!47543 modify constexpr

Merge pull request !47543 from huoxinyou/0105_constexpr
This commit is contained in:
i-robot 2023-01-10 02:32:33 +00:00 committed by Gitee
commit 386c33298d
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
28 changed files with 1161 additions and 824 deletions

View File

@ -214,6 +214,100 @@ def check_number_range(arg_value, lower_limit, upper_limit, rel, value_type, arg
return arg_value
def check_reshape_shp(shp):
"""Check the shape argument for tensor.reshape"""
if len(shp) == 1:
new_shape = shp[0]
if isinstance(new_shape, int):
return shp
if isinstance(new_shape, list):
new_shape = tuple(new_shape)
return new_shape
return shp
def check_swapaxes_axis(axes, ndim):
"""Check all the axes argument for tensor.swapaxes"""
if isinstance(axes, int):
return axes % ndim
if isinstance(axes, (tuple, list)):
tmp = []
for x in axes:
tmp.append((x + ndim) % ndim)
axes = tuple(tmp)
return axes
return axes
def prepare_shape_for_squeeze(shape, axes):
"""
yield squeezed shape based on the axes
"""
new_shape = []
ndim = len(shape)
if isinstance(axes, int):
axes = [axes]
elif isinstance(axes, (list, tuple)):
axes = set(axes)
for idx, s in enumerate(shape):
if s != 1 or (idx not in axes) and (idx - ndim not in axes):
new_shape.append(s)
return tuple(new_shape)
def check_axis_in_range(axis, ndim):
"""Checks axes are with the bounds of ndim"""
return (axis + ndim) % ndim
def check_axis_valid(axes, ndim):
"""
check the validation of axis and return
"""
if axes is None:
axes = tuple(range(ndim))
return axes
if isinstance(axes, (tuple, list)):
tmp = []
for x in axes:
tmp.append((x + ndim) % ndim)
axes = tuple(tmp)
return axes
return (axes % ndim,)
def infer_out_shape(*shapes):
"""
Returns shape of output after broadcasting. Raises ValueError if shapes cannot be broadcast.
"""
shape_out = list()
max_len = ms_max([len(it) for it in shapes])
for i in range(max_len):
items = [it[i-(max_len-len(it))] if i - (max_len - len(it))
>= 0 else 1 for it in shapes]
max_size = 0 if 0 in items else ms_max(items)
shape_out.append(max_size)
return tuple(shape_out)
def check_and_canonicalize_axes(axes, ndim):
"""Check whether the types and values of input axes are valid."""
axes = axes if isinstance(axes, tuple) else (axes,)
new_axes = ()
for ax in axes:
ax = ax if ax >= 0 else ax + ndim
new_axes += (ax,)
return new_axes
def get_log2_size(size):
"""Get log2 size"""
log2_res = F.log2(F.cast(Tensor(size), mstype.float32))
ceil_res = F.ceil(log2_res)
cast_res = F.cast(ceil_res, mstype.int64)
return cast_res
class Validator:
"""validator for checking input parameters"""

