forked from mindspore-Ecosystem/mindspore
change tensor dtype and shape from function to attr
This commit is contained in:
parent
553432c968
commit
66bbdb4a31
|
@ -79,12 +79,12 @@ if __name__ == '__main__':
|
|||
for _, cell in net.cells_and_names():
|
||||
if isinstance(cell, nn.Conv2d):
|
||||
cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
|
||||
cell.weight.default_input.shape(),
|
||||
cell.weight.default_input.dtype()).to_tensor()
|
||||
cell.weight.default_input.shape,
|
||||
cell.weight.default_input.dtype).to_tensor()
|
||||
if isinstance(cell, nn.Dense):
|
||||
cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
|
||||
cell.weight.default_input.shape(),
|
||||
cell.weight.default_input.dtype()).to_tensor()
|
||||
cell.weight.default_input.shape,
|
||||
cell.weight.default_input.dtype).to_tensor()
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
|
||||
|
|
|
@ -338,15 +338,15 @@ class Dense_Thor(Cell):
|
|||
self.has_bias = check_bool(has_bias)
|
||||
self.thor = True
|
||||
if isinstance(weight_init, Tensor):
|
||||
if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
|
||||
weight_init.shape()[1] != in_channels:
|
||||
if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \
|
||||
weight_init.shape[1] != in_channels:
|
||||
raise ValueError("weight_init shape error")
|
||||
|
||||
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
||||
|
||||
if self.has_bias:
|
||||
if isinstance(bias_init, Tensor):
|
||||
if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
|
||||
if bias_init.dim() != 1 or bias_init.shape[0] != out_channels:
|
||||
raise ValueError("bias_init shape error")
|
||||
|
||||
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
||||
|
|
|
@ -56,7 +56,7 @@ def init_net_param(network, init_value='ones'):
|
|||
params = network.trainable_params()
|
||||
for p in params:
|
||||
if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
|
||||
p.set_parameter_data(initializer(init_value, p.data.shape(), p.data.dtype()))
|
||||
p.set_parameter_data(initializer(init_value, p.data.shape, p.data.dtype))
|
||||
|
||||
|
||||
def main():
|
||||
|
|
|
@ -384,6 +384,28 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
|
|||
.def(py::init<py::tuple, TypePtr>(), py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def(py::init<Tensor, TypePtr>(), py::arg("input"), py::arg("dtype") = nullptr)
|
||||
.def_readonly(PYTHON_TENSOR_FLAG, &Tensor::parse_info_)
|
||||
.def_property_readonly("dtype", &Tensor::Dtype, R"mydelimiter(
|
||||
Get the tensor's data type.
|
||||
|
||||
Returns:
|
||||
type, the data type of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 1), np.int32))
|
||||
>>> data.dtype
|
||||
Int32
|
||||
)mydelimiter")
|
||||
.def_property_readonly("shape", &Tensor::GetPyTupleShape, R"mydelimiter(
|
||||
Get the tensor's shape.
|
||||
|
||||
Returns:
|
||||
tuple[int], the shape of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((3, 3)))
|
||||
>>> data.shape()
|
||||
(3, 3)
|
||||
)mydelimiter")
|
||||
.def("asnumpy", &Tensor::data_sync, R"mydelimiter(
|
||||
Convert tensor to numpy.ndarray.
|
||||
|
||||
|
@ -437,17 +459,6 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
|
|||
>>> data.dim()
|
||||
2
|
||||
)mydelimiter")
|
||||
.def("dtype", &Tensor::Dtype, R"mydelimiter(
|
||||
Get the tensor's data type.
|
||||
|
||||
Returns:
|
||||
type, the data type of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((2, 1), np.int32))
|
||||
>>> data.dtype()
|
||||
Int32
|
||||
)mydelimiter")
|
||||
.def("set_dtype", &Tensor::SetDtype, R"mydelimiter(
|
||||
Set the tensor's data type.
|
||||
|
||||
|
@ -459,17 +470,6 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
|
|||
>>> data.set_dtype(mindspore.int32)
|
||||
mindspore.int32
|
||||
)mydelimiter")
|
||||
.def("shape", &Tensor::GetPyTupleShape, R"mydelimiter(
|
||||
Get the tensor's shape.
|
||||
|
||||
Returns:
|
||||
tuple[int], the shape of tensor.
|
||||
|
||||
Examples:
|
||||
>>> data = mindspore.Tensor(np.ones((3, 3)))
|
||||
>>> data.shape()
|
||||
(3, 3)
|
||||
)mydelimiter")
|
||||
.def("__str__", &Tensor::ToString)
|
||||
.def("__repr__", &Tensor::ToStringRepr)
|
||||
.def(py::pickle(
|
||||
|
@ -488,8 +488,8 @@ REGISTER_PYBIND_DEFINE(Tensor, ([](const py::module *m) {
|
|||
(void)py::class_<MetaTensor, std::shared_ptr<MetaTensor>>(*m, "MetaTensor")
|
||||
.def(py::init<TypePtr, const std::vector<int>>(), py::arg("dtype"), py::arg("shape"))
|
||||
.def_readonly(PYTHON_META_TENSOR_FLAG, &MetaTensor::parse_info_)
|
||||
.def("dtype", &MetaTensor::Dtype, "Get the MetaTensor's dtype.")
|
||||
.def("shape", &MetaTensor::shape, "Get the MetaTensor's shape.");
|
||||
.def_property_readonly("dtype", &MetaTensor::Dtype, "Get the MetaTensor's dtype.")
|
||||
.def_property_readonly("shape", &MetaTensor::shape, "Get the MetaTensor's shape.");
|
||||
}));
|
||||
} // namespace tensor
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -170,8 +170,8 @@ def get_py_obj_dtype(obj):
|
|||
Type of MindSpore type.
|
||||
"""
|
||||
# Tensor
|
||||
if hasattr(obj, 'dtype') and callable(obj.dtype) and isinstance(obj.dtype(), typing.Type):
|
||||
return tensor_type(obj.dtype())
|
||||
if hasattr(obj, 'dtype') and isinstance(obj.dtype, typing.Type):
|
||||
return tensor_type(obj.dtype)
|
||||
if hasattr(obj, '__primitive_flag__') or hasattr(obj, 'construct'):
|
||||
return function
|
||||
if isinstance(obj, (typing.Type, type)):
|
||||
|
|
|
@ -331,11 +331,11 @@ def initializer(init, shape=None, dtype=mstype.float32):
|
|||
raise TypeError("Unsupported init type '{}'.".format(type(init)))
|
||||
|
||||
if isinstance(init, Tensor):
|
||||
init_shape = init.shape()
|
||||
init_shape = init.shape
|
||||
shape = shape if isinstance(shape, (tuple, list)) else [shape]
|
||||
if shape is not None and init_shape != tuple(shape):
|
||||
raise ValueError("The shape of init should be same as variable shape, but got the shape of init {} and "
|
||||
"the variable shape {}.".format(list(init.shape()), shape))
|
||||
"the variable shape {}.".format(list(init.shape), shape))
|
||||
return init
|
||||
|
||||
if isinstance(shape, list):
|
||||
|
|
|
@ -140,8 +140,8 @@ class Parameter:
|
|||
x.name = prefix + '.' + x.name
|
||||
x.is_init = False
|
||||
if init != 'same':
|
||||
shape = self.default_input.shape()
|
||||
dtype = self.default_input.dtype()
|
||||
shape = self.default_input.shape
|
||||
dtype = self.default_input.dtype
|
||||
if isinstance(init, (str, Initializer, numbers.Number)):
|
||||
x.init_mode = initializer(init, shape=shape, dtype=dtype)
|
||||
x.default_input = MetaTensor(dtype, shape)
|
||||
|
|
|
@ -45,13 +45,13 @@ class Tensor(Tensor_):
|
|||
>>> # init a tensor with input data
|
||||
>>> t1 = Tensor(np.zeros([1, 2, 3]), mindspore.float32)
|
||||
>>> assert isinstance(t1, Tensor)
|
||||
>>> assert t1.shape() == (1, 2, 3)
|
||||
>>> assert t1.dtype() == mindspore.float32
|
||||
>>> assert t1.shape == (1, 2, 3)
|
||||
>>> assert t1.dtype == mindspore.float32
|
||||
>>>
|
||||
>>> # init a tensor with a float scalar
|
||||
>>> t2 = Tensor(0.1)
|
||||
>>> assert isinstance(t2, Tensor)
|
||||
>>> assert t2.dtype() == mindspore.float64
|
||||
>>> assert t2.dtype == mindspore.float64
|
||||
"""
|
||||
|
||||
def __init__(self, input_data, dtype=None):
|
||||
|
@ -80,7 +80,7 @@ class Tensor(Tensor_):
|
|||
return False
|
||||
# The GE backend don't support single `Equal` operator execution.
|
||||
# bool type is not supported for `Equal` operator in backend.
|
||||
if context.get_context("enable_ge") or self.dtype() == mstype.bool_ or other.dtype() == mstype.bool_:
|
||||
if context.get_context("enable_ge") or self.dtype == mstype.bool_ or other.dtype == mstype.bool_:
|
||||
return Tensor(np.array(self.asnumpy() == other.asnumpy()))
|
||||
return tensor_operator_registry.get('__eq__')(self, other)
|
||||
|
||||
|
@ -166,7 +166,7 @@ class Tensor(Tensor_):
|
|||
return out[0]
|
||||
|
||||
def __str__(self):
|
||||
if self.dtype() == mstype.type_none:
|
||||
if self.dtype == mstype.type_none:
|
||||
return "Unknown Tensor type!"
