forked from mindspore-Ecosystem/mindspore
clean code warning
This commit is contained in:
parent
8db46cbd17
commit
5d5a8a36b5
|
@ -19,6 +19,7 @@
|
|||
#include <limits>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
|
||||
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
|
||||
#include "plugin/device/cpu/kernel/arithmetic_cpu_kernel.h"
|
||||
|
@ -160,12 +161,22 @@ void AddcdivCpuKernelMod::AddcdivAdd(const T *input1, const T *input2, T *output
|
|||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T abs(T num) {
|
||||
if (num >= static_cast<T>(0.0)) {
|
||||
return num;
|
||||
} else {
|
||||
return -num;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void AddcdivCpuKernelMod::AddcdivDiv(const T *input1, const T *input2, T *output) {
|
||||
if (inputx_shape_size_ == 0 && inputy_shape_size_ == 0) {
|
||||
auto zero = (T)0;
|
||||
if (input2[0] == zero) {
|
||||
if (input1[0] == zero) {
|
||||
const auto eps_if_zero = static_cast<T>(1e-6);
|
||||
auto zero = static_cast<T>(0);
|
||||
if (abs(input2[0] - zero) <= eps_if_zero) {
|
||||
if (abs(input1[0] - zero) <= eps_if_zero) {
|
||||
output[0] = std::numeric_limits<T>::quiet_NaN();
|
||||
return;
|
||||
}
|
||||
|
@ -178,14 +189,15 @@ void AddcdivCpuKernelMod::AddcdivDiv(const T *input1, const T *input2, T *output
|
|||
} else {
|
||||
BroadcastIterator div_iter(output_shape_, input_shape2_, output_shape_);
|
||||
auto div_task = [&input1, &input2, &output, &div_iter](int64_t div_start, int64_t div_end) {
|
||||
const auto eps_if_zero = static_cast<T>(1e-6);
|
||||
auto iter = div_iter;
|
||||
iter.SetPos(div_start);
|
||||
for (int64_t i = div_start; i < div_end; i++) {
|
||||
auto zero = (T)0;
|
||||
auto zero = static_cast<T>(0);
|
||||
auto addcdiv_dividend = input1[iter.GetInputPosA()];
|
||||
auto addcdiv_divisor = input2[iter.GetInputPosB()];
|
||||
if (addcdiv_divisor == zero) {
|
||||
if (addcdiv_dividend == zero) {
|
||||
if (abs(addcdiv_divisor - zero) <= eps_if_zero) {
|
||||
if (abs(addcdiv_dividend - zero) <= eps_if_zero) {
|
||||
output[i] = std::numeric_limits<T>::quiet_NaN();
|
||||
continue;
|
||||
}
|
||||
|
@ -210,7 +222,7 @@ void AddcdivCpuKernelMod::AddcdivDiv(const T *input1, const T *input2, T *output
|
|||
}
|
||||
|
||||
std::vector<KernelAttr> AddcdivCpuKernelMod::GetOpSupport() {
|
||||
static std::vector<KernelAttr> kernel_attr_list = {
|
||||
static const std::vector<KernelAttr> kernel_attr_list = {
|
||||
ADD_KERNEL(Float32, Float32, Float32, Float16, Float32), ADD_KERNEL(Float32, Float32, Float32, Float32, Float32),
|
||||
ADD_KERNEL(Float32, Float32, Float32, Float64, Float32), ADD_KERNEL(Float32, Float32, Float32, Int32, Float32),
|
||||
ADD_KERNEL(Float32, Float32, Float32, Int64, Float32), ADD_KERNEL(Float64, Float64, Float64, Float16, Float64),
|
||||
|
|
|
@ -171,7 +171,7 @@ bool AddcmulCpuKernelMod::Launch(const std::vector<AddressPtr> &inputs, const st
|
|||
}
|
||||
|
||||
std::vector<KernelAttr> AddcmulCpuKernelMod::GetOpSupport() {
|
||||
static std::vector<KernelAttr> kernel_attr_list = {
|
||||
static const std::vector<KernelAttr> kernel_attr_list = {
|
||||
KernelAttr().AddInputAttr(F32).AddInputAttr(F32).AddInputAttr(F32).AddInputAttr(F16).AddOutputAttr(F32),
|
||||
KernelAttr().AddInputAttr(F32).AddInputAttr(F32).AddInputAttr(F32).AddInputAttr(F32).AddOutputAttr(F32),
|
||||
KernelAttr().AddInputAttr(F32).AddInputAttr(F32).AddInputAttr(F32).AddInputAttr(I8).AddOutputAttr(F32),
|
||||
|
|
|
@ -30,7 +30,7 @@ const int64_t kAdjustContrastv2ParallelNum = 64 * 1024;
|
|||
} // namespace
|
||||
|
||||
template <typename T>
|
||||
void AdjustContrastv2(T *image, T *image_out, std::float_t contrast_factor, std::int64_t channel_count,
|
||||
void AdjustContrastv2(const T *image, T *image_out, std::float_t contrast_factor, std::int64_t channel_count,
|
||||
std::int64_t per_batch_elements) {
|
||||
if (channel_count == 0) {
|
||||
return;
|
||||
|
