forked from mindspore-Ecosystem/mindspore
!109 Fix some typo errors in session and device module
Merge pull request !109 from leonwanghui/typo-fix
This commit is contained in:
commit
3289d7bb69
|
@ -66,7 +66,7 @@ void CPUKernelRuntime::AssignValueNodeAddress(session::KernelGraph *kernel_graph
|
|||
address->ptr_ = resource_manager_.MemMalloc(tensor_size);
|
||||
if (!address->SyncHostToDevice(data_shape, LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
||||
tensor->data_c(false))) {
|
||||
MS_LOG(EXCEPTION) << "value node sync host to device failed!";
|
||||
MS_LOG(EXCEPTION) << "Value node sync host to device failed!";
|
||||
}
|
||||
}
|
||||
address->ref_count_ = INIT_NODE_REF;
|
||||
|
@ -141,7 +141,7 @@ BaseRef CPUKernelRuntime::CreatTensorForOutput(const AnfNodePtr &input_node, siz
|
|||
MS_EXCEPTION_IF_NULL(node);
|
||||
size_t output_size = AnfAlgo::GetOutputTensorNum(node);
|
||||
if (index >= output_size) {
|
||||
MS_LOG(EXCEPTION) << "invalid input index " << index;
|
||||
MS_LOG(EXCEPTION) << "Invalid input index " << index;
|
||||
}
|
||||
auto address = AnfAlgo::GetMutableOutputAddr(node, index);
|
||||
MS_EXCEPTION_IF_NULL(address);
|
||||
|
@ -157,7 +157,7 @@ BaseRef CPUKernelRuntime::CreatTensorForOutput(const AnfNodePtr &input_node, siz
|
|||
type_id = kNumberTypeFloat32;
|
||||
}
|
||||
if (type_id != kNumberTypeInt32 && type_id != kNumberTypeFloat32) {
|
||||
MS_LOG(EXCEPTION) << "check output type failed.";
|
||||
MS_LOG(EXCEPTION) << "Check output type failed.";
|
||||
}
|
||||
tensor::TensorPtr tensor = std::make_shared<tensor::Tensor>(type_id, temp_shape);
|
||||
MS_EXCEPTION_IF_NULL(tensor);
|
||||
|
@ -181,7 +181,7 @@ void CPUKernelRuntime::BindInputOutput(const session::KernelGraph *kernel_graph,
|
|||
// bind input ptr
|
||||
auto &input_nodes = kernel_graph->inputs();
|
||||
if (input_nodes.size() != inputs.size()) {
|
||||
MS_LOG(EXCEPTION) << "input size not equal to input node size!";
|
||||
MS_LOG(EXCEPTION) << "Input size not equal to input node size!";
|
||||
}
|
||||
|
||||
std::unordered_map<AnfNode *, tensor::TensorPtr> input_map;
|
||||
|
@ -203,7 +203,7 @@ void CPUKernelRuntime::BindInputOutput(const session::KernelGraph *kernel_graph,
|
|||
address->ptr_ = resource_manager_.MemMalloc(tensor_size);
|
||||
if (!address->SyncHostToDevice(data_shape, LongToSize(tensor->data().nbytes()), tensor->data_type(),
|
||||
tensor->data_c(false))) {
|
||||
MS_LOG(EXCEPTION) << "parameter node sync host to device failed!";
|
||||
MS_LOG(EXCEPTION) << "Parameter node sync host to device failed!";
|
||||
}
|
||||
tensor->set_dirty(true);
|
||||
}
|
||||
|
|
|
@ -44,7 +44,7 @@ void CPUResourceManager::MemPlan(const session::KernelGraph *graph) {
|
|||
mem_size_ = graph_mem_size;
|
||||
dynamic_malloc_ = false;
|
||||
} else {
|
||||
MS_LOG(INFO) << "switch to dynamic malloc";
|
||||
MS_LOG(INFO) << "Switch to dynamic malloc";
|
||||
dynamic_malloc_ = true;
|
||||
}
|
||||
}
|
||||
|
@ -63,7 +63,7 @@ void *CPUResourceManager::MemMalloc(size_t mem_size) {
|
|||
dynamic_mem_[ptr] = mem_size;
|
||||
return ptr;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "malloc memory failed: size " << mem_size;
|
||||
MS_LOG(EXCEPTION) << "Malloc memory failed: size " << mem_size;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -31,12 +31,12 @@ GraphId CPUSession::CompileGraph(const AnfNodePtrList &lst, const AnfNodePtrList
|
|||
auto graph_id = graph_sum_;
|
||||
auto graph = ConstructKernelGraph(lst, outputs);
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_LOG(INFO) << "set kernel info";
|
||||
MS_LOG(INFO) << "Set kernel info";
|
||||
SetKernelInfo(graph.get());
|
||||
predictmodel::StepConvertGraph(graph);
|
||||
MS_LOG(INFO) << "build kernel";
|
||||
MS_LOG(INFO) << "Build kernel";
|
||||
BuildKernel(graph.get());
|
||||
MS_LOG(INFO) << "assign kernel address";
|
||||
MS_LOG(INFO) << "Assign kernel address";
|
||||
runtime_.AssignKernelAddress(graph.get());
|
||||
return graph_id;
|
||||
}
|
||||
|
@ -44,18 +44,18 @@ GraphId CPUSession::CompileGraph(const AnfNodePtrList &lst, const AnfNodePtrList
|
|||
void CPUSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::TensorPtr> &inputs, VectorRef *outputs) {
|
||||
auto &kernel_graph = graphs_[graph_id];
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
MS_LOG(INFO) << "bind input output address";
|
||||
MS_LOG(INFO) << "Bind input output address";
|
||||
runtime_.BindInputOutput(kernel_graph.get(), inputs, outputs);
|
||||
MS_LOG(INFO) << "run graph start";
|
||||
MS_LOG(INFO) << "Run graph start";
|
||||
predictmodel::StepConvertWeight(inputs);
|
||||
auto execution_order = kernel_graph->execution_order();
|
||||
Reorder(&execution_order);
|
||||
kernel_graph->set_execution_order(execution_order);
|
||||
bool ret = runtime_.Run(kernel_graph.get());
|
||||
if (!ret) {
|
||||
MS_LOG(EXCEPTION) << "run graph failed";
|
||||
MS_LOG(EXCEPTION) << "Run graph failed";
|
||||
}
|
||||
MS_LOG(INFO) << "run graph end";
|
||||
MS_LOG(INFO) << "Run graph end";
|
||||
}
|
||||
|
||||
void CPUSession::SetKernelInfo(const KernelGraph *kernel_graph) {
|
||||
|
|
|
@ -50,7 +50,7 @@ void KernelAdjust::Reorder(const std::shared_ptr<session::KernelGraph> &kernel_g
|
|||
std::vector<CNodePtr> momentum_list;
|
||||
std::vector<CNodePtr> other_list;
|
||||
for (const auto &cnode : origin_cnode_list) {
|
||||
if (kOptOpeatorSet.find(AnfAlgo::GetCNodeName(cnode)) != kOptOpeatorSet.end()) {
|
||||
