forked from mindspore-Ecosystem/mindspore
add graph kernel testcases
This commit is contained in:
parent
d68708960e
commit
56fa56b173
|
@ -65,8 +65,7 @@ def expand_tile(expand_info):
|
|||
for item in attrs:
|
||||
if 'multiples' in item:
|
||||
multiples = item['multiples']
|
||||
output_shape, input_reshape, output_reshape, shape_compatible = _get_tile_output_shape(input_desc['shape'],
|
||||
multiples)
|
||||
output_shape, _, _, shape_compatible = _get_tile_output_shape(input_desc['shape'], multiples)
|
||||
graph_builder = builder.GraphBuilder()
|
||||
|
||||
# generate a graph.
|
||||
|
@ -77,9 +76,7 @@ def expand_tile(expand_info):
|
|||
if shape_compatible:
|
||||
result = graph_builder.emit('BroadcastTo', [input_x], attrs={'shape': output_shape})
|
||||
else:
|
||||
input_x_reshape = graph_builder.emit('Reshape', [input_x], attrs={'shape': input_reshape})
|
||||
reshape_broadcast = graph_builder.emit('BroadcastTo', [input_x_reshape], attrs={'shape': output_reshape})
|
||||
result = graph_builder.emit('Reshape', [reshape_broadcast], attrs={'shape': output_shape})
|
||||
result = graph_builder.emit('Tile', [input_x], attrs={'multiples': multiples})
|
||||
# set graph output.
|
||||
graph_scope.set_output(result)
|
||||
|
||||
|
|
|
@ -35,7 +35,6 @@ from model_zoo.official.nlp.bert.src.bert_for_pre_training import BertNetworkWit
|
|||
from model_zoo.official.nlp.bert.src.bert_for_pre_training import BertTrainOneStepWithLossScaleCell
|
||||
from model_zoo.official.nlp.bert.src.bert_model import BertConfig
|
||||
|
||||
|
||||
_current_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
|
||||
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
|
||||
|
@ -155,13 +154,16 @@ class ModelCallback(Callback):
|
|||
self.lossscale_list.append(cb_params.net_outputs[2].asnumpy())
|
||||
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
|
||||
|
||||
|
||||
class TimeMonitor(Callback):
|
||||
"""Time Monitor."""
|
||||
|
||||
def __init__(self, data_size):
|
||||
super(TimeMonitor, self).__init__()
|
||||
self.data_size = data_size
|
||||
self.epoch_mseconds_list = []
|
||||
self.per_step_mseconds_list = []
|
||||
|
||||
def epoch_begin(self, run_context):
|
||||
self.epoch_time = time.time()
|
||||
|
||||
|
@ -170,18 +172,17 @@ class TimeMonitor(Callback):
|
|||
self.epoch_mseconds_list.append(epoch_mseconds)
|
||||
self.per_step_mseconds_list.append(epoch_mseconds / self.data_size)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_bert_percision():
|
||||
|
||||
def test_bert_percision(enable_graph_kernel=False):
|
||||
"""test bert percision"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
|
||||
if enable_graph_kernel:
|
||||
context.set_context(enable_graph_kernel=True)
|
||||
ds, new_repeat_count, _ = me_de_train_dataset()
|
||||
version = os.getenv('VERSION', 'large')
|
||||
config = get_config(version=version)
|
||||
netwithloss = BertNetworkWithLoss(config, True)
|
||||
lr = BertLearningRate(decay_steps=ds.get_dataset_size()*new_repeat_count,
|
||||
lr = BertLearningRate(decay_steps=ds.get_dataset_size() * new_repeat_count,
|
||||
learning_rate=5e-5, end_learning_rate=1e-9,
|
||||
power=10.0, warmup_steps=0)
|
||||
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()
|
||||
|
@ -239,5 +240,22 @@ def test_bert_percision():
|
|||
assert np.allclose(loss_scale, expect_loss_scale, 0, 0)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_bert_percision_graph_kernel_off():
|
||||
test_bert_percision(enable_graph_kernel=False)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_bert_percision_graph_kernel_on():
|
||||
test_bert_percision(enable_graph_kernel=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bert_percision()
|