|
||||
return str(self.asnumpy())
|
||||
|
||||
|
|
|
@ -267,21 +267,21 @@ class MobileNetV2(nn.Cell):
|
|||
if isinstance(m, (nn.Conv2d, DepthwiseConv)):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
|
||||
m.weight.data.shape()).astype("float32")))
|
||||
m.weight.data.shape).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(
|
||||
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.gamma.set_parameter_data(
|
||||
Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
|
||||
Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
|
||||
m.beta.set_parameter_data(
|
||||
Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.beta.data.shape, dtype="float32")))
|
||||
elif isinstance(m, nn.Dense):
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(
|
||||
0, 0.01, m.weight.data.shape()).astype("float32")))
|
||||
0, 0.01, m.weight.data.shape).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(
|
||||
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
|
||||
|
||||
|
||||
def mobilenet_v2(**kwargs):
|
||||
|
|
|
@ -322,21 +322,21 @@ class MobileNetV3(nn.Cell):
|
|||
if isinstance(m, (nn.Conv2d)):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
|
||||
m.weight.data.shape()).astype("float32")))
|
||||
m.weight.data.shape).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(
|
||||
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.gamma.set_parameter_data(
|
||||
Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
|
||||
Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
|
||||
m.beta.set_parameter_data(
|
||||
Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.beta.data.shape, dtype="float32")))
|
||||
elif isinstance(m, nn.Dense):
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(
|
||||
0, 0.01, m.weight.data.shape()).astype("float32")))
|
||||
0, 0.01, m.weight.data.shape).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(
|
||||
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
|
||||
|
||||
|
||||
def mobilenet_v3(model_name, **kwargs):
|
||||
|
|
|
@ -131,7 +131,7 @@ class Flatten(Cell):
|
|||
Examples:
|
||||
>>> net = nn.Flatten()
|
||||
>>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
|
||||
>>> input.shape()
|
||||
>>> input.shape
|
||||
(2, 2, 2)
|
||||
>>> net(input)
|
||||
[[1.2 1.2 2.1 2.1]
|
||||
|
@ -198,15 +198,15 @@ class Dense(Cell):
|
|||
self.has_bias = check_bool(has_bias)
|
||||
|
||||
if isinstance(weight_init, Tensor):
|
||||
if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
|
||||
weight_init.shape()[1] != in_channels:
|
||||
if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \
|
||||
weight_init.shape[1] != in_channels:
|
||||
raise ValueError("weight_init shape error")
|
||||
|
||||
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
||||
|
||||
if self.has_bias:
|
||||
if isinstance(bias_init, Tensor):
|
||||
if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
|
||||
if bias_init.dim() != 1 or bias_init.shape[0] != out_channels:
|
||||
raise ValueError("bias_init shape error")
|
||||
|
||||
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
||||
|
|
|
@ -69,7 +69,7 @@ class Conv2d(Cell):
|
|||
Examples:
|
||||
>>> net = combined.Conv2d(120, 240, 4, batchnorm=True, activation='ReLU')
|
||||
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
|
||||
>>> net(input).shape()
|
||||
>>> net(input).shape
|
||||
(1, 240, 1024, 640)
|
||||
"""
|
||||
|
||||
|
|
|
@ -168,7 +168,7 @@ class Conv2d(_Conv):
|
|||
Examples:
|
||||
>>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal')
|
||||
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
|
||||
>>> net(input).shape()
|
||||
>>> net(input).shape
|
||||
(1, 240, 1024, 640)
|
||||
"""
|
||||
@cell_attr_register
|
||||
|
|
|
@ -56,7 +56,7 @@ class Embedding(Cell):
|
|||
>>>
|
||||
>>> # Maps the input word IDs to word embedding.
|
||||
>>> output = net(input_data)
|
||||
>>> output.shape()
|
||||
>>> output.shape
|
||||
(8, 128, 768)
|
||||
"""
|
||||
def __init__(self, vocab_size, embedding_size, use_one_hot=False, embedding_table='normal', dtype=mstype.float32):
|
||||
|
|
|
@ -474,7 +474,7 @@ class LayerNorm(Cell):
|
|||
|
||||
Examples:
|
||||
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
|
||||
>>> shape1 = x.shape()[1:]
|
||||
>>> shape1 = x.shape[1:]
|
||||
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
|
||||
>>> m(x)
|
||||
"""
|
||||
|
|
|
@ -113,7 +113,7 @@ class MaxPool2d(_PoolNd):
|
|||
[0. 0. 4. 0.]
|
||||
[1. 8. 7. 0.]]]]
|
||||
>>> output = pool(x)
|
||||
>>> output.shape()
|
||||
>>> output.shape
|
||||
(1, 2, 2, 2)
|
||||
>>> output
|
||||
[[[[7. 8.]
|
||||
|
@ -195,7 +195,7 @@ class AvgPool2d(_PoolNd):
|
|||
[0. 8. 9. 7.]
|
||||
[2. 1. 4. 9.]]]]
|
||||
>>> output = pool(x)
|
||||
>>> output.shape()
|
||||
>>> output.shape
|
||||
(1, 2, 2, 2)
|
||||
>>> output
|
||||
[[[[4.888889 4.4444447]
|
||||
|
@ -260,7 +260,7 @@ class AvgPool1d(_PoolNd):
|
|||
>>> pool = nn.AvgPool1d(kernel_size=6, strides=1)
|
||||
>>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
|
||||
>>> output = pool(x)
|
||||
>>> output.shape()
|
||||
>>> output.shape
|
||||
(1, 3, 1)
|
||||
"""
|
||||
|
||||
|
|
|
@ -571,8 +571,8 @@ class DenseQuant(Cell):
|
|||
self.has_bias = check_bool(has_bias)
|
||||
|
||||
if isinstance(weight_init, Tensor):
|
||||
if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
|
||||
weight_init.shape()[1] != in_channels:
|
||||
if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \
|
||||
weight_init.shape[1] != in_channels:
|
||||
raise ValueError("weight_init shape error")
|
||||
|
||||
self.weight = Parameter(initializer(
|
||||
|
@ -580,7 +580,7 @@ class DenseQuant(Cell):
|
|||
|
||||
if self.has_bias:
|
||||
if isinstance(bias_init, Tensor):
|
||||
if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
|
||||
if bias_init.dim() != 1 or bias_init.shape[0] != out_channels:
|
||||
raise ValueError("bias_init shape error")
|
||||
|
||||
self.bias = Parameter(initializer(
|
||||
|
|
|
@ -23,7 +23,7 @@ greater = base.MultitypeFuncGraph("greater")
|
|||
|
||||
|
||||
@greater.register("Number", "Number")
|
||||
def _greater_scala(x, y):
|
||||
def _greater_scalar(x, y):
|
||||
"""
|
||||
Determine whether two numbers are greater.
|
||||
|
||||
|
|
|
@ -145,10 +145,10 @@ class SameTypeShape(PrimitiveWithInfer):
|
|||
|
||||
def __call__(self, x, y):
|
||||
"""run in PyNative mode"""
|
||||
validator.check_value_type("x", x, Tensor, self.name)
|
||||
validator.check_value_type("y", y, Tensor, self.name)
|
||||
validator.check('x dtype', x.dtype(), 'y dtype', y.dtype(), Rel.EQ, self.name, TypeError)
|
||||
validator.check('x shape', x.shape(), 'y shape', y.shape(), Rel.EQ, self.name)
|
||||
validator.check_value_type('x', x, Tensor, self.name)
|
||||
validator.check_value_type('y', y, Tensor, self.name)
|
||||
validator.check('x dtype', x.dtype, 'y dtype', y.dtype, Rel.EQ, self.name, TypeError)
|
||||
validator.check('x shape', x.shape, 'y shape', y.shape, Rel.EQ, self.name)
|
||||
return x
|
||||
|
||||
def __infer__(self, x, y):
|
||||
|
@ -187,7 +187,7 @@ class Cast(PrimitiveWithInfer):
|
|||
|
||||
def check_elim(self, x, dtype):
|
||||
if isinstance(x, Tensor):
|
||||
if x.dtype() == dtype:
|
||||
if x.dtype == dtype:
|
||||
return (True, x)
|
||||
return (False, None)
|
||||
raise ValueError("Expecting (Tensor, dtype), got : {}".format(inputs))
|
||||
|
@ -498,7 +498,7 @@ class GatherV2(PrimitiveWithInfer):
|
|||
The original Tensor.
|
||||
- **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
|
||||
Specifies the indices of elements of the original Tensor. Must be in the range
|
||||
`[0, input_param.shape()[axis])`.
|
||||
`[0, input_param.shape[axis])`.
|
||||
- **axis** (int) - Specifies the dimension index to gather indices.
|
||||
|
||||
Outputs:
|
||||
|
@ -542,7 +542,7 @@ class SparseGatherV2(GatherV2):
|
|||
The original Tensor.
|
||||
- **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
|
||||
Specifies the indices of elements of the original Tensor. Must be in the range
|
||||
`[0, input_param.shape()[axis])`.
|
||||
`[0, input_param.shape[axis])`.
|
||||
- **axis** (int) - Specifies the dimension index to gather indices.
|
||||
|
||||
Outputs:
|
||||
|
@ -700,7 +700,7 @@ class Split(PrimitiveWithInfer):
|
|||
output_num (int): The number of output tensors. Default: 1.
|
||||
|
||||
Raises:
|
||||
ValueError: If axis is out of the range [-len(input_x.shape()), len(input_x.shape())),
|
||||
ValueError: If axis is out of the range [-len(input_x.shape), len(input_x.shape)),
|
||||
or if the output_num is less than or equal to 0, or if the
|
||||
dimension which to split cannot be evenly divided by output_num.
|
||||
|
||||
|
@ -1644,7 +1644,7 @@ class Unpack(PrimitiveWithInfer):
|
|||
A tuple of Tensors, the shape of each objects is same.
|
||||
|
||||
Raises:
|
||||
ValueError: If axis is out of the range [-len(input_x.shape()), len(input_x.shape())).
|
||||
ValueError: If axis is out of the range [-len(input_x.shape), len(input_x.shape)).