View File

@ -26,7 +26,8 @@ from mindspore.ops.composite.base import _append, _insert, _pop, _list_clear, _r
_extend, _dict_clear, _haskey, _update, _fromkeys
from ..._checkparam import Validator as validator
from ..._checkparam import check_is_number
from ..._checkparam import check_is_number, check_reshape_shp, check_swapaxes_axis, prepare_shape_for_squeeze, \
check_axis_in_range, check_axis_valid, infer_out_shape, check_and_canonicalize_axes, get_log2_size
from ...ops import functional as F
from ...ops import operations as P
from ...ops.composite import tail, MultitypeFuncGraph, env_get, hyper_add, \
@ -41,7 +42,8 @@ from ...ops.primitive import constexpr
from ...common import dtype as mstype
from ...ops.operations._sequence_ops import ListAppend
__all__ = ['MultitypeFuncGraph', 'env_get', 'hyper_add', 'zeros_like', 'ones_like']
__all__ = ['MultitypeFuncGraph', 'env_get',
'hyper_add', 'zeros_like', 'ones_like']
shape_ = P.Shape()
dtype_ = P.DType()
@ -519,7 +521,7 @@ def reshape(x, *shape):
[ 3.6 0.4]
[ 0.5 -3.2]]
"""
new_shape = check_reshape_shp_const(shape)
new_shape = check_reshape_shp(shape)
return F.reshape(x, new_shape)
@ -709,7 +711,7 @@ def swapaxes(x, axis1, axis2):
>>> print(output.shape)
(4,3,2)
"""
axis1, axis2 = check_swapaxes_axis_const((axis1, axis2), x.ndim)
axis1, axis2 = check_swapaxes_axis((axis1, axis2), x.ndim)
if axis1 == axis2:
return x
@ -757,7 +759,7 @@ def squeeze(x, axis=None):
if axis is None:
return F.squeeze(x)
# yield squeezed shape based on the axes
new_shape = prepare_shape_for_squeeze_const(shape, axis)
new_shape = prepare_shape_for_squeeze(shape, axis)
return F.reshape(x, new_shape)
@ -869,7 +871,7 @@ def argmin(x, axis=None, keepdims=False):
axis = 0
is_axis_none = True
else:
axis = check_axis_in_range_const(axis, F.rank(x))
axis = check_axis_in_range(axis, F.rank(x))
out = P.Argmin(axis)(x)
if keepdims and not is_axis_none:
out = expand_dims(out, axis)
@ -894,7 +896,7 @@ def median(x, global_median, axis=0, keep_dims=False):
When attr `global_median` is True, the second output Tensor value is meaningless.
"""
check_axis_in_range_const(axis, x.ndim)
check_axis_in_range(axis, x.ndim)
median_ = Median(global_median, axis, keep_dims)
return median_(x)
@ -968,7 +970,7 @@ def cumsum(x, axis=None, dtype=None):
if axis is None:
x = x.ravel()
axis = 0
check_axis_in_range_const(axis, x.ndim)
check_axis_in_range(axis, x.ndim)
if dtype is not None:
dtype = check_astype_dtype_const(dtype)
if original_dtype != dtype:
@ -1350,7 +1352,8 @@ def diagonal(x, offset=0, axis1=0, axis2=1):
"""
ndim = x.ndim
if ndim < 2:
const_utils.raise_value_error('diagonal requires an array of at least two dimensions')
const_utils.raise_value_error(
'diagonal requires an array of at least two dimensions')
dtype = x.dtype
axes = check_axis_valid((axis1, axis2), ndim)
@ -1602,14 +1605,15 @@ def take(x, indices, axis=None, mode='clip'):
[4 3 6]
"""
if mode not in ('raise', 'wrap', 'clip'):
const_utils.raise_value_error('raise should be one of "raise", "wrap", or "clip"')
const_utils.raise_value_error(
'raise should be one of "raise", "wrap", or "clip"')
if axis is None:
a = x.ravel()
axis = 0
else:
a = x
ndim = a.ndim
axis = check_axis_in_range_const(axis, ndim)
axis = check_axis_in_range(axis, ndim)
shape_a = a.shape
shape_indices = indices.shape
@ -1690,12 +1694,14 @@ def choose(x, choices, mode='clip'):
# adjusts dtype for F.tensor_mul and F.gather_nd
a = a.astype(mstype.int32)
choices = choices.astype(mstype.int32)
a = compile_utils.check_indices(choices.shape[0], a, mode, allow_negative_index=False)
a = compile_utils.check_indices(
choices.shape[0], a, mode, allow_negative_index=False)
grids = []
ndim = len(a.shape)
for i in range(ndim):
dim_grid = const_utils.make_tensor(F.make_range(a.shape[i]), mstype.int32)
dim_grid = const_utils.make_tensor(
F.make_range(a.shape[i]), mstype.int32)
dim_shape = expanded_shape(ndim, a.shape[i], i)
dim_grid = P.BroadcastTo(a.shape)(dim_grid.reshape(dim_shape))
grids.append(dim_grid)
@ -1740,7 +1746,8 @@ def searchsorted(x, v, side='left', sorter=None):
shape = v.shape
if sorter is not None:
if sorter.ndim != 1 or sorter.size != a.size:
const_utils.raise_value_error('sorter must be 1-D array with the same size as `a`')
const_utils.raise_value_error(
'sorter must be 1-D array with the same size as `a`')
sorter = const_utils.make_tensor(sorter)
sorter = sorter.reshape(sorter.shape + (1,))
a = F.gather_nd(a, sorter)
@ -1748,12 +1755,14 @@ def searchsorted(x, v, side='left', sorter=None):
i = F.fill(mstype.int32, shape, 0)
j = F.fill(mstype.int32, shape, a.size)
sort_range = F.make_range(get_log2_size(F.shape_mul(a.shape) + 1))
for _ in sort_range:
loop_num = get_log2_size(F.shape_mul(a.shape) + 1)
index = Tensor([0])
while index < loop_num:
mid = (i - F.neg_tensor(j)) // 2
mask = less_op(v, F.gather_nd(a, mid.reshape(mid.shape + (1,))))
i = F.select(mask, i, mid)
j = F.select(mask, mid, j)
index += 1
return j
@ -1788,7 +1797,8 @@ def fill(x, value):
"""
if value is None:
if x.dtype not in (mstype.float16, mstype.float32, mstype.float64):
const_utils.raise_type_error("If None is used as value, the original Tensor's dtype must be float.")
const_utils.raise_type_error(
"If None is used as value, the original Tensor's dtype must be float.")
value = nan_tensor
return F.tile(value, x.shape).astype(x.dtype)
if not isinstance(value, (int, float, bool)):
@ -1838,7 +1848,6 @@ def ptp(x, axis=None, keepdims=False):
if axis is None:
axis = ()
else:
check_axis_type(axis, True, True, False)
axis = check_axis_valid(axis, x.ndim)
return x.max(axis, keepdims) - x.min(axis, keepdims)
@ -2102,7 +2111,7 @@ def repeat(x, repeats, axis=None):
axis = 0
if not isinstance(axis, int):
const_utils.raise_type_error('axes should be integers')
check_axis_in_range_const(axis, x.ndim)
check_axis_in_range(axis, x.ndim)
axis = axis + x.ndim if axis < 0 else axis
if len(repeats) == 1:
@ -2112,7 +2121,8 @@ def repeat(x, repeats, axis=None):
return repeat_elements(x, repeats, axis)
size = x.shape[axis]
if len(repeats) != size:
const_utils.raise_value_error('operands could not be broadcast together')
const_utils.raise_value_error(
'operands could not be broadcast together')
subs = P.Split(axis, size)(x)
repeated_subs = []
for sub_item, rep in zip(subs, repeats):
@ -2224,8 +2234,6 @@ def hasnext(it):
@constexpr
def constant_abs(x):
"""Returns the absolute value of the constant."""
if x is None:
raise ValueError("For abs(), the input should be a constant or Tensor type.")
return abs(x)
@ -2241,7 +2249,8 @@ def constant_round(*data):
"""Returns the rounded value of the constant."""
for x in data:
if x is None:
raise ValueError("For round(), the input should be a Tensor or 1-2 constants.")
raise ValueError(
"For round(), the input should be a Tensor or 1-2 constants.")
return round(*data)
@ -2256,7 +2265,8 @@ def ms_round(*data):
return round_(x)
return constant_round(x)
if isinstance(data[0], Tensor) or isinstance(data[1], Tensor):
const_utils.raise_type_error("When applying round() to tensor, only one tensor is supported as input.")
const_utils.raise_type_error(
"When applying round() to tensor, only one tensor is supported as input.")
return constant_round(*data)
@ -2274,9 +2284,11 @@ def str_func(*data):
return ''
data = data[0]
if isinstance(data, (CSRTensor, COOTensor, RowTensorInner)):
const_utils.raise_type_error("str() does not support sparse tensor input.")
const_utils.raise_type_error(
"str() does not support sparse tensor input.")
if not F.isconstant(data):
const_utils.raise_type_error("str() does not support non-constant input.")
const_utils.raise_type_error(
"str() does not support non-constant input.")
return cast_to_str(data)
@ -2294,13 +2306,15 @@ def bool_func(*data):
return False
data = data[0]
if isinstance(data, (CSRTensor, COOTensor, RowTensorInner)):
const_utils.raise_type_error("bool() does not support sparse tensor input.")
const_utils.raise_type_error(
"bool() does not support sparse tensor input.")
if isinstance(data, (Tensor, Tensor_)):
tensor_shape = F.shape(data)
tensor_shape_len = len(tensor_shape)
if tensor_shape_len == 0 or (tensor_shape_len == 1 and tensor_shape[0] == 1):
return data != 0
const_utils.raise_value_error("The truth value of an array with more than one element is ambiguous.")
const_utils.raise_value_error(
"The truth value of an array with more than one element is ambiguous.")
if not F.isconstant(data):
if hasattr(data, "__bool__"):
return data.__bool__()
@ -2329,9 +2343,11 @@ def int_func(*data):
return 0
target = data[0]
if not F.isconstant(target):
const_utils.raise_type_error("int() does not support non-constant input.")
const_utils.raise_type_error(
"int() does not support non-constant input.")
if isinstance(target, (CSRTensor, COOTensor, RowTensorInner)):
const_utils.raise_type_error("int() does not support sparse tensor input.")
const_utils.raise_type_error(
"int() does not support sparse tensor input.")
return cast_to_int(*data)
@ -2351,9 +2367,11 @@ def float_func(*data):
return 0.0
data = data[0]
if not F.isconstant(data):
const_utils.raise_type_error("float() does not support non-constant input.")
const_utils.raise_type_error(
"float() does not support non-constant input.")
if isinstance(data, (CSRTensor, COOTensor, RowTensorInner)):
const_utils.raise_type_error("float() does not support sparse tensor input.")
const_utils.raise_type_error(
"float() does not support sparse tensor input.")
return cast_to_float(data)
@ -2366,10 +2384,12 @@ def list_func(*data):
return F.make_list()
data = data[0]
if isinstance(data, (CSRTensor, COOTensor, RowTensorInner)):
const_utils.raise_type_error("list() does not support single sparse tensor input.")
const_utils.raise_type_error(
"list() does not support single sparse tensor input.")
if not isinstance(data, Tensor) and not hasattr(data, "__ms_iter__"):
data_type = F.typeof(data)
const_utils.raise_type_error(str(data_type) + " object is not iterable.")
const_utils.raise_type_error(
str(data_type) + " object is not iterable.")
if isinstance(data, dict):
data = data.keys()
ret = F.make_list()
@ -2387,10 +2407,12 @@ def tuple_func(*data):
return F.make_tuple()
data = data[0]
if isinstance(data, (CSRTensor, COOTensor, RowTensorInner)):
const_utils.raise_type_error("tuple() does not support single sparse tensor input.")
const_utils.raise_type_error(
"tuple() does not support single sparse tensor input.")
if not isinstance(data, Tensor) and not hasattr(data, "__ms_iter__"):
data_type = F.typeof(data)
const_utils.raise_type_error(str(data_type) + " object is not iterable.")
const_utils.raise_type_error(
str(data_type) + " object is not iterable.")
if isinstance(data, dict):
data = data.keys()
ret = F.make_tuple()
@ -2419,7 +2441,8 @@ def get_max_min_data_len(*data):
if isinstance(data, (dict, list, tuple)):
len_data = len(data)
else:
const_utils.raise_type_error("max() or min() does not support the data type.")
const_utils.raise_type_error(
"max() or min() does not support the data type.")
return len_data
@ -2431,7 +2454,8 @@ def get_tensor_num(data):
tensor_shape = F.shape(input_data)
tensor_shape_len = len(tensor_shape)
if tensor_shape_len != 0 and not (tensor_shape_len == 1 and tensor_shape[0] == 1):
const_utils.raise_value_error("The truth value of an array with more than one element is ambiguous.")
const_utils.raise_value_error(
"The truth value of an array with more than one element is ambiguous.")
tensor_num = tensor_num + 1
return tensor_num
@ -2453,9 +2477,11 @@ def ms_max_one_element(x):
tensor_shape = F.shape(x)
tensor_shape_len = len(tensor_shape)
if tensor_shape_len == 0:
const_utils.raise_type_error("Cannot iterate over a scalar tensor.")
const_utils.raise_type_error(
"Cannot iterate over a scalar tensor.")
if tensor_shape_len >= 2:
const_utils.raise_value_error("The truth value of an array with more than one element is ambiguous.")
const_utils.raise_value_error(
"The truth value of an array with more than one element is ambiguous.")
return x.max()
# Deal with Tensor in tuple or list
if isinstance(x, (list, tuple)):
@ -2465,9 +2491,11 @@ def ms_max_one_element(x):
if tensor_num == len(x):
return max_tensor(x)
if tensor_num != 0:
const_utils.raise_type_error("max() cannot contain both tensor and non-tensor type.")
const_utils.raise_type_error(
"max() cannot contain both tensor and non-tensor type.")
if exist_tensor(x):
const_utils.raise_type_error("max() cannot support tensor in list or tuple nested now.")
const_utils.raise_type_error(
"max() cannot support tensor in list or tuple nested now.")
return max_(x)
@ -2485,10 +2513,12 @@ def ms_max(*data):
if tensor_num == len_data:
return max_tensor(*data)
if tensor_num != 0:
const_utils.raise_type_error("max() cannot contain both tensor and non-tensor type.")
const_utils.raise_type_error(
"max() cannot contain both tensor and non-tensor type.")
# exist tensor in list/tuple
if exist_tensor(data):
const_utils.raise_value_error("The truth value of an array with more than one element is ambiguous.")
const_utils.raise_value_error(
"The truth value of an array with more than one element is ambiguous.")
return max_(*data)
@ -2525,9 +2555,11 @@ def ms_min_one_element(x):
tensor_shape = F.shape(x)
tensor_shape_len = len(tensor_shape)
if tensor_shape_len == 0:
const_utils.raise_type_error("Cannot iterate over a scalar tensor.")
const_utils.raise_type_error(
"Cannot iterate over a scalar tensor.")
if tensor_shape_len >= 2:
const_utils.raise_value_error("The truth value of an array with more than one element is ambiguous.")
const_utils.raise_value_error(
"The truth value of an array with more than one element is ambiguous.")
return x.min()
# Deal with Tensor in tuple or list
if isinstance(x, (list, tuple)):
@ -2537,9 +2569,11 @@ def ms_min_one_element(x):
if tensor_num == len(x):
return min_tensor(x)
if tensor_num != 0:
const_utils.raise_type_error("min() cannot contain both tensor and non-tensor type.")
const_utils.raise_type_error(
"min() cannot contain both tensor and non-tensor type.")
if exist_tensor(x):
const_utils.raise_type_error("min() cannot support tensor in list or tuple nested now.")
const_utils.raise_type_error(
"min() cannot support tensor in list or tuple nested now.")
return min_(x)
@ -2557,10 +2591,12 @@ def ms_min(*data):
if tensor_num == len_data:
return min_tensor(*data)
if tensor_num != 0:
const_utils.raise_type_error("min() cannot contain both tensor and non-tensor type.")
const_utils.raise_type_error(
"min() cannot contain both tensor and non-tensor type.")
# exist tensor in list/tuple
if exist_tensor(data):
const_utils.raise_value_error("The truth value of an array with more than one element is ambiguous.")
const_utils.raise_value_error(
"The truth value of an array with more than one element is ambiguous.")
return min_(*data)
@ -2572,11 +2608,13 @@ def ms_sum(*data):
x = data[0]
if not isinstance(x, Tensor) and not hasattr(x, "__ms_iter__"):
data_type = F.typeof(x)
const_utils.raise_type_error(str(data_type) + " object is not iterable.")
const_utils.raise_type_error(
str(data_type) + " object is not iterable.")
if isinstance(x, Tensor):
tensor_shape = F.shape(x)
if len(tensor_shape) == 0:
const_utils.raise_type_error("Cannot iterate over a scalar tensor.")
const_utils.raise_type_error(
"Cannot iterate over a scalar tensor.")
if isinstance(x, dict):
x = x.keys()
result = 0
@ -2607,7 +2645,8 @@ def ms_len(data):
def python_len_with_check(data):
"""Return the result of python built-in len function with iterable check"""
if not hasattr(data, "__iter__"):
raise TypeError(str(type(data)) + " object is not iterable in graph mode.")
raise TypeError(str(type(data)) +
" object is not iterable in graph mode.")
return len(data)
@ -2617,7 +2656,8 @@ def ms_len_with_iterable_check(data):
return python_len_with_check(data)
if not hasattr(data, "__len__"):
type_str = str(F.typeof(data))
const_utils.raise_type_error(type_str + " object is not iterable in graph mode.")
const_utils.raise_type_error(
type_str + " object is not iterable in graph mode.")
return data.__len__()
@ -2680,7 +2720,6 @@ def expand_dims(x, axis):
"""
Insert a dimension of shape 1 at the specified axis of Tensor.
"""
check_is_int(axis, 'axis')
return P.ExpandDims()(x, axis)
@ -2688,7 +2727,6 @@ def unsqueeze(x, dim):
"""
Insert a dimension of shape 1 at the specified axis of Tensor.
"""
check_is_int(dim, 'dim')
return P.ExpandDims()(x, dim)
@ -2740,7 +2778,8 @@ def check_select_condition(cond_type):
"""
if isinstance(cond_type, mstype.tensor_type):
return
raise TypeError(f"For select, the argument condition should be Tensor, but got {cond_type}.")
raise TypeError(
f"For select, the argument condition should be Tensor, but got {cond_type}.")
@constexpr
@ -2893,8 +2932,6 @@ def ge(x, y):
def while_cond(x):
"""For while condition, if the condition is a tensor, the loop will not be unrolled"""
if issubclass_(F.typeof(x), F.typeof(mstype.tensor)):
is_cond = check_is_tensor_bool_cond(F.shape(x))
if is_cond:
return F.cast(x, mstype.bool_)
return x
@ -3046,14 +3083,16 @@ def coo_to_dense(x):
def coo_coalesce(x):
"""Returns the coalesced sparse tensor of the input."""
shape = const_utils.make_tensor(x.shape)
res_indices, res_values, _ = P.Coalesce()(x.indices.transpose(), x.values, shape)
res_indices, res_values, _ = P.Coalesce()(
x.indices.transpose(), x.values, shape)
return COOTensor(res_indices.transpose(), res_values, x.shape)
def csr_to_coo(x):
"""convert csr to coo."""
if x.ndim != 2:
const_utils.raise_value_error("Currently only support 2-D CSRTensor when converting to COOTensor.")
const_utils.raise_value_error(
"Currently only support 2-D CSRTensor when converting to COOTensor.")
row_indices = F.csr2coo(x.indptr, x.values.shape[0])
coo_indices = P.Stack(1)((row_indices, x.indices))
return COOTensor(coo_indices, x.values, x.shape)
@ -3069,8 +3108,6 @@ def random_categorical_(x, num_sample, seed=0, dtype=mstype.int64):
Generates random samples from a given categorical distribution tensor.
Refer to :func:`mindspore.ops.random_categorical` for more detail.
"""
validator.check_is_int(num_sample, 'num_sample')
validator.check_is_int(seed, 'seed')
return F.random_categorical(x, num_sample, seed, dtype)
@ -3099,33 +3136,31 @@ def check_is_tuple_or_list_or_tensor(x, op_name, arg_name):
"""check whether x is list or tuple or tensor."""
if isinstance(x, (mstype.List, mstype.Tuple, mstype.tensor_type)):
return True
raise TypeError(f"For '{op_name}', the '{arg_name}' should be tuple or list or tensor, but got {x}.")
raise TypeError(
f"For '{op_name}', the '{arg_name}' should be tuple or list or tensor, but got {x}.")
@constexpr
def check_is_const_int(x, op_name, arg_name):
"""check whether x is const int."""
if x is None:
raise TypeError(f"For '{op_name}', the '{arg_name}' should be a const int number, but got not const.")
raise TypeError(
f"For '{op_name}', the '{arg_name}' should be a const int number, but got not const.")
if not isinstance(x, int):
raise TypeError(f"For '{op_name}', the '{arg_name}' should be a const int number, but got {x}.")
raise TypeError(
f"For '{op_name}', the '{arg_name}' should be a const int number, but got {x}.")
return True
@constexpr
def check_is_tensor_bool_cond(shp):
"""check if tensor is a bool condition"""
if shp in ((), (1,)):
return True
if None in shp:
raise ValueError(f"Only tensor which shape is () or (1,) can be converted to bool, but got tensor shape is "
f"None")
raise ValueError(f"Only tensor which shape is () or (1,) can be converted to bool, but got tensor shape is {shp}")
@constexpr
def const_tensor_to_bool(x):
"""convert bool tensor to bool condition"""
"""convert bool tensor to bool condition
def const_tensor_to_bool(x):
convert bool tensor to bool condition
if x.shape == (1,):
return bool(x[0])
return bool(x)
"""
if x is None:
raise ValueError("Only tensor which shape is () or (1,) can be converted to bool, but got None")
x = x.asnumpy()
@ -3153,36 +3188,22 @@ def check_view_shape(x):
return x
# convert normal param_check functions to constexpr functions
check_astype_dtype_const = constexpr(validator.check_astype_dtype)
check_transpose_axis_const = constexpr(validator.check_transpose_axis)
check_reshape_shp_const = constexpr(validator.check_reshape_shp)
check_flatten_order_const = constexpr(validator.check_flatten_order)
check_swapaxes_axis_const = constexpr(validator.check_swapaxes_axis)
prepare_shape_for_squeeze_const = constexpr(validator.prepare_shape_for_squeeze)
check_axis_in_range_const = constexpr(validator.check_axis_in_range)
check_axis_valid = constexpr(validator.check_axis_valid)
max_ = constexpr(validator.max_)
min_ = constexpr(validator.min_)
expanded_shape = constexpr(validator.expanded_shape)
tuple_slice = constexpr(validator.tuple_slice)
infer_out_shape = constexpr(validator.infer_out_shape)
get_log2_size = constexpr(validator.get_log2_size)
check_axis_type = constexpr(validator.check_axis_type)
check_and_canonicalize_axes = constexpr(validator.check_and_canonicalize_axes)
empty_compile = constexpr(validator.empty_compile)
expanded_shape = validator.expanded_shape
tuple_slice = validator.tuple_slice
empty_compile = validator.empty_compile
check_type_support = constexpr(validator.check_type_support)
check_is_int = constexpr(validator.check_is_int)
check_type_name = constexpr(validator.check_type_name)
check_value_type = constexpr(validator.check_value_type)
check_int = constexpr(validator.check_int)
check_bool = constexpr(validator.check_bool)
def tensor_bool(x):
"""tensor as condition, if is constant, return immediate bool value"""
is_cond = check_is_tensor_bool_cond(F.shape(x))
if is_cond and F.isconstant(x):
if F.isconstant(x):
return const_tensor_to_bool(x)
return F.cast(x, mstype.bool_)
@ -3340,8 +3361,6 @@ def top_k(input_x, k, sorted=True):
"""
Finds values and indices of the `k` largest entries along the last dimension.
"""
check_is_int(k, 'k')
check_bool(sorted, 'sorted')
return F.top_k(input_x, k, sorted)
@ -3588,7 +3607,6 @@ def bernoulli(x, p=0.5, seed=-1):
"""
Randomly draws binary numbers from a Bernoulli distribution.
"""
check_is_int(seed, 'bernoulli', 'seed')
return F.bernoulli(x, p, seed)

