!41164 [assistant][ops][I40FJE] Add Eig operator 2022.8

Merge pull request !41164 from 李定维/Eig
This commit is contained in:
i-robot 2022-09-15 13:12:29 +00:00 committed by Gitee
commit 468c7dad59
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
8 changed files with 233 additions and 17 deletions

View File

@ -26,8 +26,7 @@ namespace mindspore {
namespace kernel {
namespace {
constexpr size_t kInputsNum = 1;
constexpr size_t kOutputsNumNV = 1;
constexpr size_t kOutputsNumV = 2;
constexpr size_t kOutputsNum = 2;
} // namespace
void EigCpuKernelMod::InitMatrixInfo(const std::vector<size_t> &shape) {
@ -51,16 +50,13 @@ void EigCpuKernelMod::InitMatrixInfo(const std::vector<size_t> &shape) {
void EigCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
kernel_name_ = common::AnfAlgo::GetCNodeName(kernel_node);
// If compute_v_ is true, then: w, v = Eig(a)
// If compute_v_ is false, then: w = Eig(a)
if (common::AnfAlgo::HasNodeAttr(COMPUTE_V, kernel_node)) {
compute_v_ = common::AnfAlgo::GetNodeAttr<bool>(kernel_node, COMPUTE_V);
}
size_t input_num = common::AnfAlgo::GetInputTensorNum(kernel_node);
CHECK_KERNEL_INPUTS_NUM(input_num, kInputsNum, kernel_name_);
size_t output_num = common::AnfAlgo::GetOutputTensorNum(kernel_node);
auto expect_output_num = compute_v_ ? kOutputsNumV : kOutputsNumNV;
CHECK_KERNEL_OUTPUTS_NUM(output_num, expect_output_num, kernel_name_);
CHECK_KERNEL_OUTPUTS_NUM(output_num, kOutputsNum, kernel_name_);
auto input_shape = Convert2SizeTClipNeg(common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0));
InitMatrixInfo(input_shape);
@ -101,16 +97,6 @@ bool EigCpuKernelMod::LaunchKernel(const std::vector<AddressPtr> &inputs, const
}
std::vector<std::pair<KernelAttr, EigCpuKernelMod::EigFunc>> EigCpuKernelMod::func_list_ = {
// If compute_v is false.
{KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeComplex64),
&EigCpuKernelMod::LaunchKernel<float, float_complex>},
{KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeComplex128),
&EigCpuKernelMod::LaunchKernel<double, double_complex>},
{KernelAttr().AddInputAttr(kNumberTypeComplex64).AddOutputAttr(kNumberTypeComplex64),
&EigCpuKernelMod::LaunchKernel<float_complex, float_complex>},
{KernelAttr().AddInputAttr(kNumberTypeComplex128).AddOutputAttr(kNumberTypeComplex128),
&EigCpuKernelMod::LaunchKernel<double_complex, double_complex>},
// If compute_v is true.
{KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeComplex64)

View File

@ -1226,6 +1226,7 @@ GVAR_DEF(PrimitivePtr, kPrimCholeskySolve, std::make_shared<Primitive>("Cholesky
GVAR_DEF(PrimitivePtr, kPrimKLDivLossGrad, std::make_shared<Primitive>("KLDivLossGrad"));
GVAR_DEF(PrimitivePtr, kPrimFFTWithSize, std::make_shared<Primitive>(kFFTWithSize));
GVAR_DEF(PrimitivePtr, kPrimOrgqr, std::make_shared<Primitive>("Orgqr"));
GVAR_DEF(PrimitivePtr, kPrimEig, std::make_shared<Primitive>("Eig"));
// linalg
GVAR_DEF(PrimitivePtr, kPrimGeqrf, std::make_shared<Primitive>("Geqrf"));

