!10596 Add export.py to textcnn (PR to master)

From: @penny369
Reviewed-by: @guoqi1024,@pandoublefeng
Signed-off-by: @guoqi1024
This commit is contained in:
mindspore-ci-bot 2020-12-27 14:49:11 +08:00 committed by Gitee
commit 528f4ddd33
3 changed files with 60 additions and 58 deletions

View File

@ -14,15 +14,13 @@
# ============================================================================
"""train Xception."""
import os
import time
import argparse
import numpy as np
from mindspore import context
from mindspore import Tensor
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model, ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.loss_scale_manager import FixedLossScaleManager
@ -37,59 +35,6 @@ from src.loss import CrossEntropySmooth
set_seed(1)
class Monitor(Callback):
"""
Monitor loss and time.
Args:
lr_init (numpy array): train lr
Returns:
None
Examples:
>>> Monitor(lr_init=Tensor([0.05]*100).asnumpy())
"""
def __init__(self, lr_init=None):
super(Monitor, self).__init__()
self.lr_init = lr_init
self.lr_init_len = len(lr_init)
def epoch_begin(self, run_context):
self.losses = []
self.epoch_time = time.time()
def epoch_end(self, run_context):
cb_params = run_context.original_args()
epoch_mseconds = (time.time() - self.epoch_time) * 1000
per_step_mseconds = epoch_mseconds / cb_params.batch_num
print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
per_step_mseconds,
np.mean(self.losses)))
def step_begin(self, run_context):
self.step_time = time.time()
def step_end(self, run_context):
cb_params = run_context.original_args()
step_mseconds = (time.time() - self.step_time) * 1000
step_loss = cb_params.net_outputs
if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
step_loss = step_loss[0]
if isinstance(step_loss, Tensor):
step_loss = np.mean(step_loss.asnumpy())
self.losses.append(step_loss)
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
cb_params.cur_epoch_num - 1 + config.finish_epoch, cb_params.epoch_num + config.finish_epoch,
cur_step_in_epoch, cb_params.batch_num, step_loss,
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]), flush=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='image classification training')
parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training')
@ -153,7 +98,7 @@ if __name__ == '__main__':
amp_level='O3', keep_batchnorm_fp32=True)
# define callbacks
cb = [Monitor(lr_init=lr.asnumpy())]
cb = [TimeMonitor(), LossMonitor()]
if config.save_checkpoint:
save_ckpt_path = os.path.join(config.save_checkpoint_path, 'model_' + str(rank) + '/')
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,

View File

@ -83,6 +83,7 @@ After installing MindSpore via the official website, you can start training and
│ ├── config.py // parameter configuration
├── train.py // training script
├── eval.py // evaluation script
├── export.py // export checkpoint to other format file
```
## [Script Parameters](#contents)
@ -175,4 +176,4 @@ For more configuration details, please refer the script `config.py`.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

View File

@ -0,0 +1,56 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into air, onnx, mindir models#################
python export.py
"""
import argparse
import numpy as np
from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
from src.config import cfg
from src.textcnn import TextCNN
from src.dataset import MovieReview
parser = argparse.ArgumentParser(description='TextCNN export')
parser.add_argument("--device_id", type=int, default=0, help="device id")
parser.add_argument("--ckpt_file", type=str, required=True, help="checkpoint file path.")
parser.add_argument("--file_name", type=str, default="textcnn", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
help="device target")
parser.add_argument('--dataset_name', type=str, default='MR', choices=['MR'],
help='dataset name.')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
if __name__ == '__main__':
if args.dataset_name == 'MR':
instance = MovieReview(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
else:
raise ValueError("dataset is not support.")
net = TextCNN(vocab_len=instance.get_dict_len(), word_len=cfg.word_len,
num_classes=cfg.num_classes, vec_length=cfg.vec_length)
param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(net, param_dict)
input_arr = Tensor(np.ones([cfg.batch_size, cfg.word_len], np.int32))
export(net, input_arr, file_name=args.file_name, file_format=args.file_format)