View File

@ -23,7 +23,6 @@ import mindspore.ops as ops
import mindspore.nn as nn
import mindspore.ops.composite as C
from mindspore.ops import operations as P
from mindspore.ops.primitive import constexpr
from mindspore import log as logger
@ -96,17 +95,6 @@ def apply_offload_iterators(data, offload_model):
return data
@constexpr
def check_input_dims(x_shape, required_dim, offload_op_name):
"""
Check if input has the required number of dimensions for the operation.
"""
input_dim = len(x_shape)
if input_dim is not required_dim:
raise ValueError("For %s offload operation, the dimension of input should be %d, but got %d." %
(offload_op_name, required_dim, input_dim))
def assign_min_max_params(in_params, center=1):
"""
Adjust input parameters for ops.
@ -175,7 +163,6 @@ class RandomHorizontalFlip(nn.Cell):
x = self.cast(x, mstype.float32)
x_shape = self.shape(x)
check_input_dims(x_shape, 4, 'RandomHorizontalFlip')
bs, h, w, c = x_shape
flip_rand_factor = Tensor(np.random.uniform(size=(bs, 1)), dtype=mstype.float32)
@ -208,7 +195,6 @@ class RandomVerticalFlip(nn.Cell):
x = self.cast(x, mstype.float32)
x_shape = self.shape(x)
check_input_dims(x_shape, 4, 'RandomVerticalFlip')
bs, h, w, c = x_shape
flip_rand_factor = Tensor(np.random.uniform(size=(bs, 1)), dtype=mstype.float32)
@ -293,7 +279,6 @@ class RandomColorAdjust(nn.Cell):
x = self.cast(x, mstype.float32)
x_shape = self.shape(x)
check_input_dims(x_shape, 4, 'RandomColorAdjust')
bs, h, w, c = x_shape
br_rand_factor = self.generate_rand_batch(self.br_min, self.br_max, self.check_rand_br, x_shape)
@ -402,7 +387,6 @@ class RandomSharpness(nn.Cell):
def construct(self, x):
x = self.cast(x, mstype.float32)
x_shape = self.shape(x)
check_input_dims(x_shape, 4, 'RandomSharpness')
bs, h, w, c = x_shape
degree_rand_factor = Tensor(np.random.uniform(size=(bs, 1)), dtype=mstype.float32)
@ -449,11 +433,8 @@ class HwcToChw(nn.Cell):
def __init__(self):
super(HwcToChw, self).__init__()
self.trans = P.Transpose()
self.shape = P.Shape()
def construct(self, x):
x_shape = self.shape(x)
check_input_dims(x_shape, 4, 'HwcToChw')
return self.trans(x, (0, 3, 1, 2))

View File

@ -25,7 +25,6 @@ from mindspore.common.tensor import Tensor
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops.operations import nn_ops as NN_OPS
from mindspore.ops.primitive import constexpr
from mindspore.nn.cell import Cell
from mindspore import ops
@ -195,18 +194,9 @@ class Softmax2d(Cell):
"""Initialize Softmax2d."""
super(Softmax2d, self).__init__()
self.softmax = P.Softmax(axis=-3)
self.shape = P.Shape()
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim not in (3, 4):
raise ValueError(f"For '{cls_name}', the in_shape must have 3 or 4 dims, but got {dim}.")
def construct(self, x):
x_shape = self.shape(x)
self._check_input_dim(x_shape, self.cls_name)
return self.softmax(x)

View File

@ -87,15 +87,18 @@ class L1Regularizer(Cell):
super(L1Regularizer, self).__init__()
Validator.check_value_type("scale", scale, [int, float], self.cls_name)
if scale <= 0:
raise ValueError(f"For '{self.cls_name}', the 'scale' must be greater than 0, but got {scale}.")
raise ValueError(
f"For '{self.cls_name}', the 'scale' must be greater than 0, but got {scale}.")
if math.isinf(scale) or math.isnan(scale):
raise ValueError(f"For '{self.cls_name}', the 'scale' can not be INF or NAN, but got {scale}.")
raise ValueError(
f"For '{self.cls_name}', the 'scale' can not be INF or NAN, but got {scale}.")
self.abs = P.Abs()
self.reduce_sum = P.ReduceSum()
self.scale = Tensor(scale, dtype=mstype.float32)
def construct(self, weights):
const_utils.check_type_valid(F.dtype(weights), mstype.number_type, 'weights')
const_utils.check_type_valid(
F.dtype(weights), mstype.number_type, 'weights')
l1_regularization = self.scale * self.reduce_sum(self.abs(weights))
return l1_regularization
@ -155,13 +158,16 @@ class Dropout(Cell):
def __init__(self, keep_prob=0.5, dtype=mstype.float32):
"""Initialize Dropout."""
super(Dropout, self).__init__()
Validator.check_value_type('keep_prob', keep_prob, [float], self.cls_name)
Validator.check_value_type('keep_prob', keep_prob, [
float], self.cls_name)
if keep_prob <= 0 or keep_prob > 1:
raise ValueError(f"For '{self.cls_name}', the 'keep_prob' must be a number in range (0, 1], "
f"but got {keep_prob}.")
Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
Validator.check_subclass(
"dtype", dtype, mstype.number_type, self.cls_name)
if dtype != mstype.float32:
logger.info("This parameter `dtype` will be deleted or invisible in the future. Please don't use it.")
logger.info(
"This parameter `dtype` will be deleted or invisible in the future. Please don't use it.")
self.keep_prob = keep_prob
seed0, seed1 = _get_graph_seed(0, "dropout")
self.seed0 = seed0
@ -623,13 +629,6 @@ class Flatten(Cell):
return F.reshape(x, (F.shape(x)[0], -1))
@constexpr
def check_dense_input_shape(x, prim_name=None):
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if len(x) < 2:
raise ValueError(f"{msg_prefix} dimension of 'x' should not be less than 2, but got {len(x)}.")
class Identity(Cell):
"""
Returns a Tensor with the same shape and contents as input.
@ -727,9 +726,12 @@ class Dense(Cell):
activation=None):
"""Initialize Dense."""
super(Dense, self).__init__()
self.in_channels = Validator.check_positive_int(in_channels, "in_channels", self.cls_name)
self.out_channels = Validator.check_positive_int(out_channels, "out_channels", self.cls_name)
self.has_bias = Validator.check_bool(has_bias, "has_bias", self.cls_name)
self.in_channels = Validator.check_positive_int(
in_channels, "in_channels", self.cls_name)
self.out_channels = Validator.check_positive_int(
out_channels, "out_channels", self.cls_name)
self.has_bias = Validator.check_bool(
has_bias, "has_bias", self.cls_name)
self.reshape = P.Reshape()
self.shape_op = P.Shape()
@ -740,7 +742,8 @@ class Dense(Cell):
f"be equal to 2, and the first dim must be equal to 'out_channels', and the "
f"second dim must be equal to 'in_channels'. But got 'weight_init': {weight_init}, "
f"'out_channels': {out_channels}, 'in_channels': {in_channels}.")
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
self.weight = Parameter(initializer(
weight_init, [out_channels, in_channels]), name="weight")
self.bias = None
if self.has_bias:
@ -749,11 +752,13 @@ class Dense(Cell):
raise ValueError(f"For '{self.cls_name}', bias init shape error. The ndim of 'bias_init' must "
f"be equal to 1, and the first dim must be equal to 'out_channels'. But got "
f"'bias_init': {bias_init}, 'out_channels': {out_channels}.")
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
self.bias = Parameter(initializer(
bias_init, [out_channels]), name="bias")
self.bias_add = P.BiasAdd()
self.matmul = P.MatMul(transpose_b=True)
self.activation = get_activation(activation) if isinstance(activation, str) else activation
self.activation = get_activation(activation) if isinstance(
activation, str) else activation
if activation is not None and not isinstance(self.activation, (Cell, Primitive)):
raise TypeError(f"For '{self.cls_name}', the 'activation' must be str or Cell or Primitive, but got "
f"{type(activation).__name__}.")
@ -761,7 +766,6 @@ class Dense(Cell):
def construct(self, x):
x_shape = self.shape_op(x)
check_dense_input_shape(x_shape, self.cls_name)
if len(x_shape) != 2:
x = self.reshape(x, (-1, x_shape[-1]))
x = self.matmul(x, self.weight)
@ -775,7 +779,8 @@ class Dense(Cell):
return x
def extend_repr(self):
s = 'input_channels={}, output_channels={}'.format(self.in_channels, self.out_channels)
s = 'input_channels={}, output_channels={}'.format(
self.in_channels, self.out_channels)
if self.has_bias:
s += ', has_bias={}'.format(self.has_bias)
if self.activation_flag:
@ -787,14 +792,15 @@ class Dense(Cell):
def _is_equal_one(x):
if x is None:
return False
return bool(x.asnumpy().mean() == 1.0)
return F.equal(F.reduce_mean(x), 1.0)
@constexpr
def _dtype_check(x_dtype, prim_name=None):
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if x_dtype not in [mstype.float32, mstype.float16]:
raise TypeError(f"{msg_prefix} x_dtype must be float32 or float16, but got {x_dtype}.")
raise TypeError(
f"{msg_prefix} x_dtype must be float32 or float16, but got {x_dtype}.")
@constexpr
@ -923,7 +929,8 @@ class Norm(Cell):
def __init__(self, axis=(), keep_dims=False):
"""Initialize Norm."""
super(Norm, self).__init__()
Validator.check_value_type("keep_dims", keep_dims, [bool], self.cls_name)
Validator.check_value_type(
"keep_dims", keep_dims, [bool], self.cls_name)
self.axis = axis
self.keep_dims = keep_dims
self.reduce_sum = P.ReduceSum(True)
@ -1209,7 +1216,8 @@ class Pad(Cell):
super(Pad, self).__init__()
self.mode = mode
self.paddings = paddings
Validator.check_string(self.mode, ["CONSTANT", "REFLECT", "SYMMETRIC"], 'mode', self.cls_name)
Validator.check_string(
self.mode, ["CONSTANT", "REFLECT", "SYMMETRIC"], 'mode', self.cls_name)
if not isinstance(paddings, tuple):
raise TypeError(f"For '{self.cls_name}', the type of 'paddings' must be tuple, "
f"but got {type(paddings).__name__}.")
@ -1239,20 +1247,17 @@ def bilinear(shape, size, scale, align_corners, prim_name=None):
"""Check input and calculate shape"""
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if not isinstance(align_corners, bool):
raise TypeError(f"{msg_prefix} type of 'align_corners' must be boolean, "
f"but got {type(align_corners).__name__}.")
raise TypeError(
f"{msg_prefix} type of 'align_corners' must be bool, but got {type(align_corners).__name__}.")
if size is None and scale is None:
raise ValueError(f"{msg_prefix} 'size' and 'scale' both none.")
if size is not None and scale is not None:
raise ValueError(f"{msg_prefix} 'size' and 'scale' both not none.")
if size is not None:
if not isinstance(size, (tuple, list)):
raise ValueError(f"{msg_prefix} 'size' must be tuple or list or None, but got {type(size).__name__}.")
Validator.check_int(len(size), 2, Rel.EQ, "size", "bilinear")
Validator.check_int(size[0], 1, Rel.GE, "size[0]", "bilinear")
Validator.check_int(size[1], 1, Rel.GE, "size[1]", "bilinear")
raise ValueError(
f"{msg_prefix} 'size' must be tuple or list or None, but got {type(size).__name__}.")
return size
Validator.check_int(scale, 1, Rel.GE, "scale factor", "bilinear")
ret = (scale * shape[2], scale * shape[3])
return ret
@ -1323,8 +1328,10 @@ class ResizeBilinear(Cell):
self.half_pixel_centers = half_pixel_centers
def construct(self, x, size=None, scale_factor=None, align_corners=False):
shape = bilinear(x.shape, size, scale_factor, align_corners, self.cls_name)
resize_bilinear = P.ResizeBilinear(shape, align_corners, self.half_pixel_centers)
shape = bilinear(x.shape, size, scale_factor,
align_corners, self.cls_name)
resize_bilinear = P.ResizeBilinear(
shape, align_corners, self.half_pixel_centers)
return resize_bilinear(x)
@ -1390,7 +1397,8 @@ class Unfold(Cell):
super(Unfold, self).__init__()
def _check_tuple_or_list(arg_name, arg_val, prim_name):
Validator.check_value_type(f"{arg_name}s", ksizes, [tuple, list], self.cls_name)
Validator.check_value_type(f"{arg_name}s", ksizes, [
tuple, list], self.cls_name)
if len(arg_val) != 4 or arg_val[0] != 1 or arg_val[3] != 1:
raise ValueError(f"For '{prim_name}' the format of '{arg_name}s' must be [1, {arg_name}_row, "
f"{arg_name}_col, 1], but got {arg_val}.")
@ -1405,19 +1413,17 @@ class Unfold(Cell):
ksizes = ksizes[0], ksizes[3], ksizes[1], ksizes[2]
strides = strides[0], strides[3], strides[1], strides[2]
rates = rates[0], rates[3], rates[1], rates[2]
self.extract_image_patches = inner.ExtractImagePatches(ksizes, strides, rates, padding)
self.extract_image_patches = inner.ExtractImagePatches(
ksizes, strides, rates, padding)
def construct(self, input_x):
result = self.extract_image_patches(input_x)
return result
@constexpr
def tril(x_shape, x_dtype, k):
Validator.check_int(len(x_shape), 1, Rel.GE, "x rank", "tril")
Validator.check_is_int(k, "k value", "tril")
mask = np.tril(np.ones(x_shape), k)
return Tensor(mask, x_dtype)
value = F.cast(P.Tril(diagonal=k)(F.ones(x_shape, x_dtype)), x_dtype)
return value
class Tril(Cell):
@ -1510,16 +1516,14 @@ class Tril(Cell):
def construct(self, x, k=0):
assist = tril(x.shape, self.dtype(x), k)
result = self.mul(self.cast(x, mstype.float32), self.cast(assist, mstype.float32))
result = self.mul(self.cast(x, mstype.float32),
self.cast(assist, mstype.float32))
return self.cast(result, self.dtype(x))
@constexpr
def triu(x_shape, x_dtype, k):
Validator.check_int(len(x_shape), 1, Rel.GE, "x rank", "triu")
Validator.check_is_int(k, "k value", "triu")
mask = np.triu(np.ones(x_shape), k)
return Tensor(mask, x_dtype)
value = F.cast(P.Triu(k)(F.ones(x_shape, x_dtype)), x_dtype)
return value
class Triu(Cell):
@ -1603,24 +1607,34 @@ class Triu(Cell):
def construct(self, x, k=0):
assist = triu(x.shape, self.dtype(x), k)
result = self.mul(self.cast(x, mstype.float32), self.cast(assist, mstype.float32))
result = self.mul(self.cast(x, mstype.float32),
self.cast(assist, mstype.float32))
return self.cast(result, self.dtype(x))
@constexpr
def _get_matrix_diag_assist(x_shape, x_dtype):
Validator.check_int(len(x_shape), 1, Rel.GE, "x rank", "_get_matrix_diag_assist")
base_eye = np.eye(x_shape[-1], x_shape[-1]).reshape(-1)
assist = np.tile(base_eye, x_shape[:-1]).reshape(x_shape + (x_shape[-1],))
return Tensor(assist, x_dtype)
"""Get matrix diag assist"""
base_eye = F.reshape(
F.eye(x_shape[-1], x_shape[-1], x_dtype), (x_shape[-1] * x_shape[-1],))
if len(x_shape) == 1:
assist = F.reshape(base_eye, x_shape + (x_shape[-1],))
else:
assist = F.reshape(
F.tile(base_eye, x_shape[:-1]), x_shape + (x_shape[-1],))
value = F.cast(assist, x_dtype)
return value
@constexpr
def _get_matrix_diag_part_assist(x_shape, x_dtype):
Validator.check_int(len(x_shape), 2, Rel.GE, "x rank", "_get_matrix_diag_part_assist")
base_eye = np.eye(x_shape[-2], x_shape[-1]).reshape(-1)
assist = np.tile(base_eye, x_shape[:-2]).reshape(x_shape)
return Tensor(assist, x_dtype)
"""Get matrix diag part assist"""
base_eye = F.reshape(
F.eye(x_shape[-2], x_shape[-1], x_dtype), (x_shape[-2] * x_shape[-1],))
if len(x_shape) <= 2:
assist = F.reshape(base_eye, x_shape)
else:
assist = F.reshape(F.tile(base_eye, x_shape[:-2]), x_shape)
value = F.cast(assist, x_dtype)
return value
class MatrixDiag(Cell):
@ -1867,8 +1881,10 @@ class Roll(Cell):
def __init__(self, shift, axis):
"""Initialize Roll"""
super(Roll, self).__init__()
Validator.check_value_type("shift", shift, [int, tuple, list], self.cls_name)
Validator.check_value_type("axis", axis, [int, tuple, list], self.cls_name)
Validator.check_value_type(
"shift", shift, [int, tuple, list], self.cls_name)
Validator.check_value_type(
"axis", axis, [int, tuple, list], self.cls_name)
self.shape_op = P.Shape()
self.shift = shift
self.axis = axis
@ -1894,14 +1910,16 @@ class Roll(Cell):
f"and the length of 'axis' {len(self.axis)}.")
else:
if not isinstance(self.axis, (list, tuple)):
self.op_list.append((P.Roll(shift=self.shift, axis=0), self.axis))
self.op_list.append(
(P.Roll(shift=self.shift, axis=0), self.axis))
else:
if len(self.shift) != len(self.axis):
raise ValueError(f"For '{self.cls_name}', the shape of 'shift' and the shape of 'axis' must be "
f"the same, but got the length of 'shift' {len(self.shift)} "
f"and the length of 'axis' {len(self.axis)}.")
for idx, _ in enumerate(self.axis):
self.op_list.append((P.Roll(shift=self.shift[idx], axis=0), self.axis[idx]))
self.op_list.append(
(P.Roll(shift=self.shift[idx], axis=0), self.axis[idx]))
def construct(self, input_x):
dim = len(self.shape_op(input_x))
@ -1965,7 +1983,8 @@ class Unflatten(Cell):
self.shape = P.Shape()
self.reshape = P.Reshape()
Validator.check_is_int(axis, 'axis', 'Unflatten')
Validator.check_value_type('unflattended_size', unflattened_size, (list, tuple), 'Unflatten')
Validator.check_value_type(
'unflattended_size', unflattened_size, (list, tuple), 'Unflatten')
self.axis = axis
if isinstance(unflattened_size, list):
unflattened_size = tuple(unflattened_size)