99
mindspore/core/ops/eig.cc Normal file
View File

@ -0,0 +1,99 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ops/eig.h"
#include "abstract/ops/primitive_infer_map.h"
#include "mindapi/src/helper.h"
#include "ops/op_utils.h"
#include "utils/check_convert_utils.h"
namespace mindspore {
namespace ops {
namespace {
abstract::TupleShapePtr EigInferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(primitive);
auto op_name = primitive->name();
auto input_x = CheckAndConvertUtils::CheckArgs<abstract::AbstractTensor>(op_name, input_args, kInputIndex0);
auto x_shape = input_x->shape();
MS_EXCEPTION_IF_NULL(x_shape);
constexpr size_t kDefaultRank = 2;
constexpr size_t kRowIndex = 2;
constexpr size_t kColIndex = 1;
auto const &x_shape_list = x_shape->shape();
const size_t x_rank = x_shape_list.size();
if (x_rank < kDefaultRank) {
MS_EXCEPTION(ValueError) << "For Eig, x should be at least rank 2"
<< ", but got a " << x_rank << "-D Tensor.";
}
if (x_shape_list[x_rank - kRowIndex] != x_shape_list[x_rank - kColIndex]) {
MS_EXCEPTION(ValueError) << "For Eig, x should be square(squares)"
<< ", but got " << x_shape_list[x_rank - kRowIndex] << " × "
<< x_shape_list[x_rank - kColIndex] << " matrix(matrices).";
}
auto compute_v = GetValue<bool>(primitive->GetAttr("compute_v"));
std::vector<BaseShapePtr> shapes_list;
if (compute_v) {
ShapeVector val_shape_list;
val_shape_list.assign(x_shape_list.begin(), x_shape_list.end());
val_shape_list.pop_back();
(void)shapes_list.emplace_back(std::make_shared<abstract::Shape>(val_shape_list));
(void)shapes_list.emplace_back(std::make_shared<abstract::Shape>(x_shape_list));
return std::make_shared<abstract::TupleShape>(shapes_list);
} else {
ShapeVector val_shape_list;
val_shape_list.assign(x_shape_list.begin(), x_shape_list.end());
val_shape_list.pop_back();
ShapeVector empyty_shape_list = {};
(void)shapes_list.emplace_back(std::make_shared<abstract::Shape>(val_shape_list));
(void)shapes_list.emplace_back(std::make_shared<abstract::Shape>(empyty_shape_list));
return std::make_shared<abstract::TupleShape>(shapes_list);
}
}
TuplePtr EigInferType(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(primitive);
auto op_name = primitive->name();
const std::set<TypePtr> valid_types = {kFloat32, kFloat64, kComplex64, kComplex128};
auto x_type = input_args[kInputIndex0]->BuildType();
(void)CheckAndConvertUtils::CheckTensorTypeValid("x", x_type, valid_types, op_name);
std::vector<TypePtr> types_list;
if (*(x_type->cast<TensorTypePtr>()->element()) == *(kFloat32)) {
types_list = {kComplex64, kComplex64};
} else if (*(x_type->cast<TensorTypePtr>()->element()) == *(kFloat64)) {
types_list = {kComplex128, kComplex128};
} else {
types_list = {x_type, x_type};
}
return std::make_shared<Tuple>(types_list);
}
} // namespace
MIND_API_OPERATOR_IMPL(Eig, BaseOperator);
AbstractBasePtr EigInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(primitive);
auto op_name = primitive->name();
const int64_t input_num = 1;
(void)CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, input_num, op_name);
auto infer_type = EigInferType(primitive, input_args);
auto infer_shape = EigInferShape(primitive, input_args);
return abstract::MakeAbstract(infer_shape, infer_type);
}
REGISTER_PRIMITIVE_EVAL_IMPL(Eig, prim::kPrimEig, EigInfer, nullptr, true);
} // namespace ops
} // namespace mindspore

45
mindspore/core/ops/eig.h Normal file
View File

@ -0,0 +1,45 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CORE_OPS_EIG_H_
#define MINDSPORE_CORE_OPS_EIG_H_
#include <algorithm>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "ops/base_operator.h"
#include "mindapi/base/types.h"
namespace mindspore {
namespace ops {
/// \brief Computes the eigenvalue decomposition of a (batched) square matrix.
/// Refer to Python API @ref mindspore.ops.Eig for more details.
constexpr auto kNameEig = "Eig";
class MIND_API Eig : public BaseOperator {
public:
MIND_API_BASE_MEMBER(Eig);
/// \brief Constructor.
Eig() : BaseOperator(kNameEig) { InitIOName({"x"}, {"eigen_values", "eigen_vectors"}); }
};
abstract::AbstractBasePtr EigInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<abstract::AbstractBasePtr> &input_args);
} // namespace ops
} // namespace mindspore
#endif // MINDSPORE_CORE_OPS_EIG_H_