|
||||
|
||||
Examples:
|
||||
>>> unpack = P.Unpack()
|
||||
|
@ -1850,7 +1850,7 @@ class StridedSlice(PrimitiveWithInfer):
|
|||
>>> [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
|
||||
>>> slice = P.StridedSlice()
|
||||
>>> output = slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 1))
|
||||
>>> output.shape()
|
||||
>>> output.shape
|
||||
(1, 1, 3)
|
||||
>>> output
|
||||
[[[3, 3, 3]]]
|
||||
|
@ -1974,7 +1974,7 @@ class Diag(PrimitiveWithInfer):
|
|||
if x is None:
|
||||
return None
|
||||
# do constant-folding only when x rank is 1
|
||||
if len(x.shape()) != 1:
|
||||
if len(x.shape) != 1:
|
||||
return None
|
||||
ret = np.diag(x.asnumpy())
|
||||
return Tensor(ret)
|
||||
|
@ -2026,7 +2026,7 @@ class DiagPart(PrimitiveWithInfer):
|
|||
if x is None:
|
||||
return None
|
||||
# do constant-folding only when x rank is 2
|
||||
if len(x.shape()) != 2:
|
||||
if len(x.shape) != 2:
|
||||
return None
|
||||
ret = np.diag(x.asnumpy())
|
||||
return Tensor(ret)
|
||||
|
|
|
@ -2329,8 +2329,8 @@ class NMSWithMask(PrimitiveWithInfer):
|
|||
def infer_shape(self, bboxes_shape):
|
||||
cls_name = self.name
|
||||
validator.check_integer("bboxes rank", len(bboxes_shape), 2, Rel.EQ, cls_name)
|
||||
validator.check_integer("bboxes.shape()[0]", bboxes_shape[0], 0, Rel.GT, cls_name)
|
||||
validator.check_integer("bboxes.shape()[1]", bboxes_shape[1], 5, Rel.EQ, cls_name)
|
||||
validator.check_integer("bboxes.shape[0]", bboxes_shape[0], 0, Rel.GT, cls_name)
|
||||
validator.check_integer("bboxes.shape[1]", bboxes_shape[1], 5, Rel.EQ, cls_name)
|
||||
num = bboxes_shape[0]
|
||||
return (bboxes_shape, (num,), (num,))
|
||||
|
||||
|
|
|
@ -78,7 +78,7 @@ class Flatten(PrimitiveWithInfer):
|
|||
>>> input_tensor = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32)
|
||||
>>> flatten = P.Flatten()
|
||||
>>> output = flatten(input_tensor)
|
||||
>>> assert output.shape() == (1, 24)
|
||||
>>> assert output.shape == (1, 24)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -840,7 +840,7 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
|
|||
>>> weight = Tensor(np.ones([1, 32, 3, 3]), mindspore.float32)
|
||||
>>> depthwise_conv2d = P.DepthwiseConv2dNative(channel_multiplier = 3, kernel_size = (3, 3))
|
||||
>>> output = depthwise_conv2d(input, weight)
|
||||
>>> assert output.shape() == (10, 96, 30, 30)
|
||||
>>> assert output.shape == (10, 96, 30, 30)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -2057,7 +2057,7 @@ class DropoutDoMask(PrimitiveWithInfer):
|
|||
>>> dropout_do_mask = P.DropoutDoMask()
|
||||
>>> mask = dropout_gen_mask(shape, keep_prob)
|
||||
>>> output = dropout_do_mask(x, mask, keep_prob)
|
||||
>>> assert output.shape() == (20, 16, 50)
|
||||
>>> assert output.shape == (20, 16, 50)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -2114,7 +2114,7 @@ class ResizeBilinear(PrimitiveWithInfer):
|
|||
>>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.int32)
|
||||
>>> resize_bilinear = P.ResizeBilinear((5, 5))
|
||||
>>> result = resize_bilinear(tensor)
|
||||
>>> assert result.shape() == (5, 5)
|
||||
>>> assert result.shape == (5, 5)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
|
@ -157,8 +157,8 @@ def _to_full_tensor(elem, device_num, global_rank, scaling_sens=None):
|
|||
data = Tensor(data)
|
||||
if not isinstance(data, Tensor):
|
||||
raise ValueError("elements in tensors must be Tensor")
|
||||
shape_ = data.shape()
|
||||
type_ = data.dtype()
|
||||
shape_ = data.shape
|
||||
type_ = data.dtype
|
||||
new_shape = ()
|
||||
batchsize_per_device = 1
|
||||
for i, item in enumerate(shape_):
|
||||
|
|
|
@ -42,17 +42,17 @@ def _special_process_par(par, new_par):
|
|||
|
||||
Like (12,2048,1,1)->(12,2048), this case is caused by GE 4 dimensions tensor.
|
||||
"""
|
||||
par_shape_len = len(par.data.shape())
|
||||
new_par_shape_len = len(new_par.data.shape())
|
||||
par_shape_len = len(par.data.shape)
|
||||
new_par_shape_len = len(new_par.data.shape)
|
||||
delta_len = new_par_shape_len - par_shape_len
|
||||
delta_i = 0
|
||||
for delta_i in range(delta_len):
|
||||
if new_par.data.shape()[par_shape_len + delta_i] != 1:
|
||||
if new_par.data.shape[par_shape_len + delta_i] != 1:
|
||||
break
|
||||
if delta_i == delta_len - 1:
|
||||
new_val = new_par.data.asnumpy()
|
||||
new_val = new_val.reshape(par.data.shape())
|
||||
par.set_parameter_data(Tensor(new_val, par.data.dtype()))
|
||||
new_val = new_val.reshape(par.data.shape)
|
||||
par.set_parameter_data(Tensor(new_val, par.data.dtype))
|
||||
return True
|
||||
return False
|
||||
|
||||
|
@ -61,17 +61,17 @@ def _update_param(param, new_param):
|
|||
"""Updates param's data from new_param's data."""
|
||||
|
||||
if isinstance(param.data, Tensor) and isinstance(new_param.data, Tensor):
|
||||
if param.data.dtype() != new_param.data.dtype():
|
||||
if param.data.dtype != new_param.data.dtype:
|
||||
logger.error("Failed to combine the net and the parameters for param %s.", param.name)
|
||||
msg = ("Net parameters {} type({}) different from parameter_dict's({})"
|
||||
.format(param.name, param.data.dtype(), new_param.data.dtype()))
|
||||
.format(param.name, param.data.dtype, new_param.data.dtype))
|
||||
raise RuntimeError(msg)
|
||||
|
||||
if param.data.shape() != new_param.data.shape():
|
||||
if param.data.shape != new_param.data.shape:
|
||||
if not _special_process_par(param, new_param):
|
||||
logger.error("Failed to combine the net and the parameters for param %s.", param.name)
|
||||
msg = ("Net parameters {} shape({}) different from parameter_dict's({})"
|
||||
.format(param.name, param.data.shape(), new_param.data.shape()))
|
||||
.format(param.name, param.data.shape, new_param.data.shape))
|
||||
raise RuntimeError(msg)
|
||||
return
|
||||
|
||||
|
@ -79,12 +79,12 @@ def _update_param(param, new_param):
|
|||
return
|
||||
|
||||
if isinstance(param.data, Tensor) and not isinstance(new_param.data, Tensor):
|
||||
if param.data.shape() != (1,) and param.data.shape() != ():
|
||||
if param.data.shape != (1,) and param.data.shape != ():
|
||||
logger.error("Failed to combine the net and the parameters for param %s.", param.name)
|
||||
msg = ("Net parameters {} shape({}) is not (1,), inconsitent with parameter_dict's(scalar)."
|
||||
.format(param.name, param.data.shape()))
|
||||
.format(param.name, param.data.shape))
|
||||
raise RuntimeError(msg)
|
||||
param.set_parameter_data(initializer(new_param.data, param.data.shape(), param.data.dtype()))
|
||||
param.set_parameter_data(initializer(new_param.data, param.data.shape, param.data.dtype))
|
||||
|
||||
elif isinstance(new_param.data, Tensor) and not isinstance(param.data, Tensor):
|
||||
logger.error("Failed to combine the net and the parameters for param %s.", param.name)
|
||||
|
@ -120,12 +120,12 @@ def save_checkpoint(parameter_list, ckpoint_file_name):
|
|||
param["data"].init_data()
|
||||
param_data = param["data"].asnumpy().reshape(-1)
|
||||
param_tensor.tensor_content = param_data.tostring()
|
||||
param_tensor.tensor_type = str(param["data"].dtype())
|
||||
param_tensor.tensor_type = str(param["data"].dtype)
|
||||
|
||||
if param['data'].shape() == ():
|
||||
if param['data'].shape == ():
|
||||
param_tensor.dims.append(0)
|
||||
else:
|
||||
for dim in param['data'].shape():
|
||||
for dim in param['data'].shape:
|
||||
param_tensor.dims.append(dim)
|
||||
|
||||
with open(ckpoint_file_name, "wb") as f:
|
||||
|
|
|
@ -73,7 +73,7 @@ class FusedLayerNorm(Cell):
|
|||
|
||||
Examples:
|
||||
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
|
||||
>>> shape1 = x.shape()[1:]
|
||||
>>> shape1 = x.shape[1:]
|
||||
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
|
||||
>>> m(x)
|
||||
"""
|
||||
|
|
|
@ -267,21 +267,21 @@ class MobileNetV2(nn.Cell):
|
|||
if isinstance(m, (nn.Conv2d, DepthwiseConv)):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
|
||||
m.weight.data.shape()).astype("float32")))
|
||||
m.weight.data.shape).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(
|
||||
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.gamma.set_parameter_data(
|
||||
Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
|
||||
Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
|
||||
m.beta.set_parameter_data(
|
||||
Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.beta.data.shape, dtype="float32")))
|
||||
elif isinstance(m, nn.Dense):
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(
|
||||
0, 0.01, m.weight.data.shape()).astype("float32")))
|
||||
0, 0.01, m.weight.data.shape).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(
|
||||
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
|
||||
|
||||
|
||||
def mobilenet_v2(**kwargs):
|
||||
|
|
|
@ -322,21 +322,21 @@ class MobileNetV3(nn.Cell):
|
|||
if isinstance(m, (nn.Conv2d)):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
|
||||
m.weight.data.shape()).astype("float32")))
|
||||
m.weight.data.shape).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(
|
||||