View File

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
"""channel shuffle"""
from mindspore.ops.primitive import constexpr
from mindspore.ops import operations as P
from mindspore.nn.cell import Cell
@ -82,21 +81,9 @@ class ChannelShuffle(Cell):
self.reshape = P.Reshape()
self.transpose = P.Transpose()
@staticmethod
@constexpr
def _check_input_dim(shape, channels, groups, cls_name):
dim = len(shape)
if dim < 3:
raise ValueError(f"For {cls_name}, the in_shape must have more than 2 dims, but got {dim}.")
if channels % groups != 0:
raise ValueError(f"For {cls_name}, number of channels must be divisible by groups, "
f"but got {channels} channels and {groups} groups.")
def construct(self, x):
x_shape = self.shape(x)
n, c = x_shape[0], x_shape[1]
self._check_input_dim(x_shape, c, self.groups, self.cls_name)
out = self.reshape(x, (n, self.groups, c // self.groups, -1))
out = self.transpose(out, (0, 2, 1, 3))
return self.reshape(out, x_shape)

View File

@ -315,12 +315,6 @@ class Conv2d(_Conv):
return output
@constexpr
def _check_input_3d(input_shape, op_name):
if len(input_shape) != 3:
raise ValueError(f"For '{op_name}', the dimension of input must be 3d, but got {len(input_shape)}.")
class Conv1d(_Conv):
r"""
Calculates the 1D convolution on the input tensor. The input is typically of shape :math:`(N, C_{in}, L_{in})`,
@ -482,11 +476,8 @@ class Conv1d(_Conv):
self.bias_add = P.BiasAdd()
self.expand_dims = P.ExpandDims()
self.squeeze = P.Squeeze(2)
self.shape = P.Shape()
def construct(self, x):
x_shape = self.shape(x)
_check_input_3d(x_shape, self.cls_name)
x = self.expand_dims(x, 2)
output = self.conv2d(x, self.weight)
if self.has_bias:
@ -1289,8 +1280,6 @@ class Conv1dTranspose(_Conv):
return self
def construct(self, x):
x_shape = self.shape(x)
_check_input_3d(x_shape, self.cls_name)
x = self.expand_dims(x, 2)
n, _, h, w = self.shape(x)

View File

@ -30,14 +30,6 @@ from mindspore.nn.cell import Cell
__all__ = ['BiDense']
@constexpr
def check_dense_inputs_same_shape(input1, input2, prim_name=None):
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if input1[:-1] != input2[:-1]:
raise ValueError(f"{msg_prefix} dimensions except the last of 'input1' must be same as 'input2', but got "
f"{input1} of 'input1' and {input2} of 'input2'")
@constexpr(check=False)
def _check_is_tensor(param_name, input_data, cls_name):
"""Internal function, used to check whether the input data is Tensor."""
@ -46,14 +38,6 @@ def _check_is_tensor(param_name, input_data, cls_name):
f"but got '{P.typeof(input_data)}'")
@constexpr
def check_last_dimension(input_dim, input_channels, input_name, input_channels_name, prim_name=None):
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if input_dim != input_channels:
raise ValueError(f"{msg_prefix} last dimension of '{input_name}' must be same as '{input_channels_name}',"
f" but got {input_dim} of '{input_name}' and {input_channels} of '{input_channels_name}'")
class BiDense(Cell):
r"""
The bilinear dense connected layer.
@ -171,9 +155,6 @@ class BiDense(Cell):
_check_is_tensor("input2", input2, self.cls_name)
input1_shape = input1.shape
input2_shape = input2.shape
check_last_dimension(input1_shape[-1], self.in1_channels, "input1", "in1_channels", self.cls_name)
check_last_dimension(input2_shape[-1], self.in2_channels, "input2", "in2_channels", self.cls_name)
check_dense_inputs_same_shape(input1_shape, input2_shape, self.cls_name)
if len(input1_shape) != 2:
input1 = input1.reshape((-1, input1_shape[-1]))
input2 = input2.reshape((-1, input2_shape[-1]))

View File

@ -39,13 +39,6 @@ from mindspore.nn.cell import Cell
__all__ = ['Embedding', 'EmbeddingLookup', 'MultiFieldEmbeddingLookup']
@constexpr
def _check_input_2d(input_shape, param_name, func_name):
if len(input_shape) != 2:
raise ValueError(f"For '{func_name}', the dimension of '{param_name}' must be 2d, but got {len(input_shape)}")
return True
@constexpr
def _check_input_dtype(input_dtype, param_name, allow_dtypes, cls_name):
validator.check_type_name(param_name, input_dtype, allow_dtypes, cls_name)
@ -623,10 +616,6 @@ class MultiFieldEmbeddingLookup(EmbeddingLookup):
self.negative_inf_value = -3.402823466E+38
def construct(self, input_indices, input_values, field_ids):
_check_input_2d(F.shape(input_indices), "input_indices", self.cls_name)
_check_input_2d(F.shape(input_values), "input_values", self.cls_name)
_check_input_2d(F.shape(field_ids), "field_ids", self.cls_name)
_check_input_dtype(F.dtype(input_indices), "input_indices", [mstype.int32, mstype.int64], self.cls_name)
_check_input_dtype(F.dtype(input_values), "input_values", [mstype.float32], self.cls_name)
_check_input_dtype(F.dtype(field_ids), "field_ids", [mstype.int32], self.cls_name)

View File

@ -78,7 +78,6 @@ class ImageGradients(Cell):
super(ImageGradients, self).__init__()
def construct(self, images):
check = _check_input_4d(F.shape(images), "images", self.cls_name)
images = F.depend(images, check)
batch_size, depth, height, width = P.Shape()(images)
if height == 1:
@ -120,21 +119,6 @@ def _get_dtype_max(dtype):
return dtype_max
@constexpr
def _check_input_4d(input_shape, param_name, func_name):
if len(input_shape) != 4:
raise ValueError(f"For '{func_name}', the dimension of '{param_name}' must be 4d, "
f"but got {len(input_shape)}.")
return True
@constexpr
def _check_input_filter_size(input_shape, param_name, filter_size, func_name):
_check_input_4d(input_shape, param_name, func_name)
validator.check(param_name + " shape[2]", input_shape[2], "filter_size", filter_size, Rel.GE, func_name)
validator.check(param_name + " shape[3]", input_shape[3], "filter_size", filter_size, Rel.GE, func_name)
@constexpr
def _check_input_dtype(input_dtype, param_name, allow_dtypes, cls_name):
validator.check_type_name(param_name, input_dtype, allow_dtypes, cls_name)
@ -281,7 +265,6 @@ class SSIM(Cell):
def construct(self, img1, img2):
_check_input_dtype(F.dtype(img1), "img1", [mstype.float32, mstype.float16], self.cls_name)
_check_input_filter_size(F.shape(img1), "img1", self.filter_size, self.cls_name)
inner.SameTypeShape()(img1, img2)
dtype_max_val = _get_dtype_max(F.dtype(img1))
max_val = F.scalar_cast(self.max_val, F.dtype(img1))
@ -387,8 +370,6 @@ class MSSSIM(Cell):
self.concat = P.Concat(axis=1)
def construct(self, img1, img2):
_check_input_4d(F.shape(img1), "img1", self.cls_name)
_check_input_4d(F.shape(img2), "img2", self.cls_name)
valid_type = [mstype.float64, mstype.float32, mstype.float16, mstype.uint8]
_check_input_dtype(F.dtype(img1), 'img1', valid_type, self.cls_name)
inner.SameTypeShape()(img1, img2)
@ -466,8 +447,6 @@ class PSNR(Cell):
self.max_val = max_val
def construct(self, img1, img2):
_check_input_4d(F.shape(img1), "img1", self.cls_name)
_check_input_4d(F.shape(img2), "img2", self.cls_name)
inner.SameTypeShape()(img1, img2)
dtype_max_val = _get_dtype_max(F.dtype(img1))
max_val = F.scalar_cast(self.max_val, F.dtype(img1))
@ -481,22 +460,17 @@ class PSNR(Cell):
return psnr
@constexpr
def _raise_dims_rank_error(input_shape, param_name, func_name):
"""raise error if input is not 3d or 4d"""
raise ValueError(f"{func_name} {param_name} must be 3d or 4d, but got shape {input_shape}")
@constexpr
def _get_bbox(rank, shape, central_fraction):
"""get bbox start and size for slice"""
n, c, h, w = -1, -1, -1, -1
if rank == 3:
c, h, w = shape
else:
n, c, h, w = shape
bbox_h_start = int((float(h) - np.float32(h * central_fraction)) / 2)
bbox_w_start = int((float(w) - np.float32(w * central_fraction)) / 2)
bbox_h_start = int((float(h) - float(h * central_fraction)) / 2)
bbox_w_start = int((float(w) - float(w * central_fraction)) / 2)
bbox_h_size = h - bbox_h_start * 2
bbox_w_size = w - bbox_w_start * 2
@ -548,8 +522,6 @@ class CentralCrop(Cell):
def construct(self, image):
image_shape = F.shape(image)
rank = len(image_shape)
if rank not in (3, 4):
return _raise_dims_rank_error(image_shape, "image", self.cls_name)
if self.central_fraction == 1.0:
return image

View File

@ -763,11 +763,6 @@ class LBeta(Cell):
@constexpr
def get_broadcast_matmul_shape(x_shape, y_shape, prim_name=None):
"""get broadcast_matmul shape"""
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if (len(x_shape) < 2) or (len(y_shape) < 2):
raise ValueError(f"{msg_prefix} length of 'x_shape' and 'y_shape' must be equal to or greater than 2, "
f"but got the length of 'x_shape': {len(x_shape)} and the length of 'y_shape': "
f"{len(y_shape)}.")
x_shape_batch = x_shape[:-2]
y_shape_batch = y_shape[:-2]
if x_shape_batch == y_shape_batch:
@ -783,10 +778,6 @@ def get_broadcast_matmul_shape(x_shape, y_shape, prim_name=None):
broadcast_shape_back.append(x_shape[i])
elif x_shape[i] == y_shape[i]:
broadcast_shape_back.append(x_shape[i])
else:
raise ValueError(f"{msg_prefix} 'x_shape[{i}]' must be equal to 1, or the 'y_shape[{i}]' must be equal "
f"to 1, or the 'x_shape[{i}]' must be equal to 'y_shape[{i}]', but got "
f"'x_shape[{i}]': {x_shape[i]}, 'y_shape[{i}]': {y_shape[i]}.")
broadcast_shape_front = y_shape[0: y_len - length] if length == x_len else x_shape[0: x_len - length]
x_broadcast_shape = broadcast_shape_front + tuple(broadcast_shape_back) + x_shape[-2:]
@ -794,25 +785,6 @@ def get_broadcast_matmul_shape(x_shape, y_shape, prim_name=None):
return x_broadcast_shape, y_broadcast_shape
@constexpr
def check_col_row_equal(x1_shape, x2_shape, transpose_x1, transpose_x2, prim_name=None):
"""check col and row equal"""
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if len(x1_shape) == 1:
transpose_x1 = False
x1_shape = (1,) + x1_shape
if len(x2_shape) == 1:
transpose_x2 = False
x2_shape = x2_shape + (1,)
x1_last = x1_shape[-2:]
x2_last = x2_shape[-2:]
x1_col = x1_last[not transpose_x1] # x1_col = x1_last[1] if (not transpose_a) else x1_last[0]
x2_row = x2_last[transpose_x2] # x2_row = x2_last[0] if (not transpose_b) else x2_last[1]
if x1_col != x2_row:
raise ValueError(f"{msg_prefix} column of matrix dimensions of 'x1' must be equal to "
f"the row of matrix dimensions of 'x2', but got 'x1_col' {x1_col} and 'x2_row' {x2_row}.")
def matmul_op_select(x1_shape, x2_shape, transpose_x1, transpose_x2):
"""select matmul op"""
x1_dim, x2_dim = len(x1_shape), len(x2_shape)
@ -857,7 +829,6 @@ class MatMul(Cell):
def construct(self, x1, x2):
x1_shape = self.shape_op(x1)
x2_shape = self.shape_op(x2)
check_col_row_equal(x1_shape, x2_shape, self.transpose_x1, self.transpose_x2, self.cls_name)
matmul_op = matmul_op_select(x1_shape, x2_shape, self.transpose_x1, self.transpose_x2)
x1_dim, x2_dim = len(x1_shape), len(x2_shape)

View File

@ -121,13 +121,8 @@ class _BatchNorm(Cell):
self.assign_sub_mean = P.AssignSub().shard(data_parallel_strategy)
self.assign_sub_var = P.AssignSub().shard(data_parallel_strategy)
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
raise NotImplementedError
def construct(self, x):
self._check_input_dim(self.shape(x), self.cls_name)
if self.use_batch_statistics is None:
if self.training:
return self.bn_train(x,
@ -227,13 +222,6 @@ class BatchNorm1d(_BatchNorm):
[ 0.4999975 0.399998 0.59999704 0.89999545 ]]
"""
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim != 2:
raise ValueError(f"For '{cls_name}', the in_shape must have 2 dims, but got {dim}.")
class BatchNorm2d(_BatchNorm):
r"""
@ -319,13 +307,6 @@ class BatchNorm2d(_BatchNorm):
[ 0.999995 0.999995 ]]]]
"""
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim != 4:
raise ValueError(f"For '{cls_name}', the in_shape must have 4 dims, but got {dim}.")
class BatchNorm3d(Cell):
r"""
@ -413,16 +394,9 @@ class BatchNorm3d(Cell):
self.shape = P.Shape()
self.reshape = P.Reshape()
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim != 5:
raise ValueError(f"For '{cls_name}', the in_shape must have 5 dims, but got {dim}.")
def construct(self, x):
x_shape = self.shape(x)
self._check_input_dim(x_shape, self.cls_name)
x = self.reshape(x, (x_shape[0], x_shape[1], x_shape[2] * x_shape[3], x_shape[4]))
bn2d_out = self.bn2d(x)
bn3d_out = self.reshape(bn2d_out, x_shape)
@ -586,12 +560,6 @@ class SyncBatchNorm(_BatchNorm):
SYNC_BN_GROUP_NAME = "sync_bn_group%d" % i
management.create_group(SYNC_BN_GROUP_NAME, self.process_groups[i])
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim not in (2, 4):
raise ValueError(f"For '{cls_name}', the must have 2 dims or 4 dims, but got {dim}.")
def _check_rank_ids(self, process_groups, rank_size):
seen = set()
@ -729,7 +697,6 @@ class _InstanceNorm(Cell):
self.instance_bn = P.InstanceNorm(epsilon=self.eps, momentum=self.momentum)
def construct(self, x):
self._check_input_dim(self.shape(x), self.cls_name)
return self.instance_bn(x,
self.gamma,
self.beta,
@ -822,13 +789,6 @@ class InstanceNorm1d(_InstanceNorm):
(2, 3, 5)
"""
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim != 3:
raise ValueError(f"For '{cls_name}', the in_shape must have 3 dims, but got {dim}.")
class InstanceNorm2d(_InstanceNorm):
r"""
@ -901,13 +861,6 @@ class InstanceNorm2d(_InstanceNorm):
(2, 3, 2, 2)
"""
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim != 4:
raise ValueError(f"For '{cls_name}', the in_shape must have 4 dims, but got {dim}.")
class InstanceNorm3d(_InstanceNorm):
r"""
@ -979,12 +932,6 @@ class InstanceNorm3d(_InstanceNorm):
>>> print(output.shape)
(2, 3, 5, 2, 2)
"""
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim != 5:
raise ValueError(f"For '{cls_name}', the in_shape must have 5 dims, but got {dim}.")
class GroupNorm(Cell):
@ -1068,7 +1015,6 @@ class GroupNorm(Cell):
def _cal_output(self, x):
"""calculate groupnorm output"""
batch, channel, height, width = self.shape(x)
self._channel_check(channel, self.num_channels, self.cls_name)
x = self.reshape(x, (batch, self.num_groups, -1))
mean = self.reduce_mean(x, 2)
var = self.reduce_sum(self.square(x - mean), 2) / (channel * height * width / self.num_groups)
@ -1078,21 +1024,6 @@ class GroupNorm(Cell):
output = x * self.reshape(self.gamma, (-1, 1, 1)) + self.reshape(self.beta, (-1, 1, 1))
return output
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim != 4:
raise ValueError(f"For '{cls_name}', the in_shape must have 4 dims, but got {dim}.")
@staticmethod
@constexpr
def _channel_check(channel, num_channel, prim_name=None):
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if channel != num_channel:
raise ValueError(f"{msg_prefix} channel(the second dim of the input 'x') must be equal to num_channels, "
f"but got channel: {channel}, num_channels: {num_channel}.")
@staticmethod
@constexpr
def _check_dtype(dtype, valid_dtypes, prim_name=None):
@ -1102,7 +1033,6 @@ class GroupNorm(Cell):
return 'num_groups={}, num_channels={}'.format(self.num_groups, self.num_channels)
def construct(self, x):
self._check_input_dim(self.shape(x), self.cls_name)
self._check_dtype(x.dtype, [mstype.float16, mstype.float32], self.cls_name)
output = self._cal_output(x)
return output