View File

@ -0,0 +1,35 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Eig op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
eig_op_info = AiCPURegOp("Eig") \
.fusion_type("OPAQUE") \
.attr("compute_v", "bool") \
.input(0, "x", "required") \
.output(0, "eigen_values", "required") \
.output(1, "eigen_vectors", "required") \
.dtype_format(DataType.F32_Default, DataType.C64_Default, DataType.C64_Default) \
.dtype_format(DataType.C64_Default, DataType.C64_Default, DataType.C64_Default) \
.dtype_format(DataType.F64_Default, DataType.C128_Default, DataType.C128_Default) \
.dtype_format(DataType.C128_Default, DataType.C128_Default, DataType.C128_Default) \
.get_op_info()
@op_info_register(eig_op_info)
def _eig_aicpu():
"""Eig AiCPU register"""
return

View File

@ -6857,3 +6857,48 @@ class Orgqr(Primitive):
def __init__(self):
"""Initialize Orgqr"""
self.init_prim_io_names(inputs=['x', 'tau'], outputs=['y'])
class Eig(Primitive):
"""
Computes the eigenvalues and eigenvectors of a square matrix(batch square matrices).
Args:
compute_v (bool): If `True`, compute both eigenvalues and eigenvectors;
If `False`, just eigenvalues will be computed. Default: False.
Inputs:
- **x** (Tensor) - Square matrices of shape :math:`(*, N, N)`,
with float32, float64, complex64 or complex128 data type.
Outputs:
- **eigen_values** (Tensor) - Shape :math:`(*, N)`. Each inner most vector represents eigenvalues of
the corresponding matrix. The eigenvalues may not have an order.
- **eigen_vectors** (Tensor) - If `compute_v` is `False`, its an empty tensor. Otherwise, this tensor
has shape :math:`(*, N, N)`, whose columns represent normalized (unit length) eigenvectors of corresponding
eigenvalues.
Raises:
TypeError: If `compute_v` is not a bool.
TypeError: If dtype of `x` is not one of: float64, float32, complex64 or complex128.
TypeError: If `x` is not a Tensor.
ValueError: If `x` is not a square(batch squares).
Supported Platforms:
``Ascend`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[1.0, 0.0], [0.0, 2.0]]), mindspore.float32)
>>> eig = ops.Eig(compute_v=True)
>>> u, v = eig(input_x)
>>> print(u)
[1.+0.j 2.+0.j]
>>> print(v)
[[1.+0.j 0.+0.j]
[0.+0.j 1.+0.j]]
"""
@prim_attr_register
def __init__(self, compute_v=False):
"""Initialize Eig"""
self.init_prim_io_names(inputs=['x'], outputs=['eigen_values', 'eigen_vectors'])
validator.check_value_type('compute_v', compute_v, [bool], self.name)

View File

@ -112,7 +112,7 @@ def test_eig(shape, data_type, rtol, atol):
compare_eigen_decomposition((mw, mv), (sw, sv), True, rtol, atol)
# Eig only calculate eigenvalues when compute_v is False
mw = Eig(False)(tensor_a)
mw, _ = Eig(False)(tensor_a)
mw = mw.asnumpy()
sw = eigvals(a)
compare_eigen_decomposition((mw,), (sw,), False, rtol, atol)

View File

@ -42,6 +42,7 @@ from mindspore.ops.operations.array_ops import ConjugateTranspose
from mindspore.ops.operations.array_ops import UnravelIndex
from mindspore.ops.operations.math_ops import Trace
from mindspore.ops.operations.math_ops import Cholesky
from mindspore.ops.operations.math_ops import Eig
from mindspore.ops.operations.math_ops import LuUnpack
from mindspore.ops.operations.math_ops import MatrixExp
from mindspore.ops.operations.math_ops import MatrixSolve
@ -1453,6 +1454,10 @@ test_case_math_ops = [
'desc_inputs': [Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16),
Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)],
'skip': ['backward']}),
('Eig', {
'block': Eig(),
'desc_inputs': [Tensor(np.array([[1, 0], [0, 1]]).astype(np.float32))],
'skip': ['backward']}),
('BitwiseOr_1', {
'block': P.BitwiseOr(),
'desc_inputs': [Tensor(np.array([[1, 2, 3], [-1, -2, -3]]), mstype.int16),