if (kOptOperatorSet.find(AnfAlgo::GetCNodeName(cnode)) != kOptOperatorSet.end()) {
|
||||
momentum_list.emplace_back(cnode);
|
||||
} else {
|
||||
other_list.emplace_back(cnode);
|
||||
|
@ -119,7 +119,7 @@ void KernelAdjust::CreateSwitchOpParameters(const std::shared_ptr<session::Kerne
|
|||
MS_EXCEPTION_IF_NULL(tensor_ptr);
|
||||
mindspore::abstract::AbstractBasePtr paremeter_abstract_ptr = tensor_ptr->ToAbstract();
|
||||
if (paremeter_abstract_ptr == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "create abstract brfore insert switch op failed!";
|
||||
MS_LOG(EXCEPTION) << "create abstract before insert switch op failed!";
|
||||
}
|
||||
|
||||
ParameterPtr loop_count = std::make_shared<Parameter>(kernel_graph_ptr);
|
||||
|
@ -372,7 +372,7 @@ bool KernelAdjust::StepLoadCtrlInputs(const std::shared_ptr<session::Context> &c
|
|||
auto tensor = inputs[i];
|
||||
size_t deal_index = input_nodes.size() - input_ctrl_size + i;
|
||||
if (deal_index >= input_nodes.size()) {
|
||||
MS_LOG(EXCEPTION) << "deak_index[" << deal_index << "] outof range";
|
||||
MS_LOG(EXCEPTION) << "deal_index[" << deal_index << "] out of range";
|
||||
}
|
||||
auto input_node = input_nodes[deal_index];
|
||||
bool need_sync = false;
|
||||
|
@ -440,7 +440,7 @@ void KernelAdjust::LoadSwitchInputs(std::vector<tensor::TensorPtr> *inputs) {
|
|||
|
||||
void KernelAdjust::Profiling(const std::shared_ptr<session::KernelGraph> &kernel_graph_ptr) {
|
||||
if (!ascend::ProfilingManager::GetInstance().IsProfiling()) {
|
||||
MS_LOG(INFO) << "no need to profiling";
|
||||
MS_LOG(INFO) << "No need to profiling";
|
||||
return;
|
||||
}
|
||||
ProfilingTraceInfo profiling_trace_info;
|
||||
|
@ -453,10 +453,10 @@ void KernelAdjust::Profiling(const std::shared_ptr<session::KernelGraph> &kernel
|
|||
|
||||
void KernelAdjust::InsertProfilingKernel(const std::shared_ptr<session::KernelGraph> &kernel_graph_ptr,
|
||||
const ProfilingTraceInfo &profiling_trace_info) {
|
||||
MS_LOG(INFO) << "[profiling] insert profiling kernel start";
|
||||
MS_LOG(INFO) << "[profiling] Insert profiling kernel start";
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph_ptr);
|
||||
if (!profiling_trace_info.IsValid()) {
|
||||
MS_LOG(WARNING) << "profiling trace point not found";
|
||||
MS_LOG(WARNING) << "Profiling trace point not found";
|
||||
return;
|
||||
}
|
||||
std::vector<CNodePtr> new_cnode_list;
|
||||
|
|
|
@ -241,7 +241,7 @@ void KernelRuntime::AssignStaticMemoryInput(const session::KernelGraph *graph) {
|
|||
auto output_size = AnfAlgo::GetOutputTensorNum(item);
|
||||
for (size_t index = 0; index < output_size; index++) {
|
||||
TypeId output_type_id = AnfAlgo::GetOutputDeviceDataType(item, index);
|
||||
// if graph output is a weight and doesn't link to any cnode,it's data type will be unkonwn
|
||||
// if graph output is a weight and doesn't link to any cnode, it's data type will be unknown
|
||||
if (output_type_id == kTypeUnknown) {
|
||||
MS_LOG(WARNING) << "It is not suggested to use a lonely weight parameter as the output of graph";
|
||||
output_type_id = AnfAlgo::GetOutputInferDataType(item, index);
|
||||
|
@ -372,7 +372,7 @@ void KernelRuntime::AssignNodeOutputMem(int flag, const AnfNodePtr &node, int in
|
|||
continue;
|
||||
}
|
||||
if (AnfAlgo::OutputAddrExist(node, i)) {
|
||||
MS_LOG(INFO) << "already malloc index:" << i;
|
||||
MS_LOG(INFO) << "Already malloc index:" << i;
|
||||
continue;
|
||||
}
|
||||
auto ptr = CalDeviceMem(node, output_sizes[i], flag, i);
|
||||
|
@ -392,7 +392,7 @@ void KernelRuntime::AssignValueNodeTensor(const ValueNodePtr &value_node, const
|
|||
MS_EXCEPTION_IF_NULL(node_value);
|
||||
auto tensor = node_value->cast<TensorPtr>();
|
||||
if (tensor == nullptr) {
|
||||
MS_LOG(WARNING) << "tensor is null";
|
||||
MS_LOG(WARNING) << "Tensor is null";
|
||||
return;
|
||||
}
|
||||
size_t tensor_size = tensor->data().nbytes();
|
||||
|
@ -595,7 +595,7 @@ void KernelRuntime::GenLaunchArgs(const mindspore::kernel::KernelMod &kernel_mod
|
|||
|
||||
void KernelRuntime::GenAddrCleanLaunchArgs(const CNodePtr &cnode, AddressPtrList *kernel_inputs) {
|
||||
if (cnode->inputs().size() != 2) {
|
||||
MS_LOG(EXCEPTION) << "atomic Addr clean Node Input nodes not equal 2.";
|
||||
MS_LOG(EXCEPTION) << "Atomic Addr clean Node Input nodes not equal 2.";
|
||||
}
|
||||
auto pre_node = cnode->inputs()[1];
|
||||
// set clean output address
|
||||
|
@ -721,11 +721,11 @@ uint8_t *KernelRuntime::MallocDynamicMem(size_t size, bool communication_mem) {
|
|||
bool KernelRuntime::LaunchKernel(const session::KernelGraph *graph) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
if (!LaunchKernelMod(*graph)) {
|
||||
MS_LOG(ERROR) << "LaunchKernelMod failed.";
|
||||
MS_LOG(ERROR) << "LaunchKernelMod failed!";
|
||||
return false;
|
||||
}
|
||||
if (!SyncStream()) {
|
||||
MS_LOG(ERROR) << "SyncStream failed.";
|
||||
MS_LOG(ERROR) << "SyncStream failed!";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
|
|
@ -67,7 +67,7 @@ KernelRuntime *KernelRuntimeManager::GetKernelRuntime(const std::string &device_
|
|||
MS_EXCEPTION_IF_NULL(kernel_runtime);
|
||||
runtime_map_[runtime_key] = kernel_runtime;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "no kernel runtime creator for " << device_name << " with device id " << device_id;
|
||||
MS_LOG(EXCEPTION) << "No kernel runtime creator for " << device_name << " with device id " << device_id;
|
||||
}
|
||||
|
||||
return kernel_runtime.get();
|
||||
|
|
|
@ -65,7 +65,7 @@ KernelWithIndex AnfRuntimeAlgorithm::VisitKernel(const AnfNodePtr &anf_node, siz
|
|||
return VisitKernel(node, 0);
|
||||
} else if (IsPrimitive(input0, prim::kPrimTupleGetItem)) {
|
||||
if (cnode->inputs().size() != kTupleGetItemInputSize) {
|
||||
MS_LOG(EXCEPTION) << "the node tuple_get_item must have 2 inputs!";
|
||||
MS_LOG(EXCEPTION) << "The node tuple_get_item must have 2 inputs!";
|
||||
}
|
||||
auto input2 = cnode->input(kInputNodeOutputIndexInTupleGetItem);
|
||||
MS_EXCEPTION_IF_NULL(input2);
|
||||
|
@ -102,7 +102,7 @@ KernelWithIndex AnfRuntimeAlgorithm::VisitKernelWithReturnType(const AnfNodePtr
|
|||
MS_EXCEPTION_IF_NULL(input0);
|
||||
if (IsPrimitive(input0, prim::kPrimTupleGetItem)) {
|
||||
if (cnode->inputs().size() != kTupleGetItemInputSize) {
|
||||
MS_LOG(EXCEPTION) << "the node tuple_get_item must have 2 inputs!";
|
||||
MS_LOG(EXCEPTION) << "The node tuple_get_item must have 2 inputs!";
|
||||
}
|
||||
auto input2 = cnode->input(kInputNodeOutputIndexInTupleGetItem);
|
||||
MS_EXCEPTION_IF_NULL(input2);
|
||||
|
@ -188,7 +188,7 @@ std::string AnfRuntimeAlgorithm::GetNodeDebugString(const AnfNodePtr &node) {
|
|||
void AnfRuntimeAlgorithm::SetNodeAttr(const std::string &key, const ValuePtr &value, const AnfNodePtr &node) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
if (!node->isa<CNode>()) {
|
||||
MS_LOG(EXCEPTION) << "only cnode has attr,but this anf is " << node->DebugString();
|
||||
MS_LOG(EXCEPTION) << "Only cnode has attr, but this anf is " << node->DebugString();
|
||||
}
|
||||
auto primitive = AnfAlgo::GetCNodePrimitive(node);
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
|
@ -204,7 +204,7 @@ void AnfRuntimeAlgorithm::CopyNodeAttr(const std::string &old_key, const std::st
|
|||
MS_EXCEPTION_IF_NULL(from);
|
||||
MS_EXCEPTION_IF_NULL(to);
|
||||
if (!from->isa<CNode>() || !to->isa<CNode>()) {
|
||||
MS_LOG(EXCEPTION) << "only cnode has attr,but this from_anf is " << from->DebugString() << " ,to_node is "
|
||||
MS_LOG(EXCEPTION) << "Only cnode has attr, but this from_anf is " << from->DebugString() << " ,to_node is "
|
||||
<< to->DebugString();
|
||||
}
|
||||
auto from_primitive = AnfAlgo::GetCNodePrimitive(from);
|
||||
|
@ -218,7 +218,7 @@ void AnfRuntimeAlgorithm::CopyNodeAttrs(const AnfNodePtr &from, const AnfNodePtr
|
|||
MS_EXCEPTION_IF_NULL(from);
|
||||
MS_EXCEPTION_IF_NULL(to);
|
||||
if (!from->isa<CNode>() || !to->isa<CNode>()) {
|
||||
MS_LOG(EXCEPTION) << "only cnode has attr,but this from_anf is " << from->DebugString() << ",to_node is "
|
||||
MS_LOG(EXCEPTION) << "Only cnode has attr, but this from_anf is " << from->DebugString() << ",to_node is "
|
||||
<< from->DebugString();
|
||||
}
|
||||
auto from_primitive = AnfAlgo::GetCNodePrimitive(from);
|
||||
|
@ -231,7 +231,7 @@ void AnfRuntimeAlgorithm::CopyNodeAttrs(const AnfNodePtr &from, const AnfNodePtr
|
|||
void AnfRuntimeAlgorithm::EraseNodeAttr(const std::string &key, const AnfNodePtr node) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
if (!node->isa<CNode>()) {
|
||||
MS_LOG(EXCEPTION) << "only cnode has attr,but this anf is " << node->DebugString();
|
||||
MS_LOG(EXCEPTION) << "Only cnode has attr, but this anf is " << node->DebugString();
|
||||
}
|
||||
auto primitive = AnfAlgo::GetCNodePrimitive(node);
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
|
@ -241,7 +241,7 @@ void AnfRuntimeAlgorithm::EraseNodeAttr(const std::string &key, const AnfNodePtr
|
|||
bool AnfRuntimeAlgorithm::HasNodeAttr(const std::string &key, const AnfNodePtr &node) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
if (!node->isa<CNode>()) {
|
||||
MS_LOG(WARNING) << "only cnode has attr,but this anf is " << node->DebugString();
|
||||
MS_LOG(WARNING) << "Only cnode has attr, but this anf is " << node->DebugString();
|
||||
return false;
|
||||
}
|
||||
auto primitive = AnfAlgo::GetCNodePrimitive(node);
|
||||
|
@ -252,7 +252,7 @@ bool AnfRuntimeAlgorithm::HasNodeAttr(const std::string &key, const AnfNodePtr &
|
|||
size_t AnfRuntimeAlgorithm::GetInputTensorNum(const AnfNodePtr &node) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
if (!node->isa<CNode>()) {
|
||||
MS_LOG(EXCEPTION) << "only cnode has real input,but this anf is " << node->DebugString();
|
||||
MS_LOG(EXCEPTION) << "Only cnode has real input, but this anf is " << node->DebugString();
|
||||
}
|
||||
auto cnode = node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
|
@ -404,7 +404,7 @@ std::vector<kernel::Axis> AnfRuntimeAlgorithm::GetInputReshapeType(const AnfNode
|
|||
MS_EXCEPTION_IF_NULL(build_info);
|
||||
std::vector<kernel::Axis> result;
|
||||
if (!build_info->GetInputReshapeType(input_idx, &result)) {
|
||||
MS_LOG(EXCEPTION) << "filed to ge the node's[ " << node->DebugString() << "] reshape type !";
|
||||
MS_LOG(EXCEPTION) << "Failed to get the node's[ " << node->DebugString() << "] reshape type !";
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
@ -417,7 +417,7 @@ std::vector<kernel::Axis> AnfRuntimeAlgorithm::GetOutputReshapeType(const AnfNod
|
|||
MS_EXCEPTION_IF_NULL(build_info);
|
||||
std::vector<kernel::Axis> result;
|
||||
if (!build_info->GetOutputReshapeType(output_idx, &result)) {
|
||||
MS_LOG(EXCEPTION) << "filed to ge the node's[ " << node->DebugString() << "] reshape type !";
|
||||
MS_LOG(EXCEPTION) << "Failed to get the node's[ " << node->DebugString() << "] reshape type !";
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