View File

@ -31,9 +31,6 @@ def _check_padding_dimension(dimension, padding):
Validate the input padding and add placeholders if needed.
Note: the input 'padding' in this function is already converted to list of lists to match MirrorPad
"""
if dimension < len(padding):
raise ValueError(f"For padding with length {len(padding) * 2}, the dimension of the tensor should be at least "
f"{len(padding)}, but got {dimension}")
# add place holders
if dimension > len(padding):
padding = [(0, 0) for _ in range(dimension - len(padding))] + [x for x in padding]
@ -56,45 +53,16 @@ def _swap_to_ms_padding_order(padding):
@constexpr
def _check(input_shape, padding, name):
def _check(input_shape, padding):
"""
Check relationship between input shape and padding to make sure after negative dimension padding the out is
positive.
"""
if len(input_shape) < len(padding):
msg = "For '{}', the dimension of input must more than or equal to len(padding)/2, " \
"but got {}".format(name, len(input_shape))
raise ValueError(msg)
if len(input_shape) > len(padding):
if len(padding) == 2 and isinstance(padding[0], int):
padding = [(0, 0) for i in range(len(input_shape) - 1)] + [padding]
else:
padding = [(0, 0) for i in range(len(input_shape) - len(padding))] + [x for x in padding]
for index, item in enumerate(padding):
if index == 0:
dim_name = '1st'
elif index == 1:
dim_name = '2nd'
elif index == 2:
dim_name = '3rd'
else:
dim_name = str(index + 1) + 'th'
if item[0] < -input_shape[index]:
msg = "For '{}', the shape of input after padding must be positive, the input shape is {}, " \
"value of parameter 'padding' applied to the {} dimension of input must " \
"no less than -{}, but got {}".format(name, input_shape, dim_name, input_shape[index], item[0])
raise ValueError(msg)
if item[1] < -input_shape[index]:
msg = "For '{}', the shape of input after padding must be positive, the input shape is {}, " \
"value of parameter 'padding' applied to the {} dimension of input must " \
"no less than -{}, but got {}".format(name, input_shape, dim_name, input_shape[index], item[1])
raise ValueError(msg)
if input_shape[index] + item[0] + item[1] <= 0:
msg = "For '{}', the shape of input after padding must be positive, the input shape is {}, " \
"but the {} dimension of input shape {} plus padding {} and {} resulted in a non-positive output " \
"shape.".format(name, input_shape, dim_name, input_shape[index], item[0], item[1])
raise ValueError(msg)
return padding
@ -199,7 +167,7 @@ class _ConstantPadNd(Cell):
"""Construct the pad net."""
input_shape = x.shape
input_type = x.dtype
padding = _check(input_shape, self.padding, self._name)
padding = _check(input_shape, self.padding)
new_padding, start, end = _get_new_padding(padding)
mask = ops.Ones()(input_shape, input_type)
output = ops.Pad(new_padding)(x)
@ -671,10 +639,6 @@ class _ReplicationPadNd(Cell):
self.padding = padding
self.padv3 = nn_ops.PadV3(mode="edge")
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
raise NotImplementedError
@staticmethod
@constexpr
@ -682,7 +646,6 @@ class _ReplicationPadNd(Cell):
raise NotImplementedError
def construct(self, x):
self._check_input_dim(x.shape, self.name)
need_expend_dims = self._need_expend_dim(x)
if need_expend_dims:
x = x.expand_dims(0)
@ -743,12 +706,6 @@ class ReplicationPad1d(_ReplicationPadNd):
padding = (padding, padding)
super(ReplicationPad1d, self).__init__(padding, name="ReplicationPad1d")
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim not in (2, 3):
raise ValueError(f"For '{cls_name}', the in_shape must have 2 or 3 dims, but got {dim}.")
def _need_expend_dim(self, x):
input_shape = x.shape
@ -814,12 +771,6 @@ class ReplicationPad2d(_ReplicationPadNd):
padding = (padding, padding, padding, padding)
super(ReplicationPad2d, self).__init__(padding, name="ReplicationPad2d")
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim not in (3, 4):
raise ValueError(f"For '{cls_name}', the in_shape must have 3 or 4 dims, but got {dim}.")
def _need_expend_dim(self, x):
input_shape = x.shape
@ -885,12 +836,6 @@ class ReplicationPad3d(_ReplicationPadNd):
padding = (padding, padding, padding, padding, padding, padding)
super(ReplicationPad3d, self).__init__(padding, name="ReplicationPad3d")
@staticmethod
@constexpr
def _check_input_dim(shape, cls_name):
dim = len(shape)
if dim not in (4, 5):
raise ValueError(f"For '{cls_name}', the in_shape must have 4 or 5 dims, but got {dim}.")
def _need_expend_dim(self, x):
input_shape = x.shape

View File

@ -73,13 +73,6 @@ class _PoolNd(Cell):
return 'kernel_size={kernel_size}, stride={stride}, pad_mode={pad_mode}'.format(**self.__dict__)
@constexpr
def _shape_check(in_shape, prim_name=None):
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if len(in_shape) != 3:
raise ValueError(f"{msg_prefix} input must has 3 dim, but got {len(in_shape)}")
class LPPool1d(Cell):
r"""
Applies a 1D power lp pooling over an input signal composed of several input planes.
@ -489,7 +482,6 @@ class MaxPool1d(_PoolNd):
self.squeeze = P.Squeeze(2)
def construct(self, x):
_shape_check(self.shape(x), self.cls_name)
x = self.expand(x, 2)
output = self.max_pool(x)
output = self.squeeze(output)
@ -743,7 +735,6 @@ class AvgPool1d(_PoolNd):
self.squeeze = P.Squeeze(2)
def construct(self, x):
x = F.depend(x, _shape_check(self.shape(x), self.cls_name))
batch, channel, width = self.shape(x)
if width == self.kernel_size[1]:
x = self.reduce_mean(x, 2)
@ -757,20 +748,6 @@ class AvgPool1d(_PoolNd):
return x
@constexpr
def _adaptive_shape_check(in_shape, output_size, prim_name):
"""Check shape."""
msg_prefix = "For {}, the".format(prim_name)
if len(in_shape) != 3:
raise ValueError("{} input must has 3 dim, but got {}.".format(msg_prefix, len(in_shape)))
if in_shape[2] < output_size:
raise ValueError("{} input's last dimension must be greater or equal to "
"output size {}, but got {}.".format(msg_prefix, output_size, in_shape[2]))
if in_shape[2] % output_size != 0:
raise ValueError("{} input's last dimension must be divisible by "
"output size {}, but got {}.".format(msg_prefix, output_size, in_shape[2]))
@constexpr
def _adaptive_dtype_check(x_dtype, prim_name):
"""Check dtype."""
@ -837,7 +814,6 @@ class AdaptiveAvgPool1d(Cell):
self.dtype = P.DType()
def construct(self, x):
_adaptive_shape_check(self.shape(x), self.output_size, self.cls_name)
_adaptive_dtype_check(self.dtype(x), self.cls_name)
_, _, width = self.shape(x)
@ -1052,7 +1028,6 @@ class AdaptiveMaxPool1d(Cell):
self.dtype = P.DType()
def construct(self, x):
_adaptive_shape_check(self.shape(x), self.output_size, self.cls_name)
_adaptive_dtype_check(self.dtype(x), self.cls_name)
_, _, width = self.shape(x)

View File

@ -22,6 +22,7 @@ import mindspore.nn as nn
import mindspore.ops as P
import mindspore.context as context
import mindspore.common.dtype as mstype
from mindspore.ops import functional as F
from mindspore.ops.primitive import constexpr
from mindspore.common.tensor import Tensor
from mindspore.common.parameter import ParameterTuple, Parameter
@ -446,6 +447,17 @@ class _RNNBase(Cell):
self.b_ih_list = ParameterTuple(self.b_ih_list)
self.b_hh_list = ParameterTuple(self.b_hh_list)
# TODO: remove this func
def _shape_dynamic(self, shape):
"""use this func for dynamic. del it when ShapeOp is supported"""
x = []
for i in shape:
if not F.isconstant(i):
x.append(-1)
else:
x.append(i)
return tuple(x)
def _stacked_bi_dynamic_rnn(self, x, h, seq_length):
"""stacked bidirectional dynamic_rnn"""
pre_layer = x
@ -491,9 +503,11 @@ class _RNNBase(Cell):
if self.is_lstm:
h_n = P.Concat(0)(h_n)
c_n = P.Concat(0)(c_n)
h_n = h_n.view(h[0].shape)
c_n = c_n.view(h[1].shape)
return output, (h_n.view(h[0].shape), c_n.view(h[1].shape))
h0_shape = self._shape_dynamic(h[0].shape)
h1_shape = self._shape_dynamic(h[1].shape)
h_n = h_n.view(h0_shape)
c_n = c_n.view(h1_shape)
return output, (h_n.view(h0_shape), c_n.view(h1_shape))
h_n = P.Concat(0)(h_n)
return output, h_n.view(h.shape)
@ -523,9 +537,11 @@ class _RNNBase(Cell):
if self.is_lstm:
h_n = P.Concat(0)(h_n)
c_n = P.Concat(0)(c_n)
h_n = h_n.view(h[0].shape)
c_n = c_n.view(h[1].shape)
return output, (h_n.view(h[0].shape), c_n.view(h[1].shape))
h0_shape = self._shape_dynamic(h[0].shape)
h1_shape = self._shape_dynamic(h[1].shape)
h_n = h_n.view(h0_shape)
c_n = c_n.view(h1_shape)
return output, (h_n.view(h0_shape), c_n.view(h1_shape))
h_n = P.Concat(0)(h_n)
return output, h_n.view(h.shape)

View File

@ -33,9 +33,9 @@ from mindspore.parallel._ps_context import _is_role_worker, _get_ps_context, \
_set_rank_id, _insert_hash_table_size, _set_cache_enable
from mindspore.parallel._utils import _get_parallel_mode, _get_full_batch
from mindspore.context import ParallelMode
from mindspore.ops.primitive import constexpr
from mindspore.ops import functional as F
from mindspore.nn.layer.basic import ClipByNorm
from mindspore.ops.primitive import constexpr
__all__ = ['DenseThor', 'Conv2dThor', 'EmbeddingThor', 'EmbeddingLookupThor']

View File

@ -24,25 +24,6 @@ from mindspore.nn.cell import Cell
__all__ = ['TimeDistributed']
@constexpr
def _check_reshape_pos(reshape_pos, inputs_shape, outputs_shape, prim_name=None):
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if reshape_pos >= len(outputs_shape) or inputs_shape[reshape_pos] != outputs_shape[reshape_pos]:
raise ValueError(f"{msg_prefix} 'reshape_with_axis' is invalid in the input and output. "
f"The 'reshape_pos' must be less than the length of 'outputs_shape', and the "
f"'inputs_shape[reshape_pos]' must be equal to 'outputs_shape[reshape_pos]', but got "
f"'reshape_pos': {reshape_pos}, 'inputs_shape': {inputs_shape}, 'outputs_shape': "
f"{outputs_shape}. You may try pass parameters without 'reshape_with_axis'.")
@constexpr
def _check_expand_dims_axis(time_axis, ndim, prim_name=None):
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if time_axis > ndim:
raise ValueError(f"{msg_prefix} value of 'time_axis' must be in range of [{-ndim - 1}, {ndim}], "
f"but got {time_axis}.")
@constexpr
def _generate_perm(axis_a, axis_b, length):
perm = tuple(range(length))
@ -57,13 +38,6 @@ def _check_data(flag, prim_name=None):
raise TypeError(f"{msg_prefix} inputs and outputs must be a Tensor.")
@constexpr
def _check_inputs_dim(shape, prim_name=None):
msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
if len(shape) < 3:
raise ValueError(f"{msg_prefix} inputs shape must be at least 3D, but got {len(shape)}.")
class TimeDistributed(Cell):
r"""
The time distributed layer.
@ -119,7 +93,6 @@ class TimeDistributed(Cell):
def construct(self, inputs):
_check_data(isinstance(inputs, Tensor), self.cls_name)
_check_inputs_dim(inputs.shape, self.cls_name)
time_axis = self.time_axis % len(inputs.shape)
if self.reshape_with_axis is not None:
reshape_with_axis = self.reshape_with_axis % len(inputs.shape)
@ -134,7 +107,6 @@ class TimeDistributed(Cell):
inputs = self.reshape(inputs, inputs_shape_new[: reshape_pos] + (-1,) + inputs_shape_new[reshape_pos + 2:])
outputs = self.layer(inputs)
_check_data(isinstance(outputs, Tensor), self.cls_name)
_check_reshape_pos(reshape_pos, inputs.shape, outputs.shape, self.cls_name)
outputs_shape_new = outputs.shape[:reshape_pos] + inputs_shape_new[reshape_pos: reshape_pos + 2]
if reshape_pos + 1 < len(outputs.shape):
outputs_shape_new += outputs.shape[reshape_pos + 1:]
@ -147,7 +119,6 @@ class TimeDistributed(Cell):
for item in inputs:
outputs = self.layer(item)
_check_data(isinstance(outputs, Tensor), self.cls_name)
_check_expand_dims_axis(time_axis, outputs.ndim, self.cls_name)
y += (outputs,)
y = Stack(time_axis)(y)
return y

