forked from mindspore-Ecosystem/mindspore
!2171 ssim input shape h and w should be greater than or equal to filter_size
Merge pull request !2171 from zhaozhenlong/fix-issues-quant-not-exposed-ssim-ksize-check
This commit is contained in:
commit
6089d58d8d
|
@ -104,6 +104,12 @@ def _check_input_4d(input_shape, param_name, func_name):
|
||||||
raise ValueError(f"{func_name} {param_name} should be 4d, but got shape {input_shape}")
|
raise ValueError(f"{func_name} {param_name} should be 4d, but got shape {input_shape}")
|
||||||
return True
|
return True
|
||||||
|
|
||||||
|
@constexpr
|
||||||
|
def _check_input_filter_size(input_shape, param_name, filter_size, func_name):
|
||||||
|
_check_input_4d(input_shape, param_name, func_name)
|
||||||
|
validator.check(param_name + " shape[2]", input_shape[2], "filter_size", filter_size, Rel.GE, func_name)
|
||||||
|
validator.check(param_name + " shape[3]", input_shape[3], "filter_size", filter_size, Rel.GE, func_name)
|
||||||
|
|
||||||
class SSIM(Cell):
|
class SSIM(Cell):
|
||||||
r"""
|
r"""
|
||||||
Returns SSIM index between img1 and img2.
|
Returns SSIM index between img1 and img2.
|
||||||
|
@ -154,8 +160,7 @@ class SSIM(Cell):
|
||||||
self.mean = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=filter_size)
|
self.mean = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=filter_size)
|
||||||
|
|
||||||
def construct(self, img1, img2):
|
def construct(self, img1, img2):
|
||||||
_check_input_4d(F.shape(img1), "img1", self.cls_name)
|
_check_input_filter_size(F.shape(img1), "img1", self.filter_size, self.cls_name)
|
||||||
_check_input_4d(F.shape(img2), "img2", self.cls_name)
|
|
||||||
P.SameTypeShape()(img1, img2)
|
P.SameTypeShape()(img1, img2)
|
||||||
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val)
|
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val)
|
||||||
img1 = _convert_img_dtype_to_float32(img1, self.max_val)
|
img1 = _convert_img_dtype_to_float32(img1, self.max_val)
|
||||||
|
|
|
@ -1754,6 +1754,10 @@ raise_set = [
|
||||||
'block': (P.PReLU(), {'exception': ValueError}),
|
'block': (P.PReLU(), {'exception': ValueError}),
|
||||||
'desc_inputs': [[2], [1]],
|
'desc_inputs': [[2], [1]],
|
||||||
'desc_bprop': [[1]]}),
|
'desc_bprop': [[1]]}),
|
||||||
|
('SSIM', {
|
||||||
|
'block': (nn.SSIM(), {'exception': ValueError}),
|
||||||
|
'desc_inputs': [Tensor(np.ones((1, 3, 8, 8)), mstype.float32),
|
||||||
|
Tensor(np.ones((1, 3, 8, 8)), mstype.float32)]}),
|
||||||
|
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue