!48044 delete function fill and fills

Merge pull request !48044 from changzherui/del_fill_api
This commit is contained in:
i-robot 2023-01-31 06:11:18 +00:00 committed by Gitee
commit 5cc5607898
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
8 changed files with 0 additions and 349 deletions

View File

@ -1,6 +0,0 @@
mindspore.Tensor.fill
=====================
.. py:method:: mindspore.Tensor.fill(value)
详情请参考 :func:`mindspore.ops.fill`

View File

@ -107,7 +107,6 @@ mindspore.Tensor
mindspore.Tensor.expand_as
mindspore.Tensor.expand_dims
mindspore.Tensor.expm1
mindspore.Tensor.fill
mindspore.Tensor.flatten
mindspore.Tensor.flip
mindspore.Tensor.fliplr

View File

@ -1773,53 +1773,6 @@ def searchsorted(x, v, side='left', sorter=None):
return j
def fill(x, value):
"""
Fills the array with a scalar value.
Note:
Unlike Numpy, tensor.fill() will always returns a new tensor, instead of
filling the original tensor.
Args:
value (Union[None, int, float, bool]): All elements of a will be assigned this value.
Returns:
Tensor, with the original dtype and shape as input tensor.
Raises:
TypeError: If input arguments have types not specified above.
ValueError: If `shape` has entries < 0.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> a = Tensor(np.arange(4).reshape((2,2)).astype('float32'))
>>> print(a.fill(1.0))
[[1. 1.]
[1. 1.]]
"""
if value is None:
if x.dtype not in (mstype.float16, mstype.float32, mstype.float64):
const_utils.raise_type_error(
"If None is used as value, the original Tensor's dtype must be float.")
value = nan_tensor
return F.tile(value, x.shape).astype(x.dtype)
if not isinstance(value, (int, float, bool)):
const_utils.raise_type_error("input value must be a scalar.")
return F.fill(x.dtype, x.shape, value)
def fills(x, value):
"""
Create a tensor of the same shape and type as the input tensor and fill it with specified value.
"""
return F.fills(x, value)
def ptp(x, axis=None, keepdims=False):
"""
The name of the function comes from the acronym for "peak to peak".

View File

@ -2184,28 +2184,6 @@ class Tensor(Tensor_):
self._init_check()
return tensor_operator_registry.get('tensor_scatter_max')()(self, indices, updates)
def fill(self, value):
"""
For details, please refer to :func:`mindspore.ops.fill`.
"""
if value is None:
if self.dtype not in (mstype.float16, mstype.float32, mstype.float64):
raise TypeError("For 'Tensor.fill', if the argument 'value' is None, the type of the original "
"tensor must be float, but got {}.".format(self.dtype))
value = Tensor(float('nan')).astype("float32")
return tensor_operator_registry.get("tile")()(value, self.shape).astype(self.dtype)
if not isinstance(value, (int, float, bool)):
raise TypeError("For 'Tensor.fill', the type of the argument 'value' must be int, float or bool, "
"but got {}.".format(type(value)))
return tensor_operator_registry.get("fill")(self.dtype, self.shape, value)
def fills(self, value):
"""
For details, please refer to :func:`mindspore.ops.fills`.
"""
self._init_check()
return tensor_operator_registry.get('fills')(self, value)
def masked_fill(self, mask, value):
"""
For details, please refer to :func:`mindspore.ops.masked_fill`.

View File

@ -119,7 +119,6 @@ from .array_func import (
where,
meshgrid,
affine_grid,
fills,
broadcast_to,
unsorted_segment_sum,
col2im,