View File

@ -809,7 +809,6 @@ class DiceLoss(LossBase):
def construct(self, logits, label):
_check_is_tensor('logits', logits, self.cls_name)
_check_is_tensor('labels', label, self.cls_name)
_check_shape(logits.shape, label.shape, self.cls_name)
if logits.dtype == mstype.uint8:
raise TypeError(f"For '{self.cls_name}', the dtype of 'logits' can not be uint8.")
if label.dtype == mstype.uint8:
@ -824,31 +823,6 @@ class DiceLoss(LossBase):
return dice_loss
@constexpr
def _check_shape(logits_shape, label_shape, prim_name=None):
"""Internal function, used to check whether the shape of logits and labels meets the requirements."""
validator.check('logits_shape', logits_shape, 'label_shape', label_shape, prim_name=prim_name)
@constexpr
def _check_ndim_multi(logits_dim, label_dim, prim_name=None):
"""Internal function, used to check whether the dimension of logits and label meets the requirements."""
msg_prefix = f'For \'{prim_name}\', the' if prim_name else "The"
if logits_dim < 2:
raise ValueError(f"{msg_prefix} 'logits' dimension must be greater than 1, but got {logits_dim}.")
if label_dim < 2:
raise ValueError(f"{msg_prefix} 'labels' dimension must be greater than 1, but got {label_dim}.")
@constexpr
def _check_weights(weight_shape, label_shape, prim_name=None):
"""Internal function, used to check whether the reduced shape meets the requirements."""
msg_prefix = f'For \'{prim_name}\', the' if prim_name else "The"
if weight_shape != label_shape:
raise ValueError(f"{msg_prefix} weight_shape[0] must be equal to label_shape[1], "
f"but got weight_shape[0]: {weight_shape} and label_shape[1]: {label_shape}.")
class MultiClassDiceLoss(LossBase):
r"""
When there are multiple classifications, label is transformed into multiple binary classifications by one hot.
@ -919,8 +893,6 @@ class MultiClassDiceLoss(LossBase):
def construct(self, logits, label):
_check_is_tensor('logits', logits, self.cls_name)
_check_is_tensor('labels', label, self.cls_name)
_check_shape(logits.shape, label.shape, self.cls_name)
_check_ndim_multi(logits.ndim, label.ndim, self.cls_name)
total_loss = 0
if self.activation is not None:
@ -930,7 +902,6 @@ class MultiClassDiceLoss(LossBase):
if i != self.ignore_indiex:
dice_loss = self.binarydiceloss(logits[:, i], label[:, i])
if self.weights is not None:
_check_weights(self.weights.shape[0], label.shape[1], self.cls_name)
dice_loss *= self.weights[i]
total_loss += dice_loss
@ -1462,12 +1433,6 @@ class BCELoss(LossBase):
return loss
@constexpr
def _check_reduced_shape_valid(ori_shape, reduced_shape, axis, cls_name, arg_name1, arg_name2):
"""Internal function, used to check whether the reduced shape meets the requirements."""
validator.check_reduce_shape(ori_shape, reduced_shape, axis, cls_name, arg_name1, arg_name2)
class CosineEmbeddingLoss(LossBase):
r"""
CosineEmbeddingLoss creates a criterion to measure the similarity between two tensors using cosine distance.
@ -1527,7 +1492,6 @@ class CosineEmbeddingLoss(LossBase):
_check_is_tensor('logits_x2', logits_x2, self.cls_name)
_check_is_tensor('labels', labels, self.cls_name)
inner.same_type_shape_(logits_x1, logits_x2)
_check_reduced_shape_valid(F.shape(logits_x1), F.shape(labels), (1,), self.cls_name, "logits_x1", "labels")
# if labels > 0, 1-cosine(logits_x1, logits_x2)
# else, max(0, cosine(logits_x1, logits_x2)-margin)
prod_sum = self.reduce_sum(logits_x1 * logits_x2, (1,))
@ -1705,32 +1669,6 @@ class BCEWithLogitsLoss(LossBase):
return loss
@constexpr
def _check_ndim(logits_nidm, labels_ndim, prime_name=None):
'''Internal function, used to check whether the dimension of logits and labels meets the requirements.'''
msg_prefix = f'For \'{prime_name}\', the' if prime_name else "The"
if logits_nidm < 2 or logits_nidm > 4:
raise ValueError(f"{msg_prefix} dimensions of 'logits' must be in [2, 4], but got "
f"dimension of 'logits' {logits_nidm}.")
if labels_ndim < 2 or labels_ndim > 4:
raise ValueError(f"{msg_prefix} dimensions of 'labels' must be in [2, 4], but got "
f"dimension of 'labels' {labels_ndim}.")
if logits_nidm != labels_ndim:
raise ValueError(f"{msg_prefix} dimensions of 'logits' and 'labels' must be equal, but got "
f"dimension of 'logits' {logits_nidm} and dimension of 'labels' {labels_ndim}.")
@constexpr
def _check_channel_and_shape(logits, labels, prime_name=None):
'''Internal function, used to check whether the channels or shape of logits and labels meets the requirements.'''
msg_prefix = f'For \'{prime_name}\', the' if prime_name else "The"
if logits == 1:
raise ValueError(f"{msg_prefix} 'logits'.shape[1] cannot be one, but got {logits}.")
if labels not in (1, logits):
raise ValueError(f"{msg_prefix} 'labels'.shape[1] must be one or equal to 'logits'.shape[1]: {logits}, "
f"but got {labels}.")
@constexpr
def _check_input_dtype(labels_dtype, cls_name):
"""Internal function, used to check whether the data type of labels meets the requirements."""
@ -1814,8 +1752,6 @@ class FocalLoss(LossBase):
_check_is_tensor('logits', logits, self.cls_name)
_check_is_tensor('labels', labels, self.cls_name)
labelss = labels
_check_ndim(logits.ndim, labelss.ndim, self.cls_name)
_check_channel_and_shape(logits.shape[1], labelss.shape[1], self.cls_name)
_check_input_dtype(self.dtype(labelss), self.cls_name)
if logits.ndim > 2:

View File

@ -150,7 +150,8 @@ def test_cummin():
def construct(self, a):
return self.func(a, 0)
a = Tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220], ms.float32)
a = Tensor([-0.2284, -0.6628, 0.0975, 0.2680,
-1.3298, -0.4220], ms.float32)
expect = Tensor(np.array(
[-0.2284, -0.6628, -0.6628, -0.6628, -1.3298, -1.3298]), ms.float32)
net = Net()
@ -235,6 +236,32 @@ def test_calculate_expert_capacity():
assert net(10.1, 2.0, 3.3, 4) == 17
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_unsqueeze():
"""
Feature: unsqueeze func
Description: Verify the result of unsqueeze
Expectation: success
"""
from mindspore._extends.parse.standard_method import unsqueeze
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = unsqueeze
def construct(self, x, dim):
return self.func(x, dim)
x = Tensor([[4.0, 9.0, 2.0, 10.0]]).astype("float32")
net = Net()
x2 = net(x, 0)
assert x2.shape == (1, 1, 4)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@ -248,6 +275,7 @@ def test_infer_out_shape():
"""
from mindspore.numpy.utils_const import _infer_out_shape
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
@ -259,6 +287,32 @@ def test_infer_out_shape():
assert net((5,), (6, 1), (7, 1, 5), (8, 1, 6, 1)) == (8, 7, 6, 5)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_tensor_bool():
"""
Feature: tensor_bool func
Description: Verify the result of tensor_bool
Expectation: success
"""
from mindspore._extends.parse.standard_method import tensor_bool
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = tensor_bool
def construct(self, x):
return self.func(x)
x = Tensor([4.0]).astype("float32")
net = Net()
x2 = net(x)
assert bool(x2) is True
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@ -281,3 +335,543 @@ def test_canonicalize_axis():
return self.func(axis, ndim)
net = Net()
assert net(0, 2) == 0
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_top_k():
"""
Feature: top_k func
Description: Verify the result of top_k
Expectation: success
"""
from mindspore._extends.parse.standard_method import top_k
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = top_k
def construct(self, x, k):
return self.func(x, k)
x = Tensor([4.0, 9.0, 2.0, 10.0]).astype("float32")
net = Net()
output = net(x, 3)
expect = ([10.0, 9.0, 4.0], [3, 1, 0])
assert np.allclose(output[0].asnumpy(), expect[0])
assert np.allclose(output[1].asnumpy(), expect[1])
@pytest.mark.level1
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_bernoulli():
"""
Feature: bernoulli func
Description: Verify the result of bernoulli
Expectation: success
"""
from mindspore._extends.parse.standard_method import bernoulli
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = bernoulli
def construct(self, x):
return self.func(x)
x = Tensor(4).astype("float32")
print(x)
net = Net()
output = net(x)
print(output)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_view():
"""
Feature: view func
Description: Verify the result of view
Expectation: success
"""
from mindspore._extends.parse.standard_method import view
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = view
def construct(self, x, y):
return self.func(x, y)
x = Tensor(np.array([[1, 2, 3], [2, 3, 4]], dtype=np.float32))
net = Net()
output = net(x, (3, 2))
expect = [[1., 2.], [3., 2.], [3., 4.]]
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_reshape():
"""
Feature: reshape func
Description: Verify the result of reshape
Expectation: success
"""
from mindspore._extends.parse.standard_method import reshape
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = reshape
def construct(self, x, y):
return self.func(x, y)
x = Tensor([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]], dtype=ms.float32)
expect = [[-0.1, 0.3], [3.6, 0.4], [0.5, -3.2]]
net = Net()
output = net(x, (3, 2))
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_swapaxes():
"""
Feature: swapaxes func
Description: Verify the result of swapaxes
Expectation: success
"""
from mindspore._extends.parse.standard_method import swapaxes
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = swapaxes
def construct(self, x, y, z):
return self.func(x, y, z)
x = Tensor(np.ones((2, 3, 4), dtype=np.float32))
expect = [[[1., 1.], [1., 1.], [1., 1.]],
[[1., 1.], [1., 1.], [1., 1.]],
[[1., 1.], [1., 1.], [1., 1.]],
[[1., 1.], [1., 1.], [1., 1.]]]
net = Net()
output = net(x, 0, 2)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_squeeze():
"""
Feature: squeeze func
Description: Verify the result of squeeze
Expectation: success
"""
from mindspore._extends.parse.standard_method import squeeze
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = squeeze
def construct(self, x, y):
return self.func(x, y)
x = Tensor(np.ones((1, 2, 2, 1), dtype=np.float32))
expect = [[1., 1.],
[1., 1.]]
net = Net()
output = net(x, (0, 3))
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_argmax():
"""
Feature: argmax func
Description: Verify the result of argmax
Expectation: success
"""
from mindspore._extends.parse.standard_method import argmax
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = argmax
def construct(self, x, y):
return self.func(x, y)
a = Tensor(np.arange(10, 16).reshape(2, 3).astype("float32"))
net = Net()
output = net(a, None)
expect = 5
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_diagonal():
"""
Feature: diagonal func
Description: Verify the result of diagonal
Expectation: success
"""
from mindspore._extends.parse.standard_method import diagonal
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = diagonal
def construct(self, x):
return self.func(x)
a = Tensor(np.arange(4).reshape(2, 2))
expect = [0, 3]
net = Net()
output = net(a)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_take():
"""
Feature: take func
Description: Verify the result of take
Expectation: success
"""
from mindspore._extends.parse.standard_method import take
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = take
def construct(self, x, y):
return self.func(x, y)
a = Tensor(np.array([4, 3, 5, 7, 6, 8]))
indices = Tensor(np.array([0, 1, 4]))
expect = [4, 3, 6]
net = Net()
output = net(a, indices)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_choose():
"""
Feature: choose func
Description: Verify the result of choose
Expectation: success
"""
from mindspore._extends.parse.standard_method import choose
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = choose
def construct(self, x, y):
return self.func(x, y)
a = Tensor(np.array([2, 3, 1, 0]))
choices = [[0, 1, 2, 3], [10, 11, 12, 13],
[20, 21, 22, 23], [30, 31, 32, 33]]
expect = [20, 31, 12, 3]
net = Net()
output = net(a, choices)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_var():
"""
Feature: var func
Description: Verify the result of var
Expectation: success
"""
from mindspore._extends.parse.standard_method import var
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = var
def construct(self, x,):
return self.func(x,)
a = Tensor(np.array([1., 2., 3., 4.]))
expect = 1.25
net = Net()
output = net(a)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_searchsorted():
"""
Feature: searchsorted func
Description: Verify the result of searchsorted
Expectation: success
"""
from mindspore._extends.parse.standard_method import searchsorted
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = searchsorted
def construct(self, x, y):
return self.func(x, y)
a = Tensor(np.array([1., 2., 3., 4., 5.]))
expect = 2
net = Net()
output = net(a, 3)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_is_equal_one():
"""
Feature: _is_equal_one func
Description: Verify the result of _is_equal_one
Expectation: success
"""
from mindspore.nn.layer.basic import _is_equal_one
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.func = _is_equal_one
def construct(self, x):
return self.func(x)
a = Tensor(np.array([1., 2., 3., 4., 5.]))
expect = False
net = Net()
output = net(a)
assert output == expect
x = Tensor(np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[10, 11, 12, 13],
[14, 15, 16, 17]]))
expect = [[0, 0, 0, 0],
[5, 0, 0, 0],
[10, 11, 0, 0],
[14, 15, 16, 0]]
net = nn.Tril()
output = net(x, -1)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_triu():
"""
Feature: Triu func
Description: Verify the result of Triu
Expectation: success
"""
x = Tensor(np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[10, 11, 12, 13],
[14, 15, 16, 17]]))
expect = [[0, 0, 3, 4],
[0, 0, 0, 8],
[0, 0, 0, 0],
[0, 0, 0, 0]]
net = nn.Triu()
output = net(x, 2)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_resizebilinear():
"""
Feature: ResizeBilinear func
Description: Verify the result of ResizeBilinear
Expectation: success
"""
x = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], ms.float32)
expect = [[[[1., 1.8, 2.6, 3.4, 4.],
[2.6, 3.4, 4.2, 5., 5.6],
[4.2, 5., 5.8, 6.6000004, 7.2],
[5., 5.8, 6.6, 7.4, 8.],
[5., 5.8, 6.6, 7.4, 8.]]]]
resize_bilinear = nn.ResizeBilinear()
output = resize_bilinear(x, size=(5, 5))
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_matrixdiag():
"""
Feature: MatrixDiag func
Description: Verify the result of MatrixDiag
Expectation: success
"""
x = Tensor(np.array([[1, -1, 1], [1, -1, 1]]), ms.float32)
matrix_diag = nn.MatrixDiag()
output = matrix_diag(x)
print(output)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_embeddinglookup():
"""
Feature: EmbeddingLookup func
Description: Verify the result of EmbeddingLookup
Expectation: no error
"""
# _check_input_2d, _check_input_dtype
# mindspore/python/mindspore/nn/layer/embedding.py
input_indices = Tensor(np.array([[1, 0], [3, 2]]), ms.int32)
output = nn.EmbeddingLookup(4, 2, max_norm=0.002)(input_indices)
assert output is not None
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_centralcrop():
"""
Feature: CentralCrop func
Description: Verify the result of CentralCrop
Expectation: success
"""
net = nn.CentralCrop(central_fraction=0.5)
image = Tensor(np.random.random((4, 3, 4, 4)), ms.float32)
expect = (4, 3, 2, 2)
output = net(image)
assert np.allclose(output.shape, expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_matmul_2():
"""
Feature: MatMul func
Description: Verify the result of MatMul
Expectation: success
"""
net = nn.MatMul()
a = Tensor(np.arange(1, 17).reshape((4, 4)), ms.float32)
b = Tensor(np.arange(1, 17).reshape((4, 4)), ms.float32)
expect = [[90., 100., 110., 120.],
[202., 228., 254., 280.],
[314., 356., 398., 440.],
[426., 484., 542., 600.]]
output = net(a, b)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_reflectionpad1d():
"""
Feature: ReflectionPad1d func
Description: Verify the result of ReflectionPad1d
Expectation: success
"""
from mindspore.nn import ReflectionPad1d
x = Tensor(np.array([[[0, 1, 2, 3], [4, 5, 6, 7]]]).astype(np.float32))
padding = (3, 1)
pad1d = ReflectionPad1d(padding)
expect = [[[3., 2., 1., 0., 1., 2., 3., 2.],
[7., 6., 5., 4., 5., 6., 7., 6.]]]
output = pad1d(x)
assert np.allclose(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_constantpad1d():
"""
Feature: ConstantPad1d func
Description: Verify the result of ConstantPad1d
Expectation: success
"""
from mindspore.nn import ConstantPad1d
x = np.ones(shape=(1, 2, 3, 4)).astype(np.float32)
x = Tensor(x)
expect = [[[[1., 1., 1., 1., 0.5],
[1., 1., 1., 1., 0.5],
[1., 1., 1., 1., 0.5]],
[[1., 1., 1., 1., 0.5],
[1., 1., 1., 1., 0.5],
[1., 1., 1., 1., 0.5]]]]
padding = (0, 1)
value = 0.5
pad1d = ConstantPad1d(padding, value)
output = pad1d(x)
assert np.allclose(output.asnumpy(), expect)

