forked from mindspore-Ecosystem/mindspore
!10596 Add export.py to textcnn (PR to master)
From: @penny369 Reviewed-by: @guoqi1024,@pandoublefeng Signed-off-by: @guoqi1024
This commit is contained in:
commit
528f4ddd33
|
@ -14,15 +14,13 @@
|
|||
# ============================================================================
|
||||
"""train Xception."""
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
|
@ -37,59 +35,6 @@ from src.loss import CrossEntropySmooth
|
|||
|
||||
set_seed(1)
|
||||
|
||||
class Monitor(Callback):
|
||||
"""
|
||||
Monitor loss and time.
|
||||
|
||||
Args:
|
||||
lr_init (numpy array): train lr
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Examples:
|
||||
>>> Monitor(lr_init=Tensor([0.05]*100).asnumpy())
|
||||
"""
|
||||
|
||||
def __init__(self, lr_init=None):
|
||||
super(Monitor, self).__init__()
|
||||
self.lr_init = lr_init
|
||||
self.lr_init_len = len(lr_init)
|
||||
|
||||
def epoch_begin(self, run_context):
|
||||
self.losses = []
|
||||
self.epoch_time = time.time()
|
||||
|
||||
def epoch_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
|
||||
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
||||
per_step_mseconds = epoch_mseconds / cb_params.batch_num
|
||||
print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
|
||||
per_step_mseconds,
|
||||
np.mean(self.losses)))
|
||||
|
||||
def step_begin(self, run_context):
|
||||
self.step_time = time.time()
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
step_mseconds = (time.time() - self.step_time) * 1000
|
||||
step_loss = cb_params.net_outputs
|
||||
|
||||
if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
|
||||
step_loss = step_loss[0]
|
||||
if isinstance(step_loss, Tensor):
|
||||
step_loss = np.mean(step_loss.asnumpy())
|
||||
|
||||
self.losses.append(step_loss)
|
||||
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
|
||||
|
||||
print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
|
||||
cb_params.cur_epoch_num - 1 + config.finish_epoch, cb_params.epoch_num + config.finish_epoch,
|
||||
cur_step_in_epoch, cb_params.batch_num, step_loss,
|
||||
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]), flush=True)
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='image classification training')
|
||||
parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training')
|
||||
|
@ -153,7 +98,7 @@ if __name__ == '__main__':
|
|||
amp_level='O3', keep_batchnorm_fp32=True)
|
||||
|
||||
# define callbacks
|
||||
cb = [Monitor(lr_init=lr.asnumpy())]
|
||||
cb = [TimeMonitor(), LossMonitor()]
|
||||
if config.save_checkpoint:
|
||||
save_ckpt_path = os.path.join(config.save_checkpoint_path, 'model_' + str(rank) + '/')
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
||||
|
|
|
@ -83,6 +83,7 @@ After installing MindSpore via the official website, you can start training and
|
|||
│ ├── config.py // parameter configuration
|
||||
├── train.py // training script
|
||||
├── eval.py // evaluation script
|
||||
├── export.py // export checkpoint to other format file
|
||||
```
|
||||
|
||||
## [Script Parameters](#contents)
|
||||
|
@ -175,4 +176,4 @@ For more configuration details, please refer the script `config.py`.
|
|||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
##############export checkpoint file into air, onnx, mindir models#################
|
||||
python export.py
|
||||
"""
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
|
||||
|
||||
from src.config import cfg
|
||||
from src.textcnn import TextCNN
|
||||
from src.dataset import MovieReview
|
||||
|
||||
parser = argparse.ArgumentParser(description='TextCNN export')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="device id")
|
||||
parser.add_argument("--ckpt_file", type=str, required=True, help="checkpoint file path.")
|
||||
parser.add_argument("--file_name", type=str, default="textcnn", help="output file name.")
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
|
||||
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
|
||||
help="device target")
|
||||
parser.add_argument('--dataset_name', type=str, default='MR', choices=['MR'],
|
||||
help='dataset name.')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
if args.dataset_name == 'MR':
|
||||
instance = MovieReview(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
|
||||
else:
|
||||
raise ValueError("dataset is not support.")
|
||||
|
||||
net = TextCNN(vocab_len=instance.get_dict_len(), word_len=cfg.word_len,
|
||||
num_classes=cfg.num_classes, vec_length=cfg.vec_length)
|
||||
|
||||
param_dict = load_checkpoint(args.ckpt_file)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
input_arr = Tensor(np.ones([cfg.batch_size, cfg.word_len], np.int32))
|
||||
export(net, input_arr, file_name=args.file_name, file_format=args.file_format)
|
Loading…
Reference in New Issue