@ -108,7 +108,7 @@ bool AdjustContrastv2CpuKernelMod::Launch(const std::vector<kernel::AddressPtr>
|
|||
}
|
||||
|
||||
std::vector<KernelAttr> AdjustContrastv2CpuKernelMod::GetOpSupport() {
|
||||
static std::vector<KernelAttr> support_list = {
|
||||
static const std::vector<KernelAttr> support_list = {
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32)};
|
||||
return support_list;
|
||||
}
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
#include "plugin/device/cpu/kernel/adjust_hue_cpu_kernel.h"
|
||||
#include <Eigen/Dense>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
|
||||
#include "utils/ms_utils.h"
|
||||
|
||||
|
@ -38,6 +39,7 @@ namespace detail {
|
|||
static void rgb_to_hv_range(float r, float g, float b, float *h, float *v_min, float *v_max) {
|
||||
float v_mid;
|
||||
int h_category;
|
||||
const float eps = 1e-6;
|
||||
// According to the figures in:
|
||||
// https://en.wikipedia.org/wiki/HSL_and_HSV#Hue_and_chroma
|
||||
// For the conditions, we don't care about the case where two components are
|
||||
|
@ -84,7 +86,7 @@ static void rgb_to_hv_range(float r, float g, float b, float *h, float *v_min, f
|
|||
h_category = kAdjustHueFive;
|
||||
}
|
||||
}
|
||||
if (*v_max == *v_min) {
|
||||
if (std::fabs(*v_max - *v_min) <= eps) {
|
||||
*h = 0;
|
||||
return;
|
||||
}
|
||||
|
@ -144,14 +146,15 @@ HsvTuple rgb2hsv(const float r, const float g, const float b) {
|
|||
const float M = fmaxf(r, fmaxf(g, b));
|
||||
const float m = fminf(r, fminf(g, b));
|
||||
const float chroma = M - m;
|
||||
const float eps = 1e-6;
|
||||
float h = 0.0f, s = 0.0f;
|
||||
// hue
|
||||
if (chroma > 0.0f) {
|
||||
if (M == r) {
|
||||
if (std::fabs(M - r) <= eps) {
|
||||
const float num = (g - b) / chroma;
|
||||
const float sign = copysignf(1.0f, num);
|
||||
h = (static_cast<float>(sign < 0.0f) * 6.0f + sign * fmodf(sign * num, 6.0f)) / 6.0f;
|
||||
} else if (M == g) {
|
||||
} else if (std::fabs(M - g) <= eps) {
|
||||
h = ((b - r) / chroma + 2.0f) / 6.0f;
|
||||
} else {
|
||||
h = ((r - g) / chroma + 4.0f) / 6.0f;
|
||||
|
@ -307,7 +310,7 @@ bool AdjustHueCpuKernelMod::Launch(const std::vector<kernel::AddressPtr> &inputs
|
|||
}
|
||||
|
||||
std::vector<KernelAttr> AdjustHueCpuKernelMod::GetOpSupport() {
|
||||
static std::vector<KernelAttr> support_list = {
|
||||
static const std::vector<KernelAttr> support_list = {
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32)};
|
||||
return support_list;
|
||||
}
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#include <Eigen/Dense>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
|
||||
#include "utils/ms_utils.h"
|
||||
|
||||
|
@ -38,6 +39,7 @@ namespace detail {
|
|||
static void rgb_to_hsv(float r, float g, float b, float *h, float *s, float *v) {
|
||||
float vv = std::max(r, std::max(g, b));
|
||||
float range = vv - std::min(r, std::min(g, b));
|
||||
const float eps = 1e-6;
|
||||
if (vv > 0) {
|
||||
*s = range / vv;
|
||||
} else {
|
||||
|
@ -45,9 +47,9 @@ static void rgb_to_hsv(float r, float g, float b, float *h, float *s, float *v)
|
|||
}
|
||||
float norm = kAdjustSaturationOne / (kAdjustSaturationSix * range);
|
||||
float hh;
|
||||
if (r == vv) {
|
||||
if (std::fabs(r - vv) <= eps) {
|
||||
hh = norm * (g - b);
|
||||
} else if (g == vv) {
|
||||
} else if (std::fabs(g - vv) <= eps) {
|
||||
hh = norm * (b - r) + kAdjustSaturationTwo / kAdjustSaturationSix;
|
||||
} else {
|
||||
hh = norm * (r - g) + kAdjustSaturationFour / kAdjustSaturationSix;
|
||||
|
@ -172,7 +174,7 @@ bool AdjustSaturationCpuKernelMod::Launch(const std::vector<kernel::AddressPtr>
|
|||
return true;
|
||||
}
|
||||
std::vector<KernelAttr> AdjustSaturationCpuKernelMod::GetOpSupport() {
|
||||
static std::vector<KernelAttr> support_list = {
|
||||
static const std::vector<KernelAttr> support_list = {
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32)};
|
||||
return support_list;
|