View File

@ -0,0 +1,54 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test control ops """
import numpy as np
import pytest
from mindspore import Tensor
from mindspore import nn
from mindspore.common import dtype as mstype
from mindspore.ops import composite as C
from mindspore.common.parameter import Parameter, ParameterTuple
grad_by_list = C.GradOperation(get_by_list=True)
grad_all = C.GradOperation(get_all=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_switch_layer_with_single_prim():
"""
Feature: SwitchLayer
Description: run switch layer case
Expectation: success.
"""
class SwitchLayerCell(nn.Cell):
def __init__(self):
super(SwitchLayerCell, self).__init__()
self.layers = (nn.ReLU(), nn.ReLU())
self.z3 = Parameter(
Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
def construct(self, index, x):
ret = self.layers[index](x) * self.z3
return ret
index = Tensor(0, dtype=mstype.int32)
net = SwitchLayerCell()
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))

View File

@ -16,7 +16,7 @@ import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import Tensor, context
class Net(nn.Cell):
@ -24,6 +24,16 @@ class Net(nn.Cell):
return x.tril(diagonal)
class TrilNet(nn.Cell):
def __init__(self):
super(TrilNet, self).__init__()
self.tril = nn.Tril()
def construct(self, value, k):
return self.tril(value, k)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@ -44,3 +54,99 @@ def test_tril(mode):
output = net(x)
expect_output = np.array([[-1.8297, 0., 0.], [-1.2167, 0.5574, 0.], [-0.6702, 0.2276, 1.2421]], dtype=np.float32)
assert np.allclose(output.asnumpy(), expect_output)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE,])
def test_tril_0(mode):
"""
Feature: test_tril
Description: Verify the result of test_tril
Expectation: success
"""
value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
net = TrilNet()
out = net(value, 0)
assert np.sum(out.asnumpy()) == 34
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE,])
def test_tril_1(mode):
"""
Feature: test_tril_1
Description: Verify the result of test_tril_1
Expectation: success
"""
value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
net = TrilNet()
out = net(value, 1)
assert np.sum(out.asnumpy()) == 42
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE,])
def test_tril_2(mode):
"""
Feature: test_tril_2
Description: Verify the result of test_tril_2
Expectation: success
"""
value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
net = TrilNet()
out = net(value, -1)
assert np.sum(out.asnumpy()) == 19
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE,])
def test_tril_parameter(mode):
"""
Feature: test_tril_parameter
Description: Verify the result of test_tril_parameter
Expectation: success
"""
net = TrilNet()
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), 0)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE,])
def test_tril_parameter_1(mode):
"""
Feature: test_tril_parameter_1
Description: Verify the result of test_tril_parameter_1
Expectation: success
"""
net = TrilNet()
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), 0)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE,])
def test_tril_parameter_2(mode):
"""
Feature: test_tril_parameter_2
Description: Verify the result of test_tril_parameter_2
Expectation: success
"""
net = TrilNet()
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), 0)

View File

@ -1,3 +1,17 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.nn as nn
@ -6,8 +20,8 @@ from mindspore import context
class Net(nn.Cell):
def construct(self, x):
return x.triu(diagonal=1)
def construct(self, x, k):
return x.triu(diagonal=k)
@pytest.mark.level0
@ -16,10 +30,10 @@ class Net(nn.Cell):
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_subtract(mode):
def test_triu_0(mode):
"""
Feature: tensor.subtract()
Description: Verify the result of tensor.subtract
Feature: test_triu_0
Description: Verify the result of test_triu_0
Expectation: success
"""
context.set_context(mode=mode)
@ -28,9 +42,66 @@ def test_subtract(mode):
[5, 6, 7, 8],
[10, 11, 12, 13],
[14, 15, 16, 17]]))
output = net(x)
output = net(x, 1)
expected = np.array([[0, 2, 3, 4],
[0, 0, 7, 8],
[0, 0, 0, 13],
[0, 0, 0, 0]])
assert np.array_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_triu_1(mode):
"""
Feature: test_triu_1
Description: test_triu_1
Expectation: success
"""
context.set_context(mode=mode)
net = Net()
x = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
output = net(x, 0)
assert np.sum(output.asnumpy()) == 26
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_triu_2(mode):
"""
Feature: test_triu_2
Description: test_triu_2
Expectation: success
"""
context.set_context(mode=mode)
net = Net()
x = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
output = net(x, 1)
assert np.sum(output.asnumpy()) == 11
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
def test_triu_3(mode):
"""
Feature: test_triu_3
Description: test_triu_3
Expectation: success
"""
context.set_context(mode=mode)
net = Net()
x = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
output = net(x, -1)
assert np.sum(output.asnumpy()) == 38

View File

@ -384,8 +384,7 @@ def test_offload_dim_check():
dataset = dataset.map(operations=[C.Decode()], input_columns="image")
dataset = dataset.map(operations=[C.HWC2CHW()], input_columns="image", offload=True)
error_msg = "For HwcToChw offload operation, the dimension of input should be 4, but got 3."
with pytest.raises(ValueError, match=error_msg):
with pytest.raises(ValueError):
for (_, _) in dataset.create_tuple_iterator(num_epochs=1, output_numpy=True):
continue

View File

@ -82,14 +82,14 @@ def test_check_multifield_embedding_false_type_field_id():
@non_graph_engine
def test_check_multifield_embedding_false_input_shape():
with pytest.raises(ValueError):
with pytest.raises(TypeError):
compile_multi_field_embedding((8,), (8, 200), (8, 200),
dtype.int16, dtype.float32, dtype.int16)
@non_graph_engine
def test_check_multifield_embedding_false_value_shape():
with pytest.raises(ValueError):
with pytest.raises(TypeError):
compile_multi_field_embedding((8, 200), (8,), (8, 200),
dtype.int16, dtype.float32, dtype.int16)

View File

@ -85,21 +85,3 @@ def test_psnr_different_dtype():
net = PSNRNet()
with pytest.raises(TypeError):
_cell_graph_executor.compile(net, img1, img2)
def test_psnr_invalid_5d_input():
shape_1 = (8, 3, 16, 16)
shape_2 = (8, 3, 8, 8)
invalid_shape = (8, 3, 16, 16, 1)
img1 = Tensor(np.random.random(shape_1))
invalid_img1 = Tensor(np.random.random(invalid_shape))
img2 = Tensor(np.random.random(shape_2))
invalid_img2 = Tensor(np.random.random(invalid_shape))
net = PSNRNet()
with pytest.raises(ValueError):
_cell_graph_executor.compile(net, invalid_img1, img2)
with pytest.raises(ValueError):
_cell_graph_executor.compile(net, img1, invalid_img2)
with pytest.raises(ValueError):
_cell_graph_executor.compile(net, invalid_img1, invalid_img2)

View File

@ -1,108 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
test nn.Tril()
"""
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
context.set_context(mode=context.GRAPH_MODE)
def test_tril():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
def construct(self):
tril = nn.Tril()
return tril(self.value, 0)
net = Net()
out = net()
assert np.sum(out.asnumpy()) == 34
def test_tril_1():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
def construct(self):
tril = nn.Tril()
return tril(self.value, 1)
net = Net()
out = net()
assert np.sum(out.asnumpy()) == 42
def test_tril_2():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
def construct(self):
tril = nn.Tril()
return tril(self.value, -1)
net = Net()
out = net()
assert np.sum(out.asnumpy()) == 19
def test_tril_parameter():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
def construct(self, x):
tril = nn.Tril()
return tril(x, 0)
net = Net()
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
def test_tril_parameter_1():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
def construct(self, x):
tril = nn.Tril()
return tril(x, 1)
net = Net()
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
def test_tril_parameter_2():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
def construct(self, x):
tril = nn.Tril()
return tril(x, -1)
net = Net()
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))

View File

@ -1,102 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
test nn.Triu()
"""
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
context.set_context(mode=context.GRAPH_MODE)
class TriuNet(nn.Cell):
def __init__(self):
super(TriuNet, self).__init__()
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
def construct(self):
triu = nn.Triu()
return triu(self.value, 0)
def test_triu():
"""
Feature: None
Description: test TriuNet with vm backend
Expectation: None
"""
net = TriuNet()
out = net()
assert np.sum(out.asnumpy()) == 26
def test_triu_1():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
def construct(self):
triu = nn.Triu()
return triu(self.value, 1)
net = Net()
out = net()
assert np.sum(out.asnumpy()) == 11
def test_triu_2():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
def construct(self):
triu = nn.Triu()
return triu(self.value, -1)
net = Net()
out = net()
assert np.sum(out.asnumpy()) == 38
def test_triu_parameter():
class Net(nn.Cell):
def construct(self, x):
triu = nn.Triu()
return triu(x, 0)
net = Net()
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
def test_triu_parameter_1():
class Net(nn.Cell):
def construct(self, x):
triu = nn.Triu()
return triu(x, 1)
net = Net()
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
def test_triu_parameter_2():
class Net(nn.Cell):
def construct(self, x):
triu = nn.Triu()
return triu(x, -1)
net = Net()
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))

View File

@ -533,26 +533,6 @@ def test_parser_switch_layer_inputs_tuple():
back_out = back_net(i, input1, input2, grad)
def test_switch_layer_with_single_prim():
class SwitchLayerCell(nn.Cell):
def __init__(self):
super(SwitchLayerCell, self).__init__()
self.layers = (nn.ReLU(), nn.ReLU())
self.z3 = Parameter(
Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
def construct(self, index, x):
ret = self.layers[index](x) * self.z3
return ret
index = Tensor(0, dtype=mstype.int32)
net = SwitchLayerCell()
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
def test_switch_layer_env_eliminate():
class Net(nn.Cell):
def __init__(self):
@ -1003,7 +983,6 @@ def test_recursive_call():
def __init__(self):
super(Net, self).__init__()
self.fc = nn.Dense(10, 10) # padding=0
# self.net2 = Net2()
def construct(self, x):
net2 = Net2()
@ -1037,8 +1016,6 @@ def test_recursive_call():
# grad for Tensor(Bool) input and eliminate AddN(MakeTuple(Xs, zeros_like(Bool)))
def test_grad_tensor_bool():
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
def construct(self, x, y, z):
out = z