@ -593,7 +593,7 @@ void AnfRuntimeAlgorithm::SetOutputAddr(const DeviceAddressPtr &addr, size_t out
|
|||
auto kernel_info = node->kernel_info();
|
||||
MS_EXCEPTION_IF_NULL(kernel_info);
|
||||
if (!kernel_info->SetOutputAddr(addr, output_idx)) {
|
||||
MS_LOG(EXCEPTION) << "node " << node->DebugString() << "set adr" << output_idx << " fail";
|
||||
MS_LOG(EXCEPTION) << "Node " << node->DebugString() << "set adr" << output_idx << " fail";
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -603,7 +603,7 @@ void AnfRuntimeAlgorithm::SetWorkspaceAddr(const DeviceAddressPtr &addr, size_t
|
|||
auto kernel_info = node->kernel_info();
|
||||
MS_EXCEPTION_IF_NULL(kernel_info);
|
||||
if (!kernel_info->SetWorkspaceAddr(addr, output_idx)) {
|
||||
MS_LOG(EXCEPTION) << "node " << node->DebugString() << "set adr" << output_idx << " fail";
|
||||
MS_LOG(EXCEPTION) << "Node " << node->DebugString() << "set adr" << output_idx << " fail";
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -614,7 +614,7 @@ DeviceAddress *AnfRuntimeAlgorithm::GetWorkspaceAddr(const AnfNodePtr &node, siz
|
|||
MS_EXCEPTION_IF_NULL(kernel_info);
|
||||
auto addr = kernel_info->GetWorkspaceAddr(output_idx);
|
||||
if (addr == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "output_idx " << output_idx << " of node " << node->DebugString()
|
||||
MS_LOG(EXCEPTION) << "Output_idx " << output_idx << " of node " << node->DebugString()
|
||||
<< "] workspace addr is not exist";
|
||||
}
|
||||
return addr;
|
||||
|
@ -625,7 +625,7 @@ void AnfRuntimeAlgorithm::SetOutputInferTypeAndShape(const std::vector<TypeId> &
|
|||
const std::vector<std::vector<size_t>> &shapes, AnfNode *node) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
if (types.size() != shapes.size()) {
|
||||
MS_LOG(EXCEPTION) << "types size " << types.size() << "should be same with shapes size " << shapes.size();
|
||||
MS_LOG(EXCEPTION) << "Types size " << types.size() << "should be same with shapes size " << shapes.size();
|
||||
}
|
||||
if (shapes.empty()) {
|
||||
MS_LOG(EXCEPTION) << "Illegal empty output_types_shapes";
|
||||
|
@ -636,7 +636,7 @@ void AnfRuntimeAlgorithm::SetOutputInferTypeAndShape(const std::vector<TypeId> &
|
|||
auto abstract = std::make_shared<AbstractTensor>(TypeIdToType(types[0]), shape_int);
|
||||
node->set_abstract(abstract);
|
||||
} else {
|
||||
// mutiple output handle
|
||||
// multiple output handle
|
||||
std::vector<AbstractBasePtr> abstract_list;
|
||||
for (size_t i = 0; i < types.size(); ++i) {
|
||||
std::vector<int> shape_int;
|
||||
|
@ -647,12 +647,12 @@ void AnfRuntimeAlgorithm::SetOutputInferTypeAndShape(const std::vector<TypeId> &
|
|||
node->set_abstract(abstract_tuple);
|
||||
}
|
||||
}
|
||||
// copy a abstract of a node to another node
|
||||
// copy an abstract of a node to another node
|
||||
void AnfRuntimeAlgorithm::CopyAbstract(const AnfNodePtr &from_node, AnfNode *to_node) {
|
||||
to_node->set_abstract(from_node->abstract());
|
||||
}
|
||||
|
||||
// get KernelBuildType of node ,such as ATT,RT,FWK and so on
|
||||
// get KernelBuildType of node, such as ATT,RT,FWK and so on
|
||||
KernelType AnfRuntimeAlgorithm::GetKernelType(const AnfNodePtr &node) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
auto kernel_info = node->kernel_info();
|
||||
|
@ -846,7 +846,7 @@ size_t AnfRuntimeAlgorithm::GetRealInputIndex(const mindspore::AnfNodePtr &anf_n
|
|||
auto find = spec_node_list.find(node_name);
|
||||
if (find != spec_node_list.end()) {
|
||||
ret = find->second[cur_index];
|
||||
MS_LOG(INFO) << "real input index change to" << ret << ", node name:" << node_name;
|
||||
MS_LOG(INFO) << "Real input index change to" << ret << ", node name:" << node_name;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
|
|
|
@ -61,7 +61,7 @@ class AnfRuntimeAlgorithm {
|
|||
MS_EXCEPTION_IF_NULL(node);
|
||||
if (!node->isa<CNode>()) {
|
||||
std::string node_debug_log = node->DebugString();
|
||||
MS_LOG(EXCEPTION) << "only cnode has attr,but this anf is " << node_debug_log.c_str();
|
||||
MS_LOG(EXCEPTION) << "Only cnode has attr, but this anf is " << node_debug_log.c_str();
|
||||
}
|
||||
auto primitive = GetCNodePrimitive(node);
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
|
@ -105,7 +105,7 @@ class AnfRuntimeAlgorithm {
|
|||
static TypeId GetOutputInferDataType(const AnfNodePtr &node, size_t output_idx);
|
||||
// get output original data type from prev node,input_index is the input index of current node related to prev node
|
||||
static TypeId GetPrevNodeOutputInferDataType(const AnfNodePtr &node, size_t input_idx);
|
||||
// get output select data typpe of anf node
|
||||
// get output select data type of anf node
|
||||
static TypeId GetOutputDeviceDataType(const AnfNodePtr &node, size_t output_idx);
|
||||
// get input select data type of anf node
|
||||
static TypeId GetInputDeviceDataType(const AnfNodePtr &node, size_t input_idx);
|
||||
|
|
|
@ -56,7 +56,7 @@ void DumpGraphExeOrder(const std::vector<CNodePtr> &execution_order) {
|
|||
}
|
||||
|
||||
void DumpGraphInputArgs(const VectorRef &args) {
|
||||
MS_LOG(INFO) << "args size[%lu]" << args.size();
|
||||
MS_LOG(INFO) << "Args size[%lu]" << args.size();
|
||||
for (size_t i = 0; i < args.size(); i++) {
|
||||
if (utils::isa<AnfNodePtr>(args[i])) {
|
||||
auto anf = utils::cast<AnfNodePtr>(args[i]);
|
||||
|
@ -67,7 +67,7 @@ void DumpGraphInputArgs(const VectorRef &args) {
|
|||
MS_EXCEPTION_IF_NULL(value);