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.gamma.set_parameter_data(
|
||||
Tensor(np.ones(m.gamma.data.shape(), dtype="float32")))
|
||||
Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
|
||||
m.beta.set_parameter_data(
|
||||
Tensor(np.zeros(m.beta.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.beta.data.shape, dtype="float32")))
|
||||
elif isinstance(m, nn.Dense):
|
||||
m.weight.set_parameter_data(Tensor(np.random.normal(
|
||||
0, 0.01, m.weight.data.shape()).astype("float32")))
|
||||
0, 0.01, m.weight.data.shape).astype("float32")))
|
||||
if m.bias is not None:
|
||||
m.bias.set_parameter_data(
|
||||
Tensor(np.zeros(m.bias.data.shape(), dtype="float32")))
|
||||
Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
|
||||
|
||||
|
||||
def mobilenet_v3(model_name, **kwargs):
|
||||
|
|
|
@ -66,12 +66,12 @@ if __name__ == '__main__':
|
|||
for _, cell in net.cells_and_names():
|
||||
if isinstance(cell, nn.Conv2d):
|
||||
cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(),
|
||||
cell.weight.default_input.shape(),
|
||||
cell.weight.default_input.dtype()).to_tensor()
|
||||
cell.weight.default_input.shape,
|
||||
cell.weight.default_input.dtype).to_tensor()
|
||||
if isinstance(cell, nn.Dense):
|
||||
cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(),
|
||||
cell.weight.default_input.shape(),
|
||||
cell.weight.default_input.dtype()).to_tensor()
|
||||
cell.weight.default_input.shape,
|
||||
cell.weight.default_input.dtype).to_tensor()
|
||||
if not config.label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
|
|
|
@ -23,9 +23,9 @@ def init_net_param(network, initialize_mode='TruncatedNormal'):
|
|||
for p in params:
|
||||
if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
|
||||
if initialize_mode == 'TruncatedNormal':
|
||||
p.set_parameter_data(initializer(TruncatedNormal(0.03), p.data.shape(), p.data.dtype()))
|
||||
p.set_parameter_data(initializer(TruncatedNormal(0.03), p.data.shape, p.data.dtype))
|
||||
else:
|
||||
p.set_parameter_data(initialize_mode, p.data.shape(), p.data.dtype())
|
||||
p.set_parameter_data(initialize_mode, p.data.shape, p.data.dtype)
|
||||
|
||||
|
||||
def load_backbone_params(network, param_dict):
|
||||
|
|
|
@ -78,15 +78,15 @@ class GNNFeatureTransform(nn.Cell):
|
|||
self.has_bias = check_bool(has_bias)
|
||||
|
||||
if isinstance(weight_init, Tensor):
|
||||
if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
|
||||
weight_init.shape()[1] != in_channels:
|
||||
if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \
|
||||
weight_init.shape[1] != in_channels:
|
||||
raise ValueError("weight_init shape error")
|
||||
|
||||
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
||||
|
||||
if self.has_bias:
|
||||
if isinstance(bias_init, Tensor):
|
||||
if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
|
||||
if bias_init.dim() != 1 or bias_init.shape[0] != out_channels:
|
||||
raise ValueError("bias_init shape error")
|
||||
|
||||
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
||||
|
|
|
@ -51,4 +51,4 @@ def test_AllGather():
|
|||
diff = output.asnumpy() - expect
|
||||
error = np.ones(shape=expect.shape) * 1.0e-5
|
||||
assert np.all(diff < error)
|
||||
assert output.shape() == expect.shape
|
||||
assert output.shape == expect.shape
|
||||
|
|
|
@ -62,19 +62,19 @@ def test_AllReduce():
|
|||
diff0 = output[0].asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output[0].shape() == expect0.shape
|
||||
assert output[0].shape == expect0.shape
|
||||
|
||||
expect1 = expect0
|
||||
diff1 = output[1].asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output[1].shape() == expect1.shape
|
||||
assert output[1].shape == expect1.shape
|
||||
|
||||
expect2 = expect1
|
||||
diff2 = output[2].asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output[2].shape() == expect2.shape
|
||||
assert output[2].shape == expect2.shape
|
||||
|
||||
|
||||
class Net2(nn.Cell):
|
||||
|
@ -108,16 +108,16 @@ def test_AllReduce2():
|
|||
diff0 = abs(output[0].asnumpy() - expect0)
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output[0].shape() == expect0.shape
|
||||
assert output[0].shape == expect0.shape
|
||||
|
||||
expect1 = expect0 * size
|
||||
diff1 = abs(output[1].asnumpy() - expect1)
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output[1].shape() == expect1.shape
|
||||
assert output[1].shape == expect1.shape
|
||||
|
||||
expect2 = expect1 * size
|
||||
diff2 = abs(output[2].asnumpy() - expect2)
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output[2].shape() == expect2.shape
|
||||
assert output[2].shape == expect2.shape
|
||||
|
|
|
@ -61,16 +61,16 @@ def test_ReduceScatter():
|
|||
diff0 = output[0].asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output[0].shape() == expect0.shape
|
||||
assert output[0].shape == expect0.shape
|
||||
|
||||
expect1 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * size
|
||||
diff1 = output[1].asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output[1].shape() == expect1.shape
|
||||
assert output[1].shape == expect1.shape
|
||||
|
||||
expect2 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * 1
|
||||
diff2 = output[2].asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output[2].shape() == expect2.shape
|
||||
assert output[2].shape == expect2.shape
|
||||
|
|
|
@ -73,7 +73,7 @@ class FusedLayerNorm(Cell):
|
|||
|
||||
Examples:
|
||||
>>> x = Tensor(np.ones([20, 5, 10, 10]), mindspore.float32)
|
||||
>>> shape1 = x.shape()[1:]
|
||||
>>> shape1 = x.shape[1:]
|
||||
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
|
||||
>>> m(x)
|
||||
"""
|
||||
|
|
|
@ -75,93 +75,93 @@ def test_tensor_auto_cast():
|
|||
t_fp64 = Tensor(np.ones([2, 1, 2, 2]), mstype.float64)
|
||||
net = TensorAutoCast()
|
||||
rs = net(t_uint8, t_int8)
|
||||
assert rs.dtype() == mstype.int16
|
||||
assert rs.dtype == mstype.int16
|
||||
rs = net(t_uint8, t_int16)
|
||||
assert rs.dtype() == mstype.int16
|
||||
assert rs.dtype == mstype.int16
|
||||
rs = net(t_uint8, t_int32)
|
||||
assert rs.dtype() == mstype.int32
|
||||
assert rs.dtype == mstype.int32
|
||||
rs = net(t_uint8, t_int64)
|
||||
assert rs.dtype() == mstype.int64
|
||||
assert rs.dtype == mstype.int64
|
||||
rs = net(t_int8, t_int16)
|
||||
assert rs.dtype() == mstype.int16
|
||||
assert rs.dtype == mstype.int16
|
||||
rs = net(t_int8, t_int32)
|
||||
assert rs.dtype() == mstype.int32
|
||||
assert rs.dtype == mstype.int32
|
||||
rs = net(t_int8, t_int64)
|
||||
assert rs.dtype() == mstype.int64
|
||||
assert rs.dtype == mstype.int64
|
||||
rs = net(t_int16, t_int32)
|
||||
assert rs.dtype() == mstype.int32
|
||||
assert rs.dtype == mstype.int32
|
||||
rs = net(t_int16, t_int64)
|
||||
assert rs.dtype() == mstype.int64
|
||||
assert rs.dtype == mstype.int64
|
||||
rs = net(t_int32, t_int64)
|
||||
assert rs.dtype() == mstype.int64
|
||||
assert rs.dtype == mstype.int64
|
||||
|
||||
rs = net(t_fp16, t_fp32)
|
||||
assert rs.dtype() == mstype.float32
|
||||
assert rs.dtype == mstype.float32
|
||||
rs = net(t_fp16, t_fp64)
|
||||
assert rs.dtype() == mstype.float64
|
||||
assert rs.dtype == mstype.float64
|
||||
rs = net(t_fp32, t_fp64)
|
||||
assert rs.dtype() == mstype.float64
|
||||
assert rs.dtype == mstype.float64
|
||||
|
||||
rs = net(t_uint8, t_fp16)
|
||||
assert rs.dtype() == mstype.float16
|
||||
assert rs.dtype == mstype.float16
|
||||
rs = net(t_uint8, t_fp32)
|
||||
assert rs.dtype() == mstype.float32
|
||||
assert rs.dtype == mstype.float32
|
||||
rs = net(t_uint8, t_fp64)
|
||||
assert rs.dtype() == mstype.float64
|
||||
assert rs.dtype == mstype.float64
|
||||
rs = net(t_int8, t_fp64)
|
||||
assert rs.dtype() == mstype.float64
|
||||
assert rs.dtype == mstype.float64
|
||||
rs = net(t_int16, t_fp64)
|
||||
assert rs.dtype() == mstype.float64
|
||||
assert rs.dtype == mstype.float64
|
||||
rs = net(t_int32, t_fp64)
|
||||
assert rs.dtype() == mstype.float64
|
||||
assert rs.dtype == mstype.float64
|
||||
rs = net(t_int64, t_fp64)
|
||||
assert rs.dtype() == mstype.float64
|
||||
assert rs.dtype == mstype.float64
|
||||
|
||||
rs = net(t_fp16, t_int8)
|
||||
assert rs.dtype() == mstype.float16
|
||||
assert rs.dtype == mstype.float16
|
||||
rs = net(t_fp16, t_uint8)
|
||||
assert rs.dtype() == mstype.float16
|
||||
assert rs.dtype == mstype.float16
|
||||
rs = net(t_fp16, t_int16)
|
||||
assert rs.dtype() == mstype.float16
|
||||
assert rs.dtype == mstype.float16
|
||||
rs = net(t_fp16, t_int32)
|
||||
assert rs.dtype() == mstype.float16
|
||||
assert rs.dtype == mstype.float16
|
||||
rs = net(t_fp16, t_int64)
|
||||
assert rs.dtype() == mstype.float16
|
||||
assert rs.dtype == mstype.float16
|
||||
|
||||
tint = TensorIntAutoCast()
|
||||
rs = tint(t_uint8)
|
||||
assert rs.dtype() == mstype.uint8
|
||||
assert rs.dtype == mstype.uint8
|
||||
rs = tint(t_int8)
|
||||
assert rs.dtype() == mstype.int8
|
||||
assert rs.dtype == mstype.int8
|
||||
rs = tint(t_int16)
|
||||
assert rs.dtype() == mstype.int16
|
||||
assert rs.dtype == mstype.int16
|
||||
rs = tint(t_int32)
|
||||
