!13457 Adjust st testcase for interface forwardvalueandgrad

From: @joylvliang
Reviewed-by: @zhoufeng54,@zh_qh
Signed-off-by: @zh_qh
This commit is contained in:
mindspore-ci-bot 2021-03-17 20:10:35 +08:00 committed by Gitee
commit 3b97543add
2 changed files with 32 additions and 31 deletions

View File

@ -23,13 +23,14 @@ import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import Tensor, ParameterTuple
from mindspore.common import dtype as mstype
from mindspore.dataset.vision import Inter
from mindspore.nn import Dense, TrainOneStepCell, WithLossCell
from mindspore.nn import Dense, TrainOneStepCell, WithLossCell, ForwardValueAndGrad
from mindspore.nn.metrics import Accuracy
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
from mindspore.common.initializer import TruncatedNormal
@ -204,3 +205,30 @@ def test_train_and_eval_lenet():
ds_eval = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "test"), 32, 1)
acc = model.eval(ds_eval, dataset_sink_mode=True)
print("============== {} ==============".format(acc))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_train_lenet_with_new_interface(num_classes=10, epoch=20, batch_size=32):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
network = LeNet5(num_classes)
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
net_with_criterion = WithLossCell(network, criterion)
net_with_criterion.set_train()
weights = ParameterTuple(network.trainable_params())
optimizer = nn.Momentum(weights, 0.1, 0.9)
train_network = ForwardValueAndGrad(network=net_with_criterion, weights=weights, get_by_list=True, sens_param=True)
losses = []
for i in range(0, epoch):
data = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([batch_size]).astype(np.int32))
sens = Tensor(np.ones([1]).astype(np.float32))
loss, grads = train_network(data, label, sens)
grads = F.identity(grads)
optimizer(grads)
losses.append(loss)
assert losses[-1].asnumpy() < 0.008
assert losses[-1].asnumpy() > 0.001

View File

@ -22,10 +22,10 @@ import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, ParameterTuple
from mindspore import Tensor
from mindspore import amp
from mindspore.nn import Dense
from mindspore.nn import TrainOneStepCell, WithLossCell, ForwardValueAndGrad
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.cell import Cell
from mindspore.nn.layer.basic import Flatten
from mindspore.nn.layer.conv import Conv2d
@ -33,7 +33,6 @@ from mindspore.nn.layer.normalization import BatchNorm2d
from mindspore.nn.layer.pooling import MaxPool2d
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.ops.operations import Add
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
@ -400,29 +399,3 @@ def test_trainTensor_amp(num_classes=10, epoch=18, batch_size=16):
assert (losses[-1][0].asnumpy() < 1)
assert not losses[-1][1].asnumpy()
assert (losses[-1][2].asnumpy() > 1)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_trainTensor_with_new_interface(num_classes=10, epoch=8, batch_size=1):
net = resnet50(num_classes)
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net_with_criterion = WithLossCell(net, criterion)
net_with_criterion.set_train()
weights = ParameterTuple(filter(lambda x: x.requires_grad, net.get_parameters()))
optimizer = Momentum(weights, 0.1, 0.9)
train_network = ForwardValueAndGrad(network=net_with_criterion, weights=weights, get_by_list=True, sens_param=True)
losses = []
for i in range(0, epoch):
data = Tensor(np.ones([batch_size, 3, 224, 224]
).astype(np.float32) * 0.01)
label = Tensor(np.ones([batch_size]).astype(np.int32))
sens = Tensor(np.ones([1]).astype(np.float32))
loss, grads = train_network(data, label, sens)
grads = F.identity(grads)
optimizer(grads)
losses.append(loss)
assert (losses[-1].asnumpy() < 0.8)