||||
test_bert_percision(enable_graph_kernel=False)
|
||||
test_bert_percision(enable_graph_kernel=True)
|
||||
|
|
|
@ -1,215 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""train bert network without lossscale"""
|
||||
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell
|
||||
from src.bert_model import BertConfig
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine.datasets as de
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn import learning_rate_schedule as lr_schedules
|
||||
from mindspore.nn.optim import Lamb
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
||||
from mindspore.train.model import Model
|
||||
|
||||
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
|
||||
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
|
||||
|
||||
def get_config(version='base', batch_size=1):
|
||||
"""get config"""
|
||||
if version == 'base':
|
||||
bert_config = BertConfig(
|
||||
batch_size=batch_size,
|
||||
seq_length=128,
|
||||
vocab_size=21136,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float32)
|
||||
elif version == 'large':
|
||||
bert_config = BertConfig(
|
||||
batch_size=batch_size,
|
||||
seq_length=128,
|
||||
vocab_size=30522,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.0,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=True,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
enable_fused_layernorm=True)
|
||||
else:
|
||||
bert_config = BertConfig(batch_size=batch_size)
|
||||
return bert_config
|
||||
|
||||
|
||||
def me_de_train_dataset():
|
||||
"""test me de train dataset"""
|
||||
# apply repeat operations
|
||||
repeat_count = 1
|
||||
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
|
||||
"next_sentence_labels", "masked_lm_positions",
|
||||
"masked_lm_ids", "masked_lm_weights"], shuffle=False)
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_ids")
|
||||
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_positions")
|
||||
ds = ds.map(operations=type_cast_op, input_columns="next_sentence_labels")
|
||||
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
|
||||
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
|
||||
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
|
||||
# apply batch operations
|
||||
batch_size = int(os.getenv('BATCH_SIZE', '16'))
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
ds = ds.repeat(repeat_count)
|
||||
return ds
|
||||
|
||||
|
||||
def weight_variable(shape):
|
||||
"""weight variable"""
|
||||
np.random.seed(1)
|
||||
ones = np.random.uniform(-0.1, 0.1, size=shape).astype(np.float32)
|
||||
return Tensor(ones)
|
||||
|
||||
|
||||
class BertLearningRate(lr_schedules.LearningRateSchedule):
|
||||
def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power):
|
||||
super(BertLearningRate, self).__init__()
|
||||
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps)
|
||||
self.decay_lr = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
|
||||
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
|
||||
|
||||
self.greater = P.Greater()
|
||||
self.one = Tensor(np.array([1.0]).astype(np.float32))
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, global_step):
|
||||
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
|
||||
warmup_lr = self.warmup_lr(global_step)
|
||||
decay_lr = self.decay_lr(global_step)
|
||||
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
|
||||
return lr
|
||||
|
||||
|
||||
class ModelCallback(Callback):
|
||||
def __init__(self):
|
||||
super(ModelCallback, self).__init__()
|
||||
self.loss_list = []
|
||||
self.overflow_list = []
|
||||
self.lossscale_list = []
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
self.loss_list.append(cb_params.net_outputs[0].asnumpy()[0])