assert rs.dtype() == mstype.int32
|
||||
assert rs.dtype == mstype.int32
|
||||
rs = tint(t_int64)
|
||||
assert rs.dtype() == mstype.int64
|
||||
assert rs.dtype == mstype.int64
|
||||
rs = tint(t_fp16)
|
||||
assert rs.dtype() == mstype.float16
|
||||
assert rs.dtype == mstype.float16
|
||||
rs = tint(t_fp32)
|
||||
assert rs.dtype() == mstype.float32
|
||||
assert rs.dtype == mstype.float32
|
||||
rs = tint(t_fp64)
|
||||
assert rs.dtype() == mstype.float64
|
||||
assert rs.dtype == mstype.float64
|
||||
tfp = TensorFPAutoCast()
|
||||
rs = tfp(t_uint8)
|
||||
assert rs.dtype() == mstype.float32
|
||||
assert rs.dtype == mstype.float32
|
||||
rs = tfp(t_int8)
|
||||
assert rs.dtype() == mstype.float32
|
||||
assert rs.dtype == mstype.float32
|
||||
rs = tfp(t_int16)
|
||||
assert rs.dtype() == mstype.float32
|
||||
assert rs.dtype == mstype.float32
|
||||
rs = tfp(t_int32)
|
||||
assert rs.dtype() == mstype.float32
|
||||
assert rs.dtype == mstype.float32
|
||||
rs = tfp(t_int64)
|
||||
assert rs.dtype() == mstype.float32
|
||||
assert rs.dtype == mstype.float32
|
||||
rs = tfp(t_fp16)
|
||||
assert rs.dtype() == mstype.float32
|
||||
assert rs.dtype == mstype.float32
|
||||
rs = tfp(t_fp32)
|
||||
assert rs.dtype() == mstype.float32
|
||||
assert rs.dtype == mstype.float32
|
||||
rs = tfp(t_fp64)
|
||||
assert rs.dtype() == mstype.float64
|
||||
assert rs.dtype == mstype.float64
|
||||
|
||||
t_uint16 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint16)
|
||||
t_uint32 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint32)
|
||||
|
|
|
@ -35,7 +35,7 @@ class Net(nn.Cell):
|
|||
self.biasAdd = P.BiasAdd()
|
||||
|
||||
if isinstance(bias_init, Tensor):
|
||||
if bias_init.dim() != 1 or bias_init.shape()[0] != output_channels:
|
||||
if bias_init.dim() != 1 or bias_init.shape[0] != output_channels:
|
||||
raise ValueError("bias_init shape error")
|
||||
|
||||
self.bias = Parameter(initializer(
|
||||
|
|
|
@ -64,7 +64,7 @@ def convert_type(shapes, types):
|
|||
for np_shape, np_type in zip(shapes, types):
|
||||
input_np = np.zeros(np_shape, np_type)
|
||||
tensor = Tensor(input_np)
|
||||
ms_types.append(tensor.dtype())
|
||||
ms_types.append(tensor.dtype)
|
||||
return ms_types
|
||||
|
||||
|
||||
|
|
|
@ -34,7 +34,7 @@ class NetArgmax(nn.Cell):
|
|||
x = Tensor(np.array([[1., 20., 5.],
|
||||
[67., 8., 9.],
|
||||
[130., 24., 15.]]).astype(np.float32))
|
||||
self.x = Parameter(initializer(x, x.shape()), name='x')
|
||||
self.x = Parameter(initializer(x, x.shape), name='x')
|
||||
|
||||
def construct(self):
|
||||
return self.argmax(self.x)
|
||||
|
|
|
@ -32,8 +32,8 @@ class NetEqualCount(nn.Cell):
|
|||
self.equalcount = P.EqualCount()
|
||||
x = Tensor(np.array([1, 20, 5]).astype(np.int32))
|
||||
y = Tensor(np.array([2, 20, 5]).astype(np.int32))
|
||||
self.x = Parameter(initializer(x, x.shape()), name='x')
|
||||
self.y = Parameter(initializer(y, y.shape()), name='y')
|
||||
self.x = Parameter(initializer(x, x.shape), name='x')
|
||||
self.y = Parameter(initializer(y, y.shape), name='y')
|
||||
|
||||
def construct(self):
|
||||
return self.equalcount(self.x, self.y)
|
||||
|
|
|
@ -33,7 +33,7 @@ class NetSoftmax(nn.Cell):
|
|||
x = Tensor(np.array([[0.1, 0.3, 0.6],
|
||||
[0.2, -0.6, 0.8],
|
||||
[0.6, 1, 0.4]]).astype(np.float32))
|
||||
self.x = Parameter(initializer(x, x.shape()), name='x')
|
||||
self.x = Parameter(initializer(x, x.shape), name='x')
|
||||
|
||||
def construct(self):
|
||||
return self.softmax(self.x)
|
||||
|
|
|
@ -32,9 +32,9 @@ class NetSoftmaxWithCrossEntropy(nn.Cell):
|
|||
logits = Tensor(np.array([[1, 1, 10],
|
||||
[1, 10, 1],
|
||||
[10, 1, 1]]).astype(np.float32))
|
||||
self.logits = Parameter(initializer(logits, logits.shape()), name='logits')
|
||||
self.logits = Parameter(initializer(logits, logits.shape), name='logits')
|
||||
labels = Tensor(np.array([2, 1, 0]).astype(np.int32))
|
||||
self.labels = Parameter(initializer(labels, labels.shape()), name='labels')
|
||||
self.labels = Parameter(initializer(labels, labels.shape), name='labels')
|
||||
self.SoftmaxWithCrossEntropy = P.SparseSoftmaxCrossEntropyWithLogits(True)
|
||||
|
||||
def construct(self):
|
||||
|
|
|
@ -50,4 +50,4 @@ def test_correction_mul():
|
|||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
assert np.all(diff > error * -1)
|
||||
assert output.shape() == expect.shape
|
||||
assert output.shape == expect.shape
|
||||
|
|
|
@ -65,19 +65,19 @@ def test_equal():
|
|||
equal = NetEqual()
|
||||
output0 = equal(x0, y0)
|
||||
assert np.all(output0.asnumpy() == expect0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
output1 = equal(x1, y1)
|
||||
assert np.all(output1.asnumpy() == expect1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
equal = NetEqual()
|
||||
output0 = equal(x0, y0)
|
||||
assert np.all(output0.asnumpy() == expect0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
output1 = equal(x1, y1)
|
||||
assert np.all(output1.asnumpy() == expect1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -92,13 +92,13 @@ def test_notequal():
|
|||
notequal = NetNotEqual()
|
||||
output0 = notequal(x0, y0)
|
||||
assert np.all(output0.asnumpy() == expect0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
notequal = NetNotEqual()
|
||||
output0 = notequal(x0, y0)
|
||||
assert np.all(output0.asnumpy() == expect0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -113,10 +113,10 @@ def test_greaterqual():
|
|||
gequal = NetGreaterEqual()
|
||||
output0 = gequal(x0, y0)
|
||||
assert np.all(output0.asnumpy() == expect0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
gequal = NetGreaterEqual()
|
||||
output0 = gequal(x0, y0)
|
||||
assert np.all(output0.asnumpy() == expect0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
|
|
|
@ -49,19 +49,19 @@ def test_exp():
|
|||
output0 = exp(x0)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
output1 = exp(x1)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
exp = NetExp()
|
||||
output0 = exp(x0)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
output1 = exp(x1)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
|
|
@ -50,10 +50,10 @@ def test_log():
|
|||
output1 = log(x1)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
log = NetLog()
|
||||
|
@ -61,7 +61,7 @@ def test_log():
|
|||
output1 = log(x1)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
|
|
@ -64,35 +64,35 @@ def test_mul():
|
|||
diff0 = output0.asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
output1 = mul(x1, y1)
|
||||
expect1 = np.multiply(x1_np, y1_np)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
output2 = mul(x2, y2)
|
||||
expect2 = np.multiply(x2_np, y2_np)
|
||||
diff2 = output2.asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output2.shape() == expect2.shape
|
||||
assert output2.shape == expect2.shape
|
||||
|
||||
output3 = mul(x3, y3)
|
||||
expect3 = np.multiply(x3_np, y3_np)
|
||||
diff3 = output3.asnumpy() - expect3
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output3.shape() == expect3.shape
|
||||
assert output3.shape == expect3.shape
|
||||
|
||||
output4 = mul(x4, y4)
|
||||
expect4 = np.multiply(x4_np, y4_np)
|
||||
diff4 = output4.asnumpy() - expect4
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert output4.shape() == expect4.shape
|
||||
assert output4.shape == expect4.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
mul = NetMul()
|
||||
|
@ -101,32 +101,32 @@ def test_mul():
|
|||
diff0 = output0.asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
output1 = mul(x1, y1)
|
||||
expect1 = np.multiply(x1_np, y1_np)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
output2 = mul(x2, y2)
|
||||
expect2 = np.multiply(x2_np, y2_np)
|
||||
diff2 = output2.asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output2.shape() == expect2.shape
|
||||
assert output2.shape == expect2.shape
|
||||
|
||||
output3 = mul(x3, y3)
|
||||
expect3 = np.multiply(x3_np, y3_np)
|
||||
diff3 = output3.asnumpy() - expect3
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output3.shape() == expect3.shape
|
||||
assert output3.shape == expect3.shape
|
||||
|
||||
output4 = mul(x4, y4)
|
||||
expect4 = np.multiply(x4_np, y4_np)
|
||||
diff4 = output4.asnumpy() - expect4
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert output4.shape() == expect4.shape
|
||||
assert output4.shape == expect4.shape
|
||||
|
|
|
@ -49,19 +49,19 @@ def test_neg():
|
|||
output0 = neg(x0)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
output1 = neg(x1)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
neg = NetNeg()
|
||||
output0 = neg(x0)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
output1 = neg(x1)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
|
|
@ -64,35 +64,35 @@ def test_real_div():
|
|||
diff0 = output0.asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
output1 = real_div(x1, y1)
|
||||
expect1 = np.divide(x1_np, y1_np)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
output2 = real_div(x2, y2)
|
||||
expect2 = np.divide(x2_np, y2_np)