|
||||
MS_LOG(INFO) << "Tensor arg" << i << " = " << value->ToString();
|
||||
} else {
|
||||
MS_LOG(INFO) << "Unknonwn arg" << i << " = " << args[i].ToString();
|
||||
MS_LOG(INFO) << "Unknown arg" << i << " = " << args[i].ToString();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -96,7 +96,7 @@ GraphId GetDistinctionLabel(const KernelGraphPtr &graph) {
|
|||
GraphId AscendSession::CompileGraph(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) {
|
||||
MS_LOG(INFO) << "start";
|
||||
auto graph_id = graph_sum_;
|
||||
// construct graph,if construct successs,graph_sum_ + 1
|
||||
// construct graph, if successfully, graph_sum_ + 1
|
||||
auto graph = ConstructKernelGraph(lst, outputs);
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
opt::AscendBackendIRFusionOptimization(graph);
|
||||
|
@ -128,7 +128,7 @@ void AscendSession::BuildGraph(GraphId graph_id) {
|
|||
// merge child graph
|
||||
MergeGraphExecOrder();
|
||||
} else {
|
||||
// set the distinciton label of single graph
|
||||
// set the distinction label of single graph
|
||||
SetStreamDistinctionLabel(GetGraph(graph_id), graph_id, false);
|
||||
}
|
||||
// adjust execution order because merge child graph and other special operations
|
||||
|
@ -144,7 +144,7 @@ void AscendSession::BuildGraph(GraphId graph_id) {
|
|||
if (ms_context->precompile_only()) {
|
||||
MS_LOG(INFO) << "Precompile only, stop in build kernel step";
|
||||
} else {
|
||||
// alloc memeory,include static memory and dynamic memory
|
||||
// alloc memory, including static memory and dynamic memory
|
||||
MemoryAlloc(graph.get());
|
||||
// generate task info for task sink mode
|
||||
GenerateTaskInfo(graph);
|
||||
|
@ -159,9 +159,9 @@ void AscendSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::
|
|||
MS_LOG(INFO) << "start";
|
||||
auto kernel_graph = GetGraph(graph_id);
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
// if no child graph exist and no anf output exist
|
||||
// if none of child graph and no anf output exists
|
||||
if (!kernel_graph->executable()) {
|
||||
MS_LOG(INFO) << "no child graph but has anf output";
|
||||
MS_LOG(INFO) << "No child graph has anf output";
|
||||
UpdateOutputs(kernel_graph, outputs, inputs);
|
||||
return;
|
||||
}
|
||||
|
@ -184,16 +184,16 @@ void AscendSession::RunGraph(const GraphId &graph_id, const std::vector<tensor::
|
|||
}
|
||||
|
||||
void AscendSession::RunOpHardwareOptimize(const std::shared_ptr<session::KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start";
|
||||
// data layout optimization
|
||||
opt::AscendDataLayout(kernel_graph);
|
||||
// mixed precision optimization
|
||||
opt::AscendMixPrecision(kernel_graph);
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
MS_LOG(INFO) << "Finish";
|
||||
}
|
||||
|
||||
void AscendSession::RunOpExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
bool ret_ok = runtime_instance->LaunchKernel(kernel_graph.get());
|
||||
|
@ -252,26 +252,26 @@ py::tuple AscendSession::RunOp(const OpRunInfo &op_run_info, const GraphInfo &gr
|
|||
|
||||
// compile graph steps
|
||||
void AscendSession::SelectKernel(const KernelGraph &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
for (const auto &cnode : kernel_graph.execution_order()) {
|
||||
device::ascend::SelectKernelInfo(cnode);
|
||||
MS_LOG(INFO) << "select ApplyKernel: " << cnode->DebugString();
|
||||
MS_LOG(INFO) << "Select ApplyKernel: " << cnode->DebugString();
|
||||
}
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
void AscendSession::InitRuntimeResource() {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
if (!runtime_instance->Init()) {
|
||||
MS_LOG(EXCEPTION) << "kernel runtime init error.";
|
||||
MS_LOG(EXCEPTION) << "Kernel runtime init error.";
|
||||
}
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
void AscendSession::HardwareOptimize(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "HardwareOptimize start !";
|
||||
MS_LOG(INFO) << "HardwareOptimize start!";
|
||||
opt::AscendBackendOptimization(kernel_graph);
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
kernel_graph->SetExecOrderByDefault();
|
||||
|
@ -279,7 +279,7 @@ void AscendSession::HardwareOptimize(const std::shared_ptr<KernelGraph> &kernel_
|
|||
}
|
||||
|
||||
void AscendSession::AdjustKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
device::KernelAdjust::GetInstance().Reorder(kernel_graph);
|
||||
opt::HideNopNode(kernel_graph.get());
|
||||
// Insert CLearZero op
|
||||
|
@ -302,7 +302,7 @@ void AscendSession::AdjustKernel(const std::shared_ptr<KernelGraph> &kernel_grap
|
|||
}
|
||||
|
||||
void AscendSession::RunOpAdjustKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
opt::HideNopNode(kernel_graph.get());
|
||||
// Insert CLearZero op
|
||||
// prepare for next step from json get atomic info
|
||||
|
@ -312,18 +312,18 @@ void AscendSession::RunOpAdjustKernel(const std::shared_ptr<KernelGraph> &kernel
|
|||
}
|
||||
|
||||
void AscendSession::AssignStream(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
device::ascend::AscendStreamAssign::GetInstance().AssignStreamNew(kernel_graph);
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
void AscendSession::BuildKernel(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
struct timeval start_time, end_time;
|
||||
(void)gettimeofday(&start_time, nullptr);
|
||||
auto ret = device::ascend::KernelBuild(kernel_graph.get());
|
||||
if (!ret) {
|
||||
MS_LOG(EXCEPTION) << "kernel build error.";