|
||||
self.overflow_list.append(cb_params.net_outputs[1].asnumpy())
|
||||
self.lossscale_list.append(cb_params.net_outputs[2].asnumpy())
|
||||
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
|
||||
|
||||
|
||||
def test_bert_tdt():
|
||||
"""test bert tdt"""
|
||||
np.random.seed(0)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
|
||||
context.set_context(enable_graph_kernel=True)
|
||||
ds = me_de_train_dataset()
|
||||
config = get_config(version='large', batch_size=16)
|
||||
netwithloss = BertNetworkWithLoss(config, True)
|
||||
lr = BertLearningRate(decay_steps=ds.get_dataset_size()*ds.get_repeat_count(), learning_rate=5e-5,
|
||||
end_learning_rate=1e-9, power=10.0, warmup_steps=0)
|
||||
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()
|
||||
no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower()
|
||||
decay_params = list(filter(decay_filter, net_with_loss.trainable_params()))
|
||||
other_params = list(filter(no_decay_filter, net_with_loss.trainable_params()))
|
||||
group_params = [{'params': decay_params, 'weight_decay': 0.01},
|
||||
{'params': other_params}]
|
||||
optimizer = Lamb(group_params, lr)
|
||||
scale_window = 3
|
||||
scale_manager = DynamicLossScaleManager(262144, 2, scale_window)
|
||||
netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer,
|
||||
scale_update_cell=scale_manager.get_update_cell())
|
||||
netwithgrads.set_train(True)
|
||||
model = Model(netwithgrads)
|
||||
callback = ModelCallback()
|
||||
netwithloss.init_parameters_data()
|
||||
params = netwithloss.trainable_params()
|
||||
for param in params:
|
||||
value = param.data
|
||||
name = param.name
|
||||
if isinstance(value, Tensor):
|
||||
if name.split('.')[-1] in ['weight']:
|
||||
if name.split('.')[-3] in ['cls2']:
|
||||
logger.info("***************** BERT param name is 1 {}".format(name))
|
||||
param.set_data(weight_variable(value.asnumpy().shape))
|
||||
else:
|
||||
logger.info("***************** BERT param name is 2 {}".format(name))
|
||||
tempshape = value.asnumpy().shape
|
||||
shape = (tempshape[1], tempshape[0])
|
||||
weight_value = weight_variable(shape).asnumpy()
|
||||
param.set_data(Tensor(np.transpose(weight_value, [1, 0])))
|
||||
else:
|
||||
logger.info("***************** BERT param name is 3 {}".format(name))
|
||||
param.set_data(weight_variable(value.asnumpy().shape))
|
||||
model.train(1, ds, callbacks=callback, dataset_sink_mode=False)
|
||||
|
||||
# assertion occurs while the loss value, overflow state or loss_scale value is wrong
|
||||
loss_value = np.array(callback.loss_list)
|
||||
expect_loss_value = [12.559319, 12.333815, 12.339806, 12.350235, 12.343947, 12.830965, 12.375336, 12.973715,
|
||||
12.57929, 12.7766905]
|
||||
error = loss_value - expect_loss_value
|
||||
print("loss value: {}".format(loss_value))
|
||||
print("error value: {}".format(error))
|
||||
assert np.allclose(loss_value, expect_loss_value, 0, 0.0005)
|
||||
|
||||
overflow = np.array(callback.overflow_list)
|
||||
expect_overflow = [True, True, True, True, False, False, False, True, False, False]
|
||||
print("overflow: {}".format(overflow))
|
||||
assert (overflow == expect_overflow).all()
|
||||
|
||||
loss_scale = np.array(callback.lossscale_list)
|
||||
expect_loss_scale = [131072.0, 65536.0, 32768.0, 16384.0, 16384.0, 16384.0, 32768.0, 16384.0, 16384.0, 16384.0]
|
||||
print("loss scale: {}".format(loss_scale))
|
||||
assert np.allclose(loss_scale, expect_loss_scale, 0, 0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bert_tdt()
|
|
@ -0,0 +1,69 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class ClipByNormNoDivSum(nn.Cell):
|
||||
def __init__(self):
|
||||