|
||||
diff2 = output2.asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output2.shape() == expect2.shape
|
||||
assert output2.shape == expect2.shape
|
||||
|
||||
output3 = real_div(x3, y3)
|
||||
expect3 = np.divide(x3_np, y3_np)
|
||||
diff3 = output3.asnumpy() - expect3
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output3.shape() == expect3.shape
|
||||
assert output3.shape == expect3.shape
|
||||
|
||||
output4 = real_div(x4, y4)
|
||||
expect4 = np.divide(x4_np, y4_np)
|
||||
diff4 = output4.asnumpy() - expect4
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert output4.shape() == expect4.shape
|
||||
assert output4.shape == expect4.shape
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||
real_div = NetRealDiv()
|
||||
|
@ -101,32 +101,32 @@ def test_real_div():
|
|||
diff0 = output0.asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
output1 = real_div(x1, y1)
|
||||
expect1 = np.divide(x1_np, y1_np)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
output2 = real_div(x2, y2)
|
||||
expect2 = np.divide(x2_np, y2_np)
|
||||
diff2 = output2.asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output2.shape() == expect2.shape
|
||||
assert output2.shape == expect2.shape
|
||||
|
||||
output3 = real_div(x3, y3)
|
||||
expect3 = np.divide(x3_np, y3_np)
|
||||
diff3 = output3.asnumpy() - expect3
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output3.shape() == expect3.shape
|
||||
assert output3.shape == expect3.shape
|
||||
|
||||
output4 = real_div(x4, y4)
|
||||
expect4 = np.divide(x4_np, y4_np)
|
||||
diff4 = output4.asnumpy() - expect4
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert output4.shape() == expect4.shape
|
||||
assert output4.shape == expect4.shape
|
||||
|
|
|
@ -49,19 +49,19 @@ def test_Reciprocal():
|
|||
output0 = reciprocal(x0)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
output1 = reciprocal(x1)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
reciprocal = NetReciprocal()
|
||||
output0 = reciprocal(x0)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
output1 = reciprocal(x1)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
|
|
@ -128,43 +128,43 @@ def test_ReduceMax():
|
|||
diff0 = abs(output[0].asnumpy() - expect0)
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output[0].shape() == expect0.shape
|
||||
assert output[0].shape == expect0.shape
|
||||
|
||||
expect1 = np.max(x1, axis=axis1, keepdims=keep_dims1)
|
||||
diff1 = abs(output[1].asnumpy() - expect1)
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output[1].shape() == expect1.shape
|
||||
assert output[1].shape == expect1.shape
|
||||
|
||||
expect2 = np.max(x2, axis=axis2, keepdims=keep_dims2)
|
||||
diff2 = abs(output[2].asnumpy() - expect2)
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output[2].shape() == expect2.shape
|
||||
assert output[2].shape == expect2.shape
|
||||
|
||||
expect3 = np.max(x3, axis=axis3, keepdims=keep_dims3)
|
||||
diff3 = abs(output[3].asnumpy() - expect3)
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output[3].shape() == expect3.shape
|
||||
assert output[3].shape == expect3.shape
|
||||
|
||||
expect4 = np.max(x4, axis=np_axis4, keepdims=keep_dims4)
|
||||
diff4 = abs(output[4].asnumpy() - expect4)
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert output[4].shape() == expect4.shape
|
||||
assert output[4].shape == expect4.shape
|
||||
|
||||
expect5 = np.max(x5, axis=np_axis5, keepdims=keep_dims5)
|
||||
diff5 = abs(output[5].asnumpy() - expect5)
|
||||
error5 = np.ones(shape=expect5.shape) * 1.0e-5
|
||||
assert np.all(diff5 < error5)
|
||||
assert output[5].shape() == expect5.shape
|
||||
assert output[5].shape == expect5.shape
|
||||
|
||||
expect6 = np.max(x6, axis=axis6, keepdims=keep_dims6)
|
||||
diff6 = abs(output[6].asnumpy() - expect6)
|
||||
error6 = np.ones(shape=expect6.shape) * 1.0e-5
|
||||
assert np.all(diff6 < error6)
|
||||
assert output[6].shape() == expect6.shape
|
||||
assert output[6].shape == expect6.shape
|
||||
|
||||
expect7 = np.max(x7, axis=axis7, keepdims=keep_dims7)
|
||||
diff7 = abs(output[7].asnumpy() - expect7)
|
||||
|
|
|
@ -180,88 +180,88 @@ def test_ReduceMean():
|
|||
diff0 = abs(output[0].asnumpy() - expect0)
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output[0].shape() == expect0.shape
|
||||
assert output[0].shape == expect0.shape
|
||||
|
||||
expect1 = np.mean(x1, axis=axis1, keepdims=keep_dims1)
|
||||
diff1 = abs(output[1].asnumpy() - expect1)
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output[1].shape() == expect1.shape
|
||||
assert output[1].shape == expect1.shape
|
||||
|
||||
expect2 = np.mean(x2, axis=axis2, keepdims=keep_dims2)
|
||||
diff2 = abs(output[2].asnumpy() - expect2)
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output[2].shape() == expect2.shape
|
||||
assert output[2].shape == expect2.shape
|
||||
|
||||
expect3 = np.mean(x3, axis=axis3, keepdims=keep_dims3)
|
||||
diff3 = abs(output[3].asnumpy() - expect3)
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output[3].shape() == expect3.shape
|
||||
assert output[3].shape == expect3.shape
|
||||
|
||||
expect4 = np.mean(x4, axis=axis4, keepdims=keep_dims4)
|
||||
diff4 = abs(output[4].asnumpy() - expect4)
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert output[4].shape() == expect4.shape
|
||||
assert output[4].shape == expect4.shape
|
||||
|
||||
expect5 = np.mean(x5, axis=axis5, keepdims=keep_dims5)
|
||||
diff5 = abs(output[5].asnumpy() - expect5)
|
||||
error5 = np.ones(shape=expect5.shape) * 1.0e-5
|
||||
assert np.all(diff5 < error5)
|
||||
assert output[5].shape() == expect5.shape
|
||||
assert output[5].shape == expect5.shape
|
||||
|
||||
expect6 = np.mean(x6, axis=axis6, keepdims=keep_dims6)
|
||||
diff6 = abs(output[6].asnumpy() - expect6)
|
||||
error6 = np.ones(shape=expect6.shape) * 1.0e-5
|
||||
assert np.all(diff6 < error6)
|
||||
assert output[6].shape() == expect6.shape
|
||||
assert output[6].shape == expect6.shape
|
||||
|
||||
expect7 = np.mean(x7, axis=axis7, keepdims=keep_dims7)
|
||||
diff7 = abs(output[7].asnumpy() - expect7)
|
||||
error7 = np.ones(shape=expect7.shape) * 1.0e-5
|
||||
assert np.all(diff7 < error7)
|
||||
assert output[7].shape() == expect7.shape
|
||||
assert output[7].shape == expect7.shape
|
||||
|
||||
expect8 = np.mean(x8, axis=axis8, keepdims=keep_dims8)
|
||||
diff8 = abs(output[8].asnumpy() - expect8)
|
||||
error8 = np.ones(shape=expect8.shape) * 1.0e-5
|
||||
assert np.all(diff8 < error8)
|
||||
assert output[8].shape() == expect8.shape
|
||||
assert output[8].shape == expect8.shape
|
||||
|
||||
expect9 = np.mean(x9, axis=axis9, keepdims=keep_dims9)
|
||||
diff9 = abs(output[9].asnumpy() - expect9)
|
||||
error9 = np.ones(shape=expect9.shape) * 1.0e-5
|
||||
assert np.all(diff9 < error9)
|
||||
assert output[9].shape() == expect9.shape
|
||||
assert output[9].shape == expect9.shape
|
||||
|
||||
expect10 = np.mean(x10, axis=axis10, keepdims=keep_dims10)
|
||||
diff10 = abs(output[10].asnumpy() - expect10)
|
||||
error10 = np.ones(shape=expect10.shape) * 1.0e-5
|
||||
assert np.all(diff10 < error10)
|
||||
assert output[10].shape() == expect10.shape
|
||||
assert output[10].shape == expect10.shape
|
||||
|
||||
expect11 = np.mean(x11, axis=axis11, keepdims=keep_dims11)
|
||||
diff11 = abs(output[11].asnumpy() - expect11)
|
||||
error11 = np.ones(shape=expect11.shape) * 1.0e-5
|
||||
assert np.all(diff11 < error11)
|
||||
assert output[11].shape() == expect11.shape
|
||||
assert output[11].shape == expect11.shape
|
||||
|
||||
expect12 = np.mean(x12, axis=axis12, keepdims=keep_dims12)
|
||||
diff12 = abs(output[12].asnumpy() - expect12)
|
||||
error12 = np.ones(shape=expect12.shape) * 1.0e-5
|
||||
assert np.all(diff12 < error12)
|
||||
assert output[12].shape() == expect12.shape
|
||||
assert output[12].shape == expect12.shape
|
||||
|
||||
expect13 = np.mean(x13, axis=axis13, keepdims=keep_dims13)
|
||||
diff13 = abs(output[13].asnumpy() - expect13)
|
||||
error13 = np.ones(shape=expect13.shape) * 1.0e-5
|
||||
assert np.all(diff13 < error13)
|
||||
assert output[13].shape() == expect13.shape
|
||||
assert output[13].shape == expect13.shape
|
||||
|
||||
expect14 = np.mean(x14, axis=np_axis14, keepdims=keep_dims14)
|
||||
diff14 = abs(output[14].asnumpy() - expect14)
|
||||
error14 = np.ones(shape=expect14.shape) * 1.0e-5
|
||||
assert np.all(diff14 < error14)
|
||||
assert output[14].shape() == expect14.shape
|
||||
assert output[14].shape == expect14.shape
|
||||
|
|
|
@ -182,88 +182,88 @@ def test_ReduceSum():
|
|||
diff0 = abs(output[0].asnumpy() - expect0)
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output[0].shape() == expect0.shape
|
||||
assert output[0].shape == expect0.shape
|
||||
|
||||
expect1 = np.sum(x1, axis=axis1, keepdims=keep_dims1)
|
||||
diff1 = abs(output[1].asnumpy() - expect1)
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output[1].shape() == expect1.shape
|
||||
assert output[1].shape == expect1.shape
|
||||
|
||||