|
||||
MS_LOG(EXCEPTION) << "Kernel build error.";
|
||||
}
|
||||
(void)gettimeofday(&end_time, nullptr);
|
||||
const uint64_t kUSecondInSecond = 1000000;
|
||||
|
@ -334,7 +334,7 @@ void AscendSession::BuildKernel(const std::shared_ptr<KernelGraph> &kernel_graph
|
|||
}
|
||||
|
||||
void AscendSession::MemoryAlloc(KernelGraph *kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
opt::RemoveNopNode(kernel_graph);
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
|
||||
|
@ -345,7 +345,7 @@ void AscendSession::MemoryAlloc(KernelGraph *kernel_graph) const {
|
|||
|
||||
void AscendSession::RunOpMemoryAlloc(const std::vector<tensor::TensorPtr> &input_tensors,
|
||||
KernelGraph *kernel_graph) const {
|
||||
MS_LOG(INFO) << "start memory alloc!";
|
||||
MS_LOG(INFO) << "Start memory alloc!";
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
opt::RemoveNopNode(kernel_graph);
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
|
||||
|
@ -355,30 +355,30 @@ void AscendSession::RunOpMemoryAlloc(const std::vector<tensor::TensorPtr> &input
|
|||
}
|
||||
|
||||
void AscendSession::GenerateTaskInfo(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
(void)device::KernelAdjust::GetInstance().StepLoadCtrlInputs(context_, kernel_graph);
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
bool ret_ok = runtime_instance->GenTask(kernel_graph.get());
|
||||
if (!ret_ok) {
|
||||
MS_LOG(EXCEPTION) << "generate task error!";
|
||||
MS_LOG(EXCEPTION) << "Generate task error!";
|
||||
}
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
void AscendSession::LoadTask(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
bool ret_ok = runtime_instance->LoadTask(kernel_graph.get());
|
||||
if (!ret_ok) {
|
||||
MS_LOG(EXCEPTION) << "load task error!";
|
||||
MS_LOG(EXCEPTION) << "Load task error!";
|
||||
}
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
void AscendSession::ExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
bool ret_ok = runtime_instance->Run(kernel_graph.get());
|
||||
|
@ -389,7 +389,7 @@ void AscendSession::ExecTask(const std::shared_ptr<KernelGraph> &kernel_graph) c
|
|||
}
|
||||
|
||||
void AscendSession::Dump(const std::shared_ptr<KernelGraph> &kernel_graph) const {
|
||||
MS_LOG(INFO) << "start !";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetKernelRuntime(kAscendDevice, device_id_);
|
||||
MS_EXCEPTION_IF_NULL(runtime_instance);
|
||||
|
@ -398,7 +398,7 @@ void AscendSession::Dump(const std::shared_ptr<KernelGraph> &kernel_graph) const
|
|||
}
|
||||
|
||||
GraphId AscendSession::SetFinalGraphInput(const std::vector<AnfNodePtr> &args) {
|
||||
MS_LOG(INFO) << "start!args size " << args.size();
|
||||
MS_LOG(INFO) << "Start! Args size " << args.size();
|
||||
auto final_graph = std::make_shared<KernelGraph>();
|
||||
final_graph_id_ = graph_sum_++;
|
||||
graphs_[final_graph_id_] = final_graph;
|
||||
|
@ -418,12 +418,12 @@ GraphId AscendSession::SetFinalGraphInput(const std::vector<AnfNodePtr> &args) {
|
|||
if (parameter_belong_graph_id == kInvalidGraphId) {
|
||||
parameter_backend = final_graph->NewParameter(parameter->cast<ParameterPtr>());
|
||||
final_graph->FrontBackendlMapAdd(parameter, parameter_backend);
|
||||
MS_LOG(INFO) << "new parameter" << parameter->DebugString() << "in final_graph";
|
||||
MS_LOG(INFO) << "New parameter" << parameter->DebugString() << "in final_graph";
|
||||
} else {
|
||||
// parametr is a parameter of child graph
|
||||
auto graph = GetGraph(parameter_belong_graph_id);
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_LOG(INFO) << "reuse parameter [" << parameter->DebugString() << "] of child graph ["
|
||||
MS_LOG(INFO) << "Reuse parameter [" << parameter->DebugString() << "] of child graph ["
|
||||
<< parameter_belong_graph_id << "]";
|
||||
parameter_backend = graph->GetBackendAnfByFrontAnf(parameter);
|
||||
}
|
||||
|
@ -435,7 +435,7 @@ GraphId AscendSession::SetFinalGraphInput(const std::vector<AnfNodePtr> &args) {
|
|||
MS_EXCEPTION_IF_NULL(final_graph_inputs);
|
||||
final_graph_inputs->push_back(parameter_backend);
|
||||
}
|
||||
MS_LOG(INFO) << "end final_graph_id " << final_graph_id_;
|
||||
MS_LOG(INFO) << "End final_graph_id " << final_graph_id_;
|
||||
return final_graph_id_;
|
||||
}
|
||||
|
||||
|
@ -454,7 +454,7 @@ void AscendSession::SetFinalGraphOutput(const BaseRef &output) {
|
|||
value_node->set_abstract(abstract::FromValue(value_ptr));
|
||||
final_graph->set_output(final_graph->NewCNode({NewValueNode(prim::kPrimMakeTuple), value_node}));
|
||||
final_graph->set_executable(false);
|
||||
MS_LOG(INFO) << "not anf output[" << output.ToString() << "]";
|
||||
MS_LOG(INFO) << "Not anf output[" << output.ToString() << "]";
|
||||
return;
|
||||
}
|
||||
// get the backend anf node related to the output node of front
|
||||
|
@ -462,12 +462,12 @@ void AscendSession::SetFinalGraphOutput(const BaseRef &output) {
|
|||
auto output_from_graph_id = GetGraphIdByNode(output_anf_node);
|
||||
auto output_from_graph = GetGraph(output_from_graph_id);
|
||||
MS_EXCEPTION_IF_NULL(output_anf_node);
|
||||
MS_LOG(INFO) << "set the output[" << output_anf_node->DebugString() << "] of graph[" << output_from_graph_id
|
||||
MS_LOG(INFO) << "Set the output[" << output_anf_node->DebugString() << "] of graph[" << output_from_graph_id
|
||||
<< "] to final graph";
|
||||
MS_EXCEPTION_IF_NULL(output_from_graph);
|
||||
// if output is from final graph,it remarks no child graph exist
|
||||
