePtr, kPrimRealMakeTuple, std::make_shared<Primitive>(kRealMakeTuple));
GVAR_DEF(PrimitivePtr, kPrimTupleAdd, std::make_shared<Primitive>(kTupleAdd));
// AdamApplyOne
GVAR_DEF(PrimitivePtr, kPrimAdamApplyOne, std::make_shared<Primitive>("AdamApplyOne"));

View File

@ -44,10 +44,10 @@ class TestInsertTypeTransformOp : public BackendCommon {
void SetTupleUnfoldToTupleUnfoldKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *split1_ptr, AnfNodePtr *addn1_ptr,
AnfNodePtr *split2_ptr, AnfNodePtr *addn2_ptr);
void SetTupleUnfoldToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *make_tuple_ptr, AnfNodePtr *split_ptr,
AnfNodePtr *tuple_add1_ptr, AnfNodePtr *tuple_add2_ptr);
AnfNodePtr *seq_add1_ptr, AnfNodePtr *seq_add2_ptr);
void SetTupleUnfoldToTensorKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *make_tuple, AnfNodePtr *reshape);
void SetTupleToTensorKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *reshape_ptr);
void SetTensorToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *tuple_add);
void SetTensorToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *seq_add);
void SetKernelBuildInfo(const AnfNodePtr &node, const std::vector<std::string> &input_formats,
const std::vector<TypeId> &input_types, const std::vector<std::string> &output_formats,
@ -121,27 +121,33 @@ void TestInsertTypeTransformOp::SetTupleUnfoldToTupleUnfoldKernelBuildInfo(
}
void TestInsertTypeTransformOp::SetTupleUnfoldToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *make_tuple_ptr,
AnfNodePtr *split_ptr, AnfNodePtr *tuple_add1_ptr,
AnfNodePtr *tuple_add2_ptr) {
AnfNodePtr *split_ptr, AnfNodePtr *seq_add1_ptr,
AnfNodePtr *seq_add2_ptr) {
auto ret = g->get_return();
EXPECT_NE(ret->input(1), nullptr);
auto tuple_add2 = ret->input(1)->cast<CNodePtr>();
*tuple_add2_ptr = tuple_add2;
SetKernelBuildInfo(tuple_add2, {"NCHW"}, {kNumberTypeFloat32}, {"NCHW"}, {kNumberTypeFloat32},
{KernelObjectType::TUPLE}, {KernelObjectType::TENSOR});
auto seq_add2 = ret->input(1)->cast<CNodePtr>();
*seq_add2_ptr = seq_add2;
SetKernelBuildInfo(seq_add2, {"NCHW", "NCHW"}, {kNumberTypeFloat32, kNumberTypeFloat32}, {"NCHW"},
{kNumberTypeFloat32}, {KernelObjectType::TUPLE, KernelObjectType::TUPLE},
{KernelObjectType::TENSOR});
auto split = tuple_add2->input(1)->cast<CNodePtr>();
auto split = seq_add2->input(1)->cast<CNodePtr>();
*split_ptr = split;
MS_LOG(INFO) << "split is " << split->fullname_with_scope();
SetKernelBuildInfo(split, {"NCHW"}, {kNumberTypeFloat32}, {"NCHW", "NCHW"}, {kNumberTypeFloat32, kNumberTypeFloat32},
{KernelObjectType::TENSOR}, {KernelObjectType::TUPLE_UNFOLD});
auto tuple_add1 = split->input(1)->cast<CNodePtr>();
*tuple_add1_ptr = tuple_add1;
SetKernelBuildInfo(tuple_add1, {"NCHW"}, {kNumberTypeFloat32}, {"NCHW"}, {kNumberTypeFloat32},
{KernelObjectType::TUPLE}, {KernelObjectType::TENSOR});
auto seq_add1 = split->input(1)->cast<CNodePtr>();
*seq_add1_ptr = seq_add1;
SetKernelBuildInfo(seq_add1, {"NCHW", "NCHW"}, {kNumberTypeFloat32, kNumberTypeFloat32}, {"NCHW"},
{kNumberTypeFloat32}, {KernelObjectType::TUPLE, KernelObjectType::TUPLE},
{KernelObjectType::TENSOR});
auto make_tuple = tuple_add1->input(1)->cast<CNodePtr>();
auto input_x = seq_add1->input(2);
SetKernelBuildInfo(input_x, {"NCHW"}, {kNumberTypeFloat32}, {"NCHW"}, {kNumberTypeFloat32}, {KernelObjectType::TUPLE},
{KernelObjectType::TUPLE});
auto make_tuple = seq_add1->input(1)->cast<CNodePtr>();
*make_tuple_ptr = make_tuple;
MS_LOG(INFO) << "make_tuple is " << make_tuple->fullname_with_scope();
SetKernelBuildInfo(make_tuple, {"NCHW", "NCHW"}, {kNumberTypeFloat32, kNumberTypeFloat32}, {"NCHW"},
@ -203,19 +209,19 @@ void TestInsertTypeTransformOp::SetTupleToTensorKernelBuildInfo(const FuncGraphP
{KernelObjectType::TENSOR});
}
void TestInsertTypeTransformOp::SetTensorToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *tuple_add_ptr) {
void TestInsertTypeTransformOp::SetTensorToTupleKernelBuildInfo(const FuncGraphPtr &g, AnfNodePtr *seq_add_ptr) {
auto ret = g->get_return();
EXPECT_NE(ret->input(1), nullptr);
auto tuple_add = ret->input(1)->cast<CNodePtr>();
*tuple_add_ptr = tuple_add;
SetKernelBuildInfo(tuple_add, {"NCHW", "NCHW"}, {kNumberTypeFloat32, kNumberTypeFloat32}, {"NCHW"},
auto seq_add = ret->input(1)->cast<CNodePtr>();
*seq_add_ptr = seq_add;
SetKernelBuildInfo(seq_add, {"NCHW", "NCHW"}, {kNumberTypeFloat32, kNumberTypeFloat32}, {"NCHW"},
{kNumberTypeFloat32}, {KernelObjectType::TUPLE, KernelObjectType::TUPLE},
{KernelObjectType::TUPLE});
auto input2 = tuple_add->input(2);
auto input2 = seq_add->input(2);
SetKernelBuildInfo(input2, {"NCHW"}, {kNumberTypeFloat32}, {"NCHW"}, {kNumberTypeFloat32}, {KernelObjectType::TENSOR},
{KernelObjectType::TENSOR});
auto input1 = tuple_add->input(1);
auto input1 = seq_add->input(1);
SetKernelBuildInfo(input1, {"NCHW"}, {kNumberTypeFloat32}, {"NCHW"}, {kNumberTypeFloat32}, {KernelObjectType::TENSOR},
{KernelObjectType::TENSOR});
}
@ -292,15 +298,19 @@ TEST_F(TestInsertTypeTransformOp, test_tuple_unfold_to_tuple_unfold_transform) {
TEST_F(TestInsertTypeTransformOp, test_tuple_unfold_to_tuple_transform) {
FuncGraphPtr g = getPyFun_.CallAndParseRet("test_tuple_unfold_to_tuple_transform", "before");
ASSERT_TRUE(g != nullptr);
std::vector<int64_t> shp_x{2, 4};
std::vector<int64_t> shp_1{2, 4};
auto abstract_1 = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_1);
std::vector<int64_t> shp_2{2, 4};
auto abstract_2 = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_2);
std::vector<int64_t> shp_x{1, 3};
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
std::vector<int64_t> shp_y{2, 4};
auto y_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_y);
AbstractBasePtrList args_spec_list{x_abstract, y_abstract};
AbstractBasePtrList abstract_list = {x_abstract};
auto x_tuple_abs = std::make_shared<abstract::AbstractTuple>(abstract_list);
AbstractBasePtrList args_spec_list{abstract_1, abstract_2, x_tuple_abs};
auto func_graph = GetFuncGraph(g, args_spec_list);
ASSERT_TRUE(func_graph != nullptr);
AnfNodePtr make_tuple, split, tuple_add1, tuple_add2;
SetTupleUnfoldToTupleKernelBuildInfo(func_graph, &make_tuple, &split, &tuple_add1, &tuple_add2);
AnfNodePtr make_tuple, split, seq_add1, seq_add2;
SetTupleUnfoldToTupleKernelBuildInfo(func_graph, &make_tuple, &split, &seq_add1, &seq_add2);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
@ -383,8 +393,8 @@ TEST_F(TestInsertTypeTransformOp, test_tensor_to_tuple_transform) {
AbstractBasePtrList args_spec_list{x_abstract, y_abstract};
auto func_graph = GetFuncGraph(g, args_spec_list);
ASSERT_TRUE(func_graph != nullptr);
AnfNodePtr tuple_add;
SetTensorToTupleKernelBuildInfo(func_graph, &tuple_add);
AnfNodePtr seq_add;
SetTensorToTupleKernelBuildInfo(func_graph, &seq_add);
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();