expect2 = np.sum(x2, axis=axis2, keepdims=keep_dims2)
|
||||
diff2 = abs(output[2].asnumpy() - expect2)
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output[2].shape() == expect2.shape
|
||||
assert output[2].shape == expect2.shape
|
||||
|
||||
expect3 = np.sum(x3, axis=axis3, keepdims=keep_dims3)
|
||||
diff3 = abs(output[3].asnumpy() - expect3)
|
||||
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
||||
assert np.all(diff3 < error3)
|
||||
assert output[3].shape() == expect3.shape
|
||||
assert output[3].shape == expect3.shape
|
||||
|
||||
expect4 = np.sum(x4, axis=np_axis4, keepdims=keep_dims4)
|
||||
diff4 = abs(output[4].asnumpy() - expect4)
|
||||
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
||||
assert np.all(diff4 < error4)
|
||||
assert output[4].shape() == expect4.shape
|
||||
assert output[4].shape == expect4.shape
|
||||
|
||||
expect5 = np.sum(x5, axis=np_axis5, keepdims=keep_dims5)
|
||||
diff5 = abs(output[5].asnumpy() - expect5)
|
||||
error5 = np.ones(shape=expect5.shape) * 1.0e-5
|
||||
assert np.all(diff5 < error5)
|
||||
assert output[5].shape() == expect5.shape
|
||||
assert output[5].shape == expect5.shape
|
||||
|
||||
expect6 = np.sum(x6, axis=axis6, keepdims=keep_dims6)
|
||||
diff6 = abs(output[6].asnumpy() - expect6)
|
||||
error6 = np.ones(shape=expect6.shape) * 1.0e-5
|
||||
assert np.all(diff6 < error6)
|
||||
assert output[6].shape() == expect6.shape
|
||||
assert output[6].shape == expect6.shape
|
||||
|
||||
expect7 = np.sum(x7, axis=axis7, keepdims=keep_dims7)
|
||||
diff7 = abs(output[7].asnumpy() - expect7)
|
||||
error7 = np.ones(shape=expect7.shape) * 1.0e-5
|
||||
assert np.all(diff7 < error7)
|
||||
assert output[7].shape() == expect7.shape
|
||||
assert output[7].shape == expect7.shape
|
||||
|
||||
expect8 = np.sum(x8, axis=axis8, keepdims=keep_dims8)
|
||||
diff8 = abs(output[8].asnumpy() - expect8)
|
||||
error8 = np.ones(shape=expect8.shape) * 1.0e-5
|
||||
assert np.all(diff8 < error8)
|
||||
assert output[8].shape() == expect8.shape
|
||||
assert output[8].shape == expect8.shape
|
||||
|
||||
expect9 = np.sum(x9, axis=axis9, keepdims=keep_dims9)
|
||||
diff9 = abs(output[9].asnumpy() - expect9)
|
||||
error9 = np.ones(shape=expect9.shape) * 1.0e-5
|
||||
assert np.all(diff9 < error9)
|
||||
assert output[9].shape() == expect9.shape
|
||||
assert output[9].shape == expect9.shape
|
||||
|
||||
expect10 = np.sum(x10, axis=axis10, keepdims=keep_dims10)
|
||||
diff10 = abs(output[10].asnumpy() - expect10)
|
||||
error10 = np.ones(shape=expect10.shape) * 1.0e-5
|
||||
assert np.all(diff10 < error10)
|
||||
assert output[10].shape() == expect10.shape
|
||||
assert output[10].shape == expect10.shape
|
||||
|
||||
expect11 = np.sum(x11, axis=axis11, keepdims=keep_dims11)
|
||||
diff11 = abs(output[11].asnumpy() - expect11)
|
||||
error11 = np.ones(shape=expect11.shape) * 1.0e-5
|
||||
assert np.all(diff11 < error11)
|
||||
assert output[11].shape() == expect11.shape
|
||||
assert output[11].shape == expect11.shape
|
||||
|
||||
expect12 = np.sum(x12, axis=axis12, keepdims=keep_dims12)
|
||||
diff12 = abs(output[12].asnumpy() - expect12)
|
||||
error12 = np.ones(shape=expect12.shape) * 1.0e-5
|
||||
assert np.all(diff12 < error12)
|
||||
assert output[12].shape() == expect12.shape
|
||||
assert output[12].shape == expect12.shape
|
||||
|
||||
expect13 = np.sum(x13, axis=axis13, keepdims=keep_dims13)
|
||||
diff13 = abs(output[13].asnumpy() - expect13)
|
||||
error13 = np.ones(shape=expect13.shape) * 1.0e-5
|
||||
assert np.all(diff13 < error13)
|
||||
assert output[13].shape() == expect13.shape
|
||||
assert output[13].shape == expect13.shape
|
||||
|
||||
expect14 = np.sum(x14, axis=np_axis14, keepdims=keep_dims14)
|
||||
diff14 = abs(output[14].asnumpy() - expect14)
|
||||
error14 = np.ones(shape=expect14.shape) * 1.0e-5
|
||||
assert np.all(diff14 < error14)
|
||||
assert output[14].shape() == expect14.shape
|
||||
assert output[14].shape == expect14.shape
|
||||
|
|
|
@ -76,19 +76,19 @@ def test_Sub():
|
|||
output4 = sub(x4, y4)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
diff2 = output2.asnumpy() - expect2
|
||||
assert np.all(diff2 < error2)
|
||||
assert output2.shape() == expect2.shape
|
||||
assert output2.shape == expect2.shape
|
||||
diff3 = output3.asnumpy() - expect3
|
||||
assert np.all(diff3 < error3)
|
||||
assert output3.shape() == expect3.shape
|
||||
assert output3.shape == expect3.shape
|
||||
diff4 = output4.asnumpy() - expect4
|
||||
assert np.all(diff4 < error4)
|
||||
assert output4.shape() == expect4.shape
|
||||
assert output4.shape == expect4.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
sub = Net()
|
||||
|
@ -99,16 +99,16 @@ def test_Sub():
|
|||
output4 = sub(x4, y4)
|
||||
diff0 = output0.asnumpy() - expect0
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
diff2 = output2.asnumpy() - expect2
|
||||
assert np.all(diff2 < error2)
|
||||
assert output2.shape() == expect2.shape
|
||||
assert output2.shape == expect2.shape
|
||||
diff3 = output3.asnumpy() - expect3
|
||||
assert np.all(diff3 < error3)
|
||||
assert output3.shape() == expect3.shape
|
||||
assert output3.shape == expect3.shape
|
||||
diff4 = output4.asnumpy() - expect4
|
||||
assert np.all(diff4 < error4)
|
||||
assert output4.shape() == expect4.shape
|
||||
assert output4.shape == expect4.shape
|
||||
|
|
|
@ -65,16 +65,16 @@ def test_tile():
|
|||
diff0 = output[0].asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output[0].shape() == expect0.shape
|
||||
assert output[0].shape == expect0.shape
|
||||
|
||||
expect1 = np.tile(input_x1, mul1)
|
||||
diff1 = output[1].asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output[1].shape() == expect1.shape
|
||||
assert output[1].shape == expect1.shape
|
||||
|
||||
expect2 = np.tile(input_x2, mul2)
|
||||
diff2 = output[2].asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output[2].shape() == expect2.shape
|
||||
assert output[2].shape == expect2.shape
|
||||
|
|
|
@ -50,14 +50,14 @@ def test_ZerosLike():
|
|||
diff0 = output0.asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
output1 = zeros_like(x1)
|
||||
expect1 = np.zeros_like(x1_np)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
zeros_like = NetZerosLike()
|
||||
|
@ -66,11 +66,11 @@ def test_ZerosLike():
|
|||
diff0 = output0.asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output0.shape() == expect0.shape
|
||||
assert output0.shape == expect0.shape
|
||||
|
||||
output1 = zeros_like(x1)
|
||||
expect1 = np.zeros_like(x1_np)
|
||||
diff1 = output1.asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output1.shape() == expect1.shape
|
||||
assert output1.shape == expect1.shape
|
||||
|
|
|
@ -20,6 +20,7 @@ import mindspore.nn as nn
|
|||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
from tests.ut.python.ut_filter import non_graph_engine
|
||||
from tests.mindspore_test_framework.mindspore_test import mindspore_test
|
||||
from tests.mindspore_test_framework.pipeline.forward.compile_forward \
|
||||
|
@ -44,7 +45,12 @@ def test_list_equal():
|
|||
y = Tensor(np.zeros([3, 4, 5], np.int32))
|
||||
z = [1, 2, 3]
|
||||
net = Net(z)
|
||||
assert net(x, y) == x
|
||||
ret = net(x, y)
|
||||
|
||||
print(ret.asnumpy())
|
||||
assert ret == x
|
||||
assert ret.dtype == mstype.int32
|
||||
assert ret.shape == (6, 8, 10)
|
||||
|
||||
|
||||
def test_list_not_equal():
|
||||
|
|
|
@ -33,7 +33,7 @@ class Net(nn.Cell):
|
|||
self.biasAdd = P.BiasAdd()
|
||||
|
||||
if isinstance(bias_init, Tensor):
|
||||
if bias_init.dim() != 1 or bias_init.shape()[0] != output_channels:
|
||||
if bias_init.dim() != 1 or bias_init.shape[0] != output_channels:
|
||||
raise ValueError("bias_init shape error")
|
||||
|
||||
self.bias = Parameter(initializer(
|
||||
|
|
|
@ -65,7 +65,7 @@ def test_bias_add(test_with_simu):
|
|||
self.biasAdd = P.BiasAdd()
|
||||
|
||||
if isinstance(bias_init, Tensor):
|
||||
if bias_init.dim() != 1 or bias_init.shape()[0] != output_channels:
|
||||
if bias_init.dim() != 1 or bias_init.shape[0] != output_channels:
|
||||
raise ValueError("bias_init shape error")
|
||||
|
||||
self.bias = Parameter(initializer(
|
||||
|
|
|
@ -50,148 +50,148 @@ def test_tensor():
|
|||
"""test_tensor"""
|
||||
t1 = ms.Tensor(ndarr)
|
||||
assert isinstance(t1, ms.Tensor)
|
||||
assert t1.dtype() == ms.float64
|
||||
assert t1.dtype == ms.float64
|
||||
|
||||
t2 = ms.Tensor(np.zeros([1, 2, 3]), ms.float32)
|
||||
assert isinstance(t2, ms.Tensor)
|
||||
assert t2.shape() == (1, 2, 3)
|
||||
assert t2.dtype() == ms.float32
|
||||
assert t2.shape == (1, 2, 3)
|
||||
assert t2.dtype == ms.float32
|
||||
|
||||
t3 = ms.Tensor(0.1)
|
||||
assert isinstance(t3, ms.Tensor)
|
||||
assert t3.dtype() == ms.float64
|
||||
assert t3.dtype == ms.float64
|
||||
|
||||
t4 = ms.Tensor(1)
|
||||
assert isinstance(t4, ms.Tensor)
|
||||
assert t4.dtype() == ms.int64
|
||||
assert t4.dtype == ms.int64
|
||||
|
||||
|
||||
def test_tensor_type_float16():
|
||||
t_float16 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float16))