if (final_graph_id_ == output_from_graph_id) {
|
||||
MS_LOG(INFO) << "no child graph,output is " << output_anf_node->DebugString();
|
||||
MS_LOG(INFO) << "No child graph,output is " << output_anf_node->DebugString();
|
||||
final_graph->set_output(ConstructOutput({output_anf_node}, final_graph));
|
||||
final_graph->set_executable(false);
|
||||
return;
|
||||
|
@ -478,15 +478,15 @@ void AscendSession::SetFinalGraphOutput(const BaseRef &output) {
|
|||
KernelGraphPtr AscendSession::GetGraph(mindspore::GraphId graph_id) {
|
||||
auto it = graphs_.find(graph_id);
|
||||
if (it == graphs_.end()) {
|
||||
MS_LOG(WARNING) << "can't find graph " << graph_id;
|
||||
MS_LOG(WARNING) << "Can't find graph " << graph_id;
|
||||
return nullptr;
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
|
||||
void AscendSession::InsertSwitchToGraph(GraphId condition_graph_id, GraphId true_graph_id) {
|
||||
MS_LOG(INFO) << "start";
|
||||
MS_LOG(INFO) << "condition graph id[" << condition_graph_id << "],true graph id[" << true_graph_id << "]";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
MS_LOG(INFO) << "Condition graph id[" << condition_graph_id << "],true graph id[" << true_graph_id << "]";
|
||||
auto condition_graph = GetGraph(condition_graph_id);
|
||||
MS_EXCEPTION_IF_NULL(condition_graph);
|
||||
tensor::TensorPtr tensor = std::make_shared<tensor::Tensor>(kNumberTypeInt32, std::vector<int>{1});
|
||||
|
@ -508,7 +508,7 @@ void AscendSession::InsertSwitchToGraph(GraphId condition_graph_id, GraphId true
|
|||
kernel_build_info_builder->SetKernelType(KernelType::RT_KERNEL);
|
||||
// condition graph's output must be single output
|
||||
if (condition_graph->outputs().size() != 1) {
|
||||
MS_LOG(EXCEPTION) << "condition_graph output num " << condition_graph_id << " should be 1";
|
||||
MS_LOG(EXCEPTION) << "Condition_graph output num " << condition_graph_id << " should be 1";
|
||||
}
|
||||
AnfNodePtr cond_output_kernel = condition_graph->outputs()[0];
|
||||
std::vector<AnfNodePtr> inputs = {NewValueNode(switch_primitive), cond_output_kernel, counter_const};
|
||||
|
@ -528,7 +528,7 @@ void AscendSession::InsertSwitchToGraph(GraphId condition_graph_id, GraphId true
|
|||
std::vector<CNodePtr> exec_order = condition_graph->execution_order();
|
||||
exec_order.push_back(switch_node);
|
||||
condition_graph->set_execution_order(exec_order);
|
||||
MS_LOG(INFO) << "end";
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
void AscendSession::CopyOutputOfIf(GraphId false_graph_id) {
|
||||
|
@ -541,11 +541,11 @@ void AscendSession::CopyOutputOfIf(GraphId false_graph_id) {
|
|||
for (int i = SizeToInt(false_index) - 1; i >= 0; i--) {
|
||||
size_t graph_index = IntToSize(i);
|
||||
if (graph_index >= graph_execute_order.size()) {
|
||||
MS_LOG(EXCEPTION) << "graph index[" << graph_index << "] out of range[" << graph_execute_order.size() << "]";
|
||||
MS_LOG(EXCEPTION) << "Graph index[" << graph_index << "] out of range[" << graph_execute_order.size() << "]";
|
||||
}
|
||||
if (graph_order_type[graph_index] == COMMON_GRAPH) {
|
||||
auto true_last_id = graph_execute_order[graph_index];
|
||||
MS_LOG(INFO) << "the last graph of if true branch is " << true_last_id;
|
||||
MS_LOG(INFO) << "The last graph of if true branch is " << true_last_id;
|
||||
auto true_last = GetGraph(true_last_id);
|
||||
auto final_graph = GetGraph(final_graph_id_);
|
||||
MS_EXCEPTION_IF_NULL(final_graph);
|
||||
|
@ -553,10 +553,10 @@ void AscendSession::CopyOutputOfIf(GraphId false_graph_id) {
|
|||
auto false_last = GetGraph(false_last_id);
|
||||
MS_EXCEPTION_IF_NULL(true_last);
|
||||
MS_EXCEPTION_IF_NULL(false_last);
|
||||
MS_LOG(INFO) << "the last graph of false branch is " << false_last_id;
|
||||
MS_LOG(INFO) << "The last graph of false branch is " << false_last_id;
|
||||
// now only consider the single output
|
||||
InsertMultipleAssignToGraph(true_last_id, true_last->output(), false_last->output());
|
||||
// insert stream acitve for loop sink
|
||||
// insert stream active for loop sink
|
||||
auto context_ptr = MsContext::GetInstance();
|
||||
MS_EXCEPTION_IF_NULL(context_ptr);
|
||||
if (context_ptr->enable_task_sink() && context_ptr->loop_sink_flag() &&
|
||||
|
@ -570,32 +570,32 @@ void AscendSession::CopyOutputOfIf(GraphId false_graph_id) {
|
|||
}
|
||||
|
||||
void AscendSession::SwitchCompile(GraphId cond_graph_id, GraphId true_graph_id, GraphId false_graph_id) {
|
||||
if (switchs_.find(cond_graph_id) != switchs_.end()) {
|
||||
MS_LOG(WARNING) << "condition graph" << cond_graph_id << " has been set before ";
|
||||
if (switches_.find(cond_graph_id) != switches_.end()) {
|
||||
MS_LOG(WARNING) << "Condition graph" << cond_graph_id << " has been set before ";
|
||||
return;
|
||||
}
|
||||
switchs_[cond_graph_id] = std::pair<GraphId, GraphId>(true_graph_id, false_graph_id);
|
||||
MS_LOG(INFO) << "new switch compile " << cond_graph_id << " " << true_graph_id << " " << false_graph_id;
|
||||
// set the type of condtion graph
|
||||
switches_[cond_graph_id] = std::pair<GraphId, GraphId>(true_graph_id, false_graph_id);
|
||||
MS_LOG(INFO) << "New switch compile " << cond_graph_id << " " << true_graph_id << " " << false_graph_id;
|
||||
// set the type of condition graph
|
||||
auto cond_graph_index = ExecOrderOfChildGraph(final_graph_id_, cond_graph_id);
|
||||
auto &graph_order_type = GetGraphOrderType(final_graph_id_);
|
||||
if (cond_graph_index >= graph_order_type.size()) {
|
||||