super(ClipByNormNoDivSum, self).__init__()
|
||||
self.greater = P.Greater()
|
||||
self.select = P.Select()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.maximum = P.Maximum()
|
||||
|
||||
def construct(self, i0, i1, i2, i3):
|
||||
greater_res = self.greater(i0, i1)
|
||||
select_res0 = self.select(greater_res, i0, i2)
|
||||
sqrt_res = self.sqrt(select_res0)
|
||||
select_res1 = self.select(greater_res, sqrt_res, i0)
|
||||
res = self.maximum(select_res1, i3)
|
||||
return res
|
||||
|
||||
|
||||
def get_output(x0, x1, x2, x3, enable_graph_kernel=False):
|
||||
if enable_graph_kernel:
|
||||
context.set_context(enable_graph_kernel=True)
|
||||
net = ClipByNormNoDivSum()
|
||||
output = net(x0, x1, x2, x3)
|
||||
return output
|
||||
|
||||
|
||||
def test_clip_by_norm_no_div_sum(shape0, shape1, shape2, shape3, dtype):
|
||||
x0 = Tensor(np.random.normal(0, 1, shape0).astype(dtype))
|
||||
x1 = Tensor(np.zeros(shape1, dtype))
|
||||
x2 = Tensor(np.ones(shape2, dtype))
|
||||
x3 = Tensor(np.ones(shape3, dtype))
|
||||
|
||||
expect = get_output(x0, x1, x2, x3, False)
|
||||
output = get_output(x0, x1, x2, x3, True)
|
||||
|
||||
expect_np = expect.asnumpy().copy()
|
||||
output_np = output.asnumpy().copy()
|
||||
|
||||
assert np.allclose(expect_np, output_np, 0.0001, 0.0001)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_clip_by_norm_no_div_sum_ascend():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
test_clip_by_norm_no_div_sum((1, 1), (1,), (1, 1), (1,), np.float32)
|
|
@ -0,0 +1,60 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.sqrt_grad = G.SqrtGrad()
|
||||
|
||||
def construct(self, x, dout):
|
||||
return self.sqrt_grad(x, dout)
|
||||
|
||||
|
||||
def get_output(x, dout, enable_graph_kernel=False):
|
||||
if enable_graph_kernel:
|
||||
context.set_context(enable_graph_kernel=True)
|
||||
net = Net()
|
||||
output = net(x, dout)
|
||||
return output
|
||||
|
||||
|
||||
def test_sqrt_grad(shape_x, shape_dout, dtype):
|
||||
x = Tensor(np.random.normal(0, 1, shape_x).astype(dtype))
|
||||
dout = Tensor(np.random.normal(0, 1, shape_dout).astype(dtype))
|
||||
|
||||
expect = get_output(x, dout, False)
|
||||
output = get_output(x, dout, True)
|
||||
|
||||
expect_np = expect.asnumpy().copy()
|
||||
output_np = output.asnumpy().copy()
|
||||
|
||||
assert np.allclose(expect_np, output_np, 0.0001, 0.0001)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sqrt_grad_ascend():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
test_sqrt_grad((16, 16), (16, 16), np.float16)
|
||||
test_sqrt_grad((16, 16), (16, 16), np.float32)
|
|
@ -0,0 +1,59 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, multiples):
|
||||
super(Net, self).__init__()
|
||||
self.tile = P.Tile()
|
||||
self.multiples = multiples
|
||||
|
||||
def construct(self, x):
|
||||
return self.tile(x, self.multiples)
|
||||
|
||||
|
||||
def get_output(x, multiples, enable_graph_kernel=False):
|
||||
if enable_graph_kernel:
|
||||
context.set_context(enable_graph_kernel=True)
|
||||
net = Net(multiples)
|
||||
output = net(x)
|
||||
return output
|
||||
|
||||
|
||||
def test_tile(shape, dtype, multiples):
|
||||
x = Tensor(np.random.normal(0, 1, shape).astype(dtype))
|
||||
expect = get_output(x, multiples, False)
|
||||
output = get_output(x, multiples, True)
|
||||
|
||||
expect_np = expect.asnumpy().copy()
|
||||
output_np = output.asnumpy().copy()
|
||||
|
||||
assert np.allclose(expect_np, output_np, 0.0001, 0.0001)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_tile_ascend():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
test_tile((24, 1), np.float16, (2, 2, 2))
|
||||
test_tile((24, 1), np.float32, (1, 2))
|
Loading…
Reference in New Issue