View File

@ -34,7 +34,6 @@ from mindspore.ops.operations.array_ops import (
MatrixDiagV3,
MatrixDiagPartV3,
MatrixSetDiagV3,
Fills,
Col2Im,
ArgMaxWithValue,
ArgMinWithValue,
@ -58,7 +57,6 @@ from mindspore._c_expression import Tensor as Tensor_
eye_ = P.Eye()
fill_ = P.Fill()
fills_ = Fills()
ones_ = P.Ones()
ones_like_ = P.OnesLike()
tile_ = P.Tile()
@ -672,52 +670,6 @@ def fill(type, shape, value): # pylint: disable=redefined-outer-name
return fill_(type, shape, value)
def fills(x, value):
"""
Create a tensor of the same shape and type as the input tensor and fill it with specified value.
Args:
x (Tensor): Input tensor, used to specify the shape and type of the output tensor. The data type should be
int8, int16, int32, float16 or float32.
value (Union[int, float, Tensor]): All elements of the output tensor will be assigned this value. The
type should be int, float or 0-dimensional tensor.
Returns:
Tensor, with the same shape and type as input tensor.
Raises:
TypeError: If `x` is not a tensor.
TypeError: If `value` has types not specified above.
RuntimeError: If `value` cannot be converted to the same type as `x`.
ValueError: If `value` is a tensor and the length of dimension is not 0.
Supported Platforms:
``GPU``
Examples:
>>> import numpy as np
>>> from mindspore import Tensor
>>> x = Tensor(np.arange(4).reshape((2, 2)).astype('float32'))
>>> output = ops.fills(x, 1)
>>> print(output)
[[1. 1.]
[1. 1.]]
"""
if isinstance(value, float):
value_ = value
elif isinstance(value, int):
value_ = float(value)
elif isinstance(value, Tensor):
if value.ndim != 0:
raise ValueError("For 'ops.fills', if the argument 'value' is a tensor, the number of its dimension"
" should be 0, but got {}".format(value.ndim))
value_ = value.astype(mstype.float32)
else:
raise TypeError("For 'ops.fills', the type of argument 'value' should be int, float or Tensor,"
" but got {}".format(type(value)))
return fills_(x, value_)
def full(size, fill_value, *, dtype=None): # pylint: disable=redefined-outer-name
"""
Create a Tensor of the specified shape and fill it with the specified value.
@ -6415,7 +6367,6 @@ __all__ = [
'padding',
'fill',
'fill_',
'fills',
'tile',
'size',
'ger',

View File

@ -290,8 +290,6 @@ tensor_operator_registry.register('expand_dims', expand_dims)
# support GE backend for no compare operators
tensor_operator_registry.register('cast', cast)
tensor_operator_registry.register('shape_mul', shape_mul)
tensor_operator_registry.register('fill', fill)
tensor_operator_registry.register('fills', fills)
tensor_operator_registry.register('concatenate', P.Concat)
tensor_operator_registry.register('eye', eye)
tensor_operator_registry.register('reduce_sum', reduce_sum)