||||
}
|
||||
|
|
|
@ -73,7 +73,7 @@ bool AngleCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &inpu
|
|||
}
|
||||
|
||||
std::vector<KernelAttr> AngleCpuKernelMod::GetOpSupport() {
|
||||
static std::vector<KernelAttr> support_list = {
|
||||
static const std::vector<KernelAttr> support_list = {
|
||||
KernelAttr().AddInputAttr(kNumberTypeComplex64).AddOutputAttr(kNumberTypeFloat32),
|
||||
|
||||
KernelAttr().AddInputAttr(kNumberTypeComplex128).AddOutputAttr(kNumberTypeFloat64)};
|
||||
|
|
|
@ -120,7 +120,7 @@ bool ApplyAdagradDACpuKernelMod::Launch(const std::vector<AddressPtr> &inputs, c
|
|||
}
|
||||
|
||||
void ApplyAdagradDACpuKernelMod::CheckShapeAndDtypeEqual(int64_t size_a, int64_t size_b, const char *name_a,
|
||||
const char *name_b) {
|
||||
const char *name_b) const {
|
||||
if (size_a != size_b) {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_ << "', the shape and dtype of '" << name_a << "' and '" << name_b
|
||||
<< "' must be the same, "
|
||||
|
|
|
@ -47,7 +47,7 @@ class ApplyAdagradDACpuKernelMod : public NativeCpuKernelMod {
|
|||
private:
|
||||
void CheckParam(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
void CheckShapeAndDtypeEqual(int64_t size_a, int64_t size_b, const char *name_a, const char *name_b);
|
||||
void CheckShapeAndDtypeEqual(int64_t size_a, int64_t size_b, const char *name_a, const char *name_b) const;
|
||||
|
||||
void CheckDType(const std::vector<KernelTensorPtr> &inputs) const;
|
||||
|
||||
|
|
|
@ -84,7 +84,7 @@ template <typename T>
|
|||
void ElementRealDivComplex(const T *input1, const T *input2, T *out, size_t size, size_t delta_1, size_t delta_2) {
|
||||
size_t idx_1 = 0;
|
||||
size_t idx_2 = 0;
|
||||
auto zero = (T)0;
|
||||
auto zero = static_cast<T>(0);
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
auto dividend = input1[idx_1];
|
||||
auto divisor = input2[idx_2];
|
||||
|
@ -397,7 +397,7 @@ void ArithmeticCpuTypeFunc<T>::RealDiv(const T *input1, const T *input2, T *out)
|
|||
auto dividend = input1[iter.GetInputPosA()];
|
||||
auto divisor = input2[iter.GetInputPosB()];
|
||||
iter.GenNextPos();
|
||||
auto zero = (T)0;
|
||||
auto zero = static_cast<T>(0);
|
||||
if (divisor == zero) {
|
||||
if (dividend == zero) {
|
||||
out[i] = std::numeric_limits<T>::quiet_NaN();
|
||||
|
@ -448,7 +448,7 @@ void ArithmeticCpuTypeFunc<T>::RealDivComplex(const T *input1, const T *input2,
|
|||
auto dividend = input1[iter.GetInputPosA()];
|
||||
auto divisor = input2[iter.GetInputPosB()];
|
||||
iter.GenNextPos();
|
||||
auto zero = (T)0;
|
||||
auto zero = static_cast<T>(0);
|
||||
if (divisor == zero) {
|
||||
out[i] = std::numeric_limits<T>::quiet_NaN();
|
||||
continue;
|
||||
|
@ -469,7 +469,7 @@ void ArithmeticCpuTypeFunc<T>::Div(const T *input1, const T *input2, T *out) {
|
|||
auto dividend = input1[iter.GetInputPosA()];
|
||||
auto divisor = input2[iter.GetInputPosB()];
|
||||
iter.GenNextPos();
|
||||
auto zero = (T)0;
|
||||
auto zero = static_cast<T>(0);
|
||||
if (divisor == zero) {
|
||||
if (dividend == zero) {
|
||||
out[i] = std::numeric_limits<T>::quiet_NaN();
|
||||
|
@ -498,7 +498,7 @@ void ArithmeticCpuTypeFunc<T>::DivComplex(const T *input1, const T *input2, T *o
|
|||
auto dividend = input1[iter.GetInputPosA()];
|
||||
auto divisor = input2[iter.GetInputPosB()];
|
||||
iter.GenNextPos();
|
||||
auto zero = (T)0;
|
||||
auto zero = static_cast<T>(0);
|
||||
if (divisor == zero) {
|
||||
if (dividend == zero) {
|
||||
out[i] = std::numeric_limits<T>::quiet_NaN();
|
||||
|
@ -522,7 +522,7 @@ void ArithmeticCpuTypeFunc<T>::DivNoNan(const T *input1, const T *input2, T *out
|
|||
auto dividend = input1[iter.GetInputPosA()];
|
||||
auto divisor = input2[iter.GetInputPosB()];
|
||||
iter.GenNextPos();
|
||||
auto zero = (T)0;
|
||||
auto zero = static_cast<T>(0);
|
||||
if (divisor == zero) {
|
||||
out[i] = zero;
|
||||
continue;
|
||||
|
|
Loading…
Reference in New Issue