|
||||
assert isinstance(t_float16, ms.Tensor)
|
||||
assert t_float16.shape() == (2, 3)
|
||||
assert t_float16.dtype() == ms.float16
|
||||
assert t_float16.shape == (2, 3)
|
||||
assert t_float16.dtype == ms.float16
|
||||
|
||||
|
||||
def test_tensor_type_float32():
|
||||
t_float32 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
|
||||
assert isinstance(t_float32, ms.Tensor)
|
||||
assert t_float32.shape() == (2, 3)
|
||||
assert t_float32.dtype() == ms.float32
|
||||
assert t_float32.shape == (2, 3)
|
||||
assert t_float32.dtype == ms.float32
|
||||
|
||||
|
||||
def test_tensor_type_float32_user_define():
|
||||
t = ms.Tensor(np.zeros([1, 2, 3]), ms.float32)
|
||||
assert isinstance(t, ms.Tensor)
|
||||
assert t.shape() == (1, 2, 3)
|
||||
assert t.dtype() == ms.float32
|
||||
assert t.shape == (1, 2, 3)
|
||||
assert t.dtype == ms.float32
|
||||
|
||||
|
||||
def test_tensor_type_float64():
|
||||
t = ms.Tensor([[1.0, 2, 3], [4, 5, 6]])
|
||||
assert isinstance(t, ms.Tensor)
|
||||
assert t.shape() == (2, 3)
|
||||
assert t.dtype() == ms.float64
|
||||
assert t.shape == (2, 3)
|
||||
assert t.dtype == ms.float64
|
||||
|
||||
t_zero = ms.Tensor(np.zeros([1, 2, 3]))
|
||||
assert isinstance(t_zero, ms.Tensor)
|
||||
assert t_zero.shape() == (1, 2, 3)
|
||||
assert t_zero.dtype() == ms.float64
|
||||
assert t_zero.shape == (1, 2, 3)
|
||||
assert t_zero.dtype == ms.float64
|
||||
|
||||
|
||||
def test_tensor_type_float64_user_define():
|
||||
t = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=float))
|
||||
assert isinstance(t, ms.Tensor)
|
||||
assert t.shape() == (2, 3)
|
||||
assert t.dtype() == ms.float64
|
||||
assert t.shape == (2, 3)
|
||||
assert t.dtype == ms.float64
|
||||
|
||||
t_float64 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]]), ms.float64)
|
||||
assert isinstance(t_float64, ms.Tensor)
|
||||
assert t_float64.shape() == (2, 3)
|
||||
assert t_float64.dtype() == ms.float64
|
||||
assert t_float64.shape == (2, 3)
|
||||
assert t_float64.dtype == ms.float64
|
||||
|
||||
|
||||
def test_tensor_type_bool():
|
||||
# init a tensor with bool type
|
||||
ts_bool_array = ms.Tensor(np.zeros([2, 3], np.bool), ms.bool_)
|
||||
assert isinstance(ts_bool_array, ms.Tensor)
|
||||
assert ts_bool_array.dtype() == ms.bool_
|
||||
assert ts_bool_array.dtype == ms.bool_
|
||||
|
||||
t_bool = ms.Tensor(True)
|
||||
assert isinstance(t_bool, ms.Tensor)
|
||||
assert t_bool.dtype() == ms.bool_
|
||||
assert t_bool.dtype == ms.bool_
|
||||
|
||||
t_bool_array = ms.Tensor(np.array([[True, False, True], [False, False, False]]))
|
||||
assert isinstance(t_bool_array, ms.Tensor)
|
||||
assert t_bool_array.shape() == (2, 3)
|
||||
assert t_bool_array.dtype() == ms.bool_
|
||||
assert t_bool_array.shape == (2, 3)
|
||||
assert t_bool_array.dtype == ms.bool_
|
||||
|
||||
|
||||
def test_tensor_type_int8():
|
||||
t_int8_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int8))
|
||||
assert isinstance(t_int8_array, ms.Tensor)
|
||||
assert t_int8_array.shape() == (2, 3)
|
||||
assert t_int8_array.dtype() == ms.int8
|
||||
assert t_int8_array.shape == (2, 3)
|
||||
assert t_int8_array.dtype == ms.int8
|
||||
|
||||
|
||||
def test_tensor_type_int16():
|
||||
t_int16_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16))
|
||||
assert isinstance(t_int16_array, ms.Tensor)
|
||||
assert t_int16_array.shape() == (2, 3)
|
||||
assert t_int16_array.dtype() == ms.int16
|
||||
assert t_int16_array.shape == (2, 3)
|
||||
assert t_int16_array.dtype == ms.int16
|
||||
|
||||
|
||||
def test_tensor_type_int32():
|
||||
t_int = ms.Tensor([[1, 2, 3], [4, 5, 6]])
|
||||
assert isinstance(t_int, ms.Tensor)
|
||||
assert t_int.shape() == (2, 3)
|
||||
assert t_int.dtype() == ms.int64
|
||||
assert t_int.shape == (2, 3)
|
||||
assert t_int.dtype == ms.int64
|
||||
|
||||
t_int_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
|
||||
assert isinstance(t_int_array, ms.Tensor)
|
||||
assert t_int_array.shape() == (2, 3)
|
||||
assert t_int_array.dtype() == ms.int32
|
||||
assert t_int_array.shape == (2, 3)
|
||||
assert t_int_array.dtype == ms.int32
|
||||
|
||||
|
||||
def test_tensor_type_int64():
|
||||
t_int64 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64))
|
||||
assert isinstance(t_int64, ms.Tensor)
|
||||
assert t_int64.shape() == (2, 3)
|
||||
assert t_int64.dtype() == ms.int64
|
||||
assert t_int64.shape == (2, 3)
|
||||
assert t_int64.dtype == ms.int64
|
||||
|
||||
|
||||
def test_tensor_type_uint8():
|
||||
t_uint8_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8))
|
||||
assert isinstance(t_uint8_array, ms.Tensor)
|
||||
assert t_uint8_array.shape() == (2, 3)
|
||||
assert t_uint8_array.dtype() == ms.uint8
|
||||
assert t_uint8_array.shape == (2, 3)
|
||||
assert t_uint8_array.dtype == ms.uint8
|
||||
|
||||
|
||||
def test_tensor_type_uint16():
|
||||
t_uint16_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint16))
|
||||
assert isinstance(t_uint16_array, ms.Tensor)
|
||||
assert t_uint16_array.shape() == (2, 3)
|
||||
assert t_uint16_array.dtype() == ms.uint16
|
||||
assert t_uint16_array.shape == (2, 3)
|
||||
assert t_uint16_array.dtype == ms.uint16
|
||||
|
||||
|
||||
def test_tensor_type_uint32():
|
||||
t_uint32_array = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint32))
|
||||
assert isinstance(t_uint32_array, ms.Tensor)
|
||||
assert t_uint32_array.shape() == (2, 3)
|
||||
assert t_uint32_array.dtype() == ms.uint32
|
||||
assert t_uint32_array.shape == (2, 3)
|
||||
assert t_uint32_array.dtype == ms.uint32
|
||||
|
||||
|
||||
def test_tensor_type_uint64():
|
||||
t_uint64 = ms.Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint64))
|
||||
assert isinstance(t_uint64, ms.Tensor)
|
||||
assert t_uint64.shape() == (2, 3)
|
||||
assert t_uint64.dtype() == ms.uint64
|
||||
assert t_uint64.shape == (2, 3)
|
||||
assert t_uint64.dtype == ms.uint64
|
||||
|
||||
|
||||
def test_set_type():
|
||||
t = ms.Tensor(ndarr)
|
||||
t.set_dtype(ms.float32)
|
||||
assert t.dtype() == ms.float32
|
||||
assert t.dtype == ms.float32
|
||||
|
||||
|
||||
@non_graph_engine
|
||||
|
@ -250,11 +250,11 @@ def test_return_tensor():
|
|||
tensor_ = exe(net, input_data)
|
||||
|
||||
# get shape
|
||||
shape_ = tensor_.shape()
|
||||
shape_ = tensor_.shape
|
||||
print("shape = ", shape_)
|
||||
|
||||
# get type
|
||||
type_ = tensor_.dtype()
|
||||
type_ = tensor_.dtype
|
||||
print("type = ", type_)
|
||||
|
||||
# get value
|
||||
|
|
|
@ -71,7 +71,7 @@ def test_tensor_size():
|
|||
|
||||
def test_dtype():
|
||||
a = ms.Tensor(np.ones((2, 3), dtype=np.int32))
|
||||
assert a.dtype() == ms.int32
|
||||
assert a.dtype == ms.int32
|
||||
|
||||
|
||||
def test_asnumpy():
|
||||
|
@ -89,7 +89,7 @@ def test_print():
|
|||
|
||||
def test_float():
|
||||
a = ms.Tensor(np.ones((2, 3)), ms.float16)
|
||||
assert a.dtype() == ms.float16
|
||||
assert a.dtype == ms.float16
|
||||
|
||||
|
||||
def test_tensor_method_sub():
|
||||
|
|
|
@ -71,7 +71,7 @@ def test(name, file_path, batch_size):
|
|||
data_list.append(data.asnumpy())
|
||||
batch_data = np.concatenate(data_list, axis=0).transpose((0, 3, 1, 2))
|
||||
input_tensor = Tensor(batch_data)
|
||||
print(input_tensor.shape())
|
||||
print(input_tensor.shape)
|
||||
network(input_tensor)
|
||||
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore import dtype as mstype
|
|||
|
||||
def test_check_layer_norm_1():
|
||||
x = Tensor(np.ones([20, 5, 10, 10]), mstype.float32)
|
||||
shape1 = x.shape()[1:]
|
||||
shape1 = x.shape[1:]
|
||||
m = nn.LayerNorm(shape1, -1, 1)
|
||||
with pytest.raises(NotImplementedError):
|
||||
m(x)
|
||||
|
@ -31,7 +31,7 @@ def test_check_layer_norm_1():
|
|||
|
||||
def test_check_layer_norm_2():
|
||||
x = Tensor(np.ones([20, 5, 10, 10]), mstype.float32)
|
||||
shape1 = x.shape()[1:]
|
||||
shape1 = x.shape[1:]
|
||||
m = nn.LayerNorm(shape1, begin_params_axis=1)
|
||||
with pytest.raises(NotImplementedError):
|
||||
m(x)
|
||||
|
|
|
@ -65,7 +65,7 @@ def test_init_Initializer():
|
|||
def test_init_tensor():
|
||||
tensor = ms.Tensor(np.zeros([1, 2, 3]))
|
||||
tensor = init.initializer(tensor, [1, 2, 3], ms.float32)
|
||||
assert tensor.shape() == (1, 2, 3)
|
||||
assert tensor.shape == (1, 2, 3)
|
||||
|
||||
|
||||
def test_init_zero_default_dtype():
|
||||
|
|
|
@ -126,8 +126,8 @@ def test_load_checkpoint():
|
|||
|
||||
assert len(par_dict) == 3
|
||||
assert par_dict['param_test'].name == 'param_test'
|
||||
assert par_dict['param_test'].data.dtype() == mstype.float32
|
||||
assert par_dict['param_test'].data.shape() == (1, 3, 224, 224)
|
||||
assert par_dict['param_test'].data.dtype == mstype.float32
|
||||
assert par_dict['param_test'].data.shape == (1, 3, 224, 224)
|
||||
assert isinstance(par_dict, dict)
|
||||
|
||||
|
||||
|
|
|
@ -46,7 +46,7 @@ def vm_impl_dType(self):
|
|||
|
||||
def vm_impl(x):
|
||||
# update the src type
|
||||
return x.dtype()
|
||||
return x.dtype
|
||||
|
||||
return vm_impl
|
||||
|
||||
|
|
Loading…
Reference in New Issue