View File

@ -18,6 +18,7 @@ from mindspore.common.tensor import Tensor
from mindspore.ops import Primitive
from mindspore.ops import operations as P
from mindspore.ops import _constants as Constants
tuple_get_item = Primitive(Constants.kTupleGetItem)
make_tuple = Primitive('MakeTuple')
@ -74,26 +75,26 @@ def test_tuple_unfold_to_tuple_transform(tag):
Expectation: The 'after' graph is identical to the graph after this pass.
"""
fns = FnDict()
# Need to change AddN to TupleAdd in later version.
tuple_add1 = P.AddN()
tuple_add2 = P.AddN()
# Need to change AddN to SequenceAdd in later version. This case is just used to cover this pattern.
seq_add1 = P.AddN()
seq_add2 = P.AddN()
real_make_tuple = Primitive('RealMakeTuple')
@fns
def before(input_1, input_2):
def before(input_1, input_2, x):
res = make_tuple(input_1, input_2)
res = tuple_add1(res)
res = seq_add1(res, x)
res = split1(res)
res = tuple_add2(res)
res = seq_add2(res, x)
return res
@fns
def after(input_1, input_2):
def after(input_1, input_2, x):
res = real_make_tuple(input_1, input_2)
res = tuple_add1(res)
res = seq_add1(res, x)
res = split1(res)
res = real_make_tuple(tuple_get_item(res, 0), tuple_get_item(res, 1))
res = tuple_add2(res)
res = seq_add2(res, x)
return res
return fns[tag]
@ -157,19 +158,20 @@ def test_tensor_to_tuple_transform(tag):
Expectation: The 'after' graph is identical to the graph after this pass.
"""
fns = FnDict()
tuple_add = P.Add()
# Need to change Add to SequenceAdd in later version. This case is just used to cover this pattern.
seq_add = P.Add()
tensor_to_tuple = Primitive('TensorToTuple')
@fns
def before(x, y):
res = tuple_add(x, y)
res = seq_add(x, y)
return res
@fns
def after(x, y):
input1 = tensor_to_tuple(x)
input2 = tensor_to_tuple(y)
res = tuple_add(input1, input2)
res = seq_add(input1, input2)
return res
return fns[tag]