View File

@ -1,221 +0,0 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
from mindspore import context, nn, Tensor
from mindspore import ops as P
from mindspore.ops.operations import _inner_ops as inner
class FillsNet(nn.Cell):
"""FillsNet."""
def __init__(self):
super(FillsNet, self).__init__()
self.fills = P.fills
def construct(self, x, value):
out = self.fills(x, value)
return out
class FillsDynamicNet(nn.Cell):
"""Fills in dynamic shape."""
def __init__(self):
super(FillsDynamicNet, self).__init__()
self.test_dynamic = inner.GpuConvertToDynamicShape()
def construct(self, x, value):
x = self.test_dynamic(x)
out = P.fills(x, value)
return out
def compare_with_numpy(data_shape, data_type, value, out):
"""Compare results with numpy."""
expect_res = np.zeros(data_shape, dtype=data_type)
expect_res.fill(value)
ms_res = out.asnumpy()
assert np.allclose(expect_res, ms_res)
def gen_np_input(data_shape, data_type):
"""Generate input x."""
out = np.random.randn(*data_shape)
if not data_shape:
out = data_type(out)
else:
out = out.astype(data_type)
return out
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('run_mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('data_shape', [(), (2,), (2, 3), (2, 2, 3, 3, 4, 4, 5)])
@pytest.mark.parametrize('data_type', [np.int8, np.int16, np.int32, np.float16, np.float32])
def test_fills_data_type_and_shape(run_mode, data_shape, data_type):
"""
Feature: Fills
Description: test cases for Fills operator with multiple data types and shapes.
Expectation: the result match numpy.
"""
context.set_context(mode=run_mode, device_target='GPU')
input_np = gen_np_input(data_shape=data_shape, data_type=data_type)
input_x = Tensor(input_np)
value = 4.0
model = FillsNet()
out = model(input_x, value)
compare_with_numpy(data_shape, data_type, value, out)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('run_mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('value', [4, 4.0, Tensor(np.float32(4))])
def test_fills_with_value_type(run_mode, value):
"""
Feature: Fills
Description: test cases for Fills operator with different value type.
Expectation: the result match numpy.
"""
context.set_context(mode=run_mode, device_target='GPU')
data_shape = (2, 3)
data_type = np.int32
input_np = gen_np_input(data_shape=data_shape, data_type=data_type)
input_x = Tensor(input_np)
model = FillsNet()
out = model(input_x, value)
compare_with_numpy(data_shape, data_type, value, out)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('run_mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('data_shape', [(2,), (2, 3), (2, 2, 3, 3, 4, 4, 5)])
def test_fills_dyn_with_dynamic_shape(run_mode, data_shape):
"""
Feature: Fills
Description: test cases for Fills operator in dynamic shape case.
Expectation: the result match numpy.
"""
data_type = np.int32
context.set_context(mode=run_mode, device_target='GPU')
input_np = gen_np_input(data_shape=data_shape, data_type=data_type)
input_x = Tensor(input_np)
value = 4.0
model = FillsDynamicNet()
out = model(input_x, value)
compare_with_numpy(data_shape, data_type, value, out)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('run_mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('data_type', [np.float16, np.float32])
def test_fills_with_nan(run_mode, data_type):
"""
Feature: Fills
Description: test cases for Fills operator when fill with nan.
Expectation: the result match numpy.
"""
context.set_context(mode=run_mode, device_target='GPU')
data_shape = (2, 3)
value = float('nan')
input_np = gen_np_input(data_shape=data_shape, data_type=data_type)
input_x = Tensor(input_np)
out = input_x.fills(value)
assert np.isnan(out.asnumpy()).any()
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('data_type', [np.float16, np.float32])
@pytest.mark.parametrize('value', [float('inf'), float('-inf')])
def test_fills_with_inf(data_type, value):
"""
Feature: Fills
Description: test cases for Fills operator when fill with inf.
Expectation: the result match numpy.
"""
context.set_context(device_target='GPU')
data_shape = (2, 3)
input_np = gen_np_input(data_shape=data_shape, data_type=data_type)
input_x = Tensor(input_np)
out = input_x.fills(value)
compare_with_numpy(data_shape, data_type, value, out)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('run_mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('data_type', [np.int8, np.int16, np.int32, np.float16])
def test_fills_with_overflow(run_mode, data_type):
"""
Feature: Fills
Description: test cases for Fills operator when overflow happens on value convert.
Expectation: the result match numpy.
"""
context.set_context(mode=run_mode, device_target='GPU')
data_shape = (2, 3)
input_np = gen_np_input(data_shape=data_shape, data_type=data_type)
input_x = Tensor(input_np)
value = float(pow(2, 32))
model = FillsNet()
with pytest.raises(RuntimeError, match='Fills-op'):
model(input_x, value)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('data_type', [np.int8, np.int16, np.int32])
@pytest.mark.parametrize('value', [float('inf'), float('-inf'), float('nan')])
def test_fills_except_with_inf_nan(data_type, value):
"""
Feature: Fills
Description: test cases for Fills operator when convert inf/nan to int type.
Expectation: the result match numpy.
"""
context.set_context(device_target='GPU')
data_shape = (2, 3)
input_np = gen_np_input(data_shape=data_shape, data_type=data_type)
input_x = Tensor(input_np)
with pytest.raises(RuntimeError, match='Fills-op'):
input_x.fills(value)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_fills_except_with_invalid_type():
"""
Feature: Fills
Description: test cases for Fills operator with invalid type.
Expectation: the result match numpy.
"""
context.set_context(device_target='GPU')
data_shape = (2, 3)
input_np = gen_np_input(data_shape=data_shape, data_type=np.int)
input_x = Tensor(input_np)
value = [2]
with pytest.raises(TypeError, match='ops.fills'):
P.fills(input_x, value)