MS_LOG(EXCEPTION) << "cond_graph_index " << cond_graph_index << " out of range " << graph_order_types_.size();
|
||||
}
|
||||
graph_order_type[cond_graph_index] = CONDITION_GRAPH;
|
||||
// update disinction label of false graph,update before merge to sure the distinction
|
||||
// update distinction label of false graph,update before merge to sure the distinction
|
||||
if (false_graph_id != kInvalidGraphId) {
|
||||
// false graph and condition in graph same stream
|
||||
auto conditon_graph = GetGraph(cond_graph_id);
|
||||
SetStreamDistinctionLabel(GetGraph(false_graph_id), GetDistinctionLabel(conditon_graph), true);
|
||||
auto condition_graph = GetGraph(cond_graph_id);
|
||||
SetStreamDistinctionLabel(GetGraph(false_graph_id), GetDistinctionLabel(condition_graph), true);
|
||||
// if false graph is a condition graph and has been switch compiled before,it's false should be updated again
|
||||
auto cond_it = switchs_.find(false_graph_id);
|
||||
while (cond_it != switchs_.end() && cond_it->second.second != kInvalidGraphId) {
|
||||
auto cond_it = switches_.find(false_graph_id);
|
||||
while (cond_it != switches_.end() && cond_it->second.second != kInvalidGraphId) {
|
||||
cond_graph_id = cond_it->first;
|
||||
false_graph_id = cond_it->second.second;
|
||||
conditon_graph = GetGraph(cond_graph_id);
|
||||
SetStreamDistinctionLabel(GetGraph(false_graph_id), GetDistinctionLabel(conditon_graph), true);
|
||||
cond_it = switchs_.find(false_graph_id);
|
||||
condition_graph = GetGraph(cond_graph_id);
|
||||
SetStreamDistinctionLabel(GetGraph(false_graph_id), GetDistinctionLabel(condition_graph), true);
|
||||
cond_it = switches_.find(false_graph_id);
|
||||
}
|
||||
}
|
||||
} // namespace session
|
||||
|
@ -603,11 +603,11 @@ void AscendSession::SwitchCompile(GraphId cond_graph_id, GraphId true_graph_id,
|
|||
void AscendSession::MergeSwitchCompile() {
|
||||
auto graph_execute_order = GetGraphOrder(final_graph_id_);
|
||||
auto &graph_order_type = GetGraphOrderType(final_graph_id_);
|
||||
for (auto switch_compile : switchs_) {
|
||||
for (auto switch_compile : switches_) {
|
||||
auto cond_graph_id = switch_compile.first;
|
||||
auto true_graph_id = switch_compile.second.first;
|
||||
auto false_graph_id = switch_compile.second.second;
|
||||
MS_LOG(INFO) << "switch compile: " << cond_graph_id << " " << true_graph_id << " " << false_graph_id;
|
||||
MS_LOG(INFO) << "Switch compile: " << cond_graph_id << " " << true_graph_id << " " << false_graph_id;
|
||||
auto condition_graph = GetGraph(cond_graph_id);
|
||||
auto final_graph = GetGraph(final_graph_id_);
|
||||
MS_EXCEPTION_IF_NULL(condition_graph);
|
||||
|
@ -631,8 +631,8 @@ void AscendSession::MergeSwitchCompile() {
|
|||
InsertStreamActiveToGraph(prev_graph_id, GetDistinctionLabel(condition_graph));
|
||||
}
|
||||
// if this is a 'if' condition
|
||||
auto it = while_condtion_graphs_.find(cond_graph_id);
|
||||
if (it == while_condtion_graphs_.end()) {
|
||||
auto it = while_condition_graphs_.find(cond_graph_id);
|
||||
if (it == while_condition_graphs_.end()) {
|
||||
CopyOutputOfIf(false_graph_id);
|
||||
} else {
|
||||
// if it is a while,insert a stream active to true graph
|
||||
|
@ -640,17 +640,17 @@ void AscendSession::MergeSwitchCompile() {
|
|||
InsertStreamActiveToGraph(from_graph, GetDistinctionLabel(condition_graph));
|
||||
}
|
||||
}
|
||||
MS_LOG(INFO) << "end";
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
// insert active to graph
|
||||
void AscendSession::SetActive(GraphId from, GraphId to) {
|
||||
if (while_condtion_graphs_.find(to) != while_condtion_graphs_.end()) {
|
||||
if (while_condition_graphs_.find(to) != while_condition_graphs_.end()) {
|
||||
MS_LOG(WARNING) << " to " << to << " has been exits in map,from " << from << ",exist from "
|
||||
<< while_condtion_graphs_[to];
|
||||
<< while_condition_graphs_[to];
|
||||
return;
|
||||
}
|
||||
MS_LOG(INFO) << "from " << from << " to " << to;
|
||||
MS_LOG(INFO) << "From " << from << " to " << to;
|
||||
auto &graph_order = GetGraphOrder(final_graph_id_);
|
||||
auto &graph_type = GetGraphOrderType(final_graph_id_);
|
||||
std::vector<GraphId> graph_order_new;
|
||||
|
@ -669,21 +669,21 @@ void AscendSession::SetActive(GraphId from, GraphId to) {
|
|||
// set the graph type of condition graph
|
||||
graph_type[ExecOrderOfChildGraph(final_graph_id_, to)] = CONDITION_GRAPH;
|
||||
// record the condition graph into while condition set
|
||||
while_condtion_graphs_[to] = from;
|
||||
while_condition_graphs_[to] = from;
|
||||
}
|
||||
|
||||
void AscendSession::SetChildGraphParameter(const AnfNodePtr &front_anf, const AnfNodePtr &backend_parameter) {
|
||||
MS_LOG(INFO) << "start";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
MS_EXCEPTION_IF_NULL(backend_parameter);
|
||||
MS_EXCEPTION_IF_NULL(front_anf);
|
||||
if (!backend_parameter->isa<Parameter>()) {
|
||||
MS_LOG(EXCEPTION) << "backend parameter's type is not a parameter,but is " << backend_parameter->ToString();
|
||||
MS_LOG(EXCEPTION) << "Backend parameter's type is not a parameter,but is " << backend_parameter->ToString();
|
||||
}
|
||||
auto from_graph_id = GetGraphIdByNode(front_anf);
|
||||
auto from_graph = GetGraph(from_graph_id);
|
||||
MS_EXCEPTION_IF_NULL(from_graph);
|
||||
|
||||
MS_LOG(INFO) << "set node[" << front_anf->DebugString() << "] of graph[" << from_graph_id << "]to node["
|
||||
MS_LOG(INFO) << "Set node[" << front_anf->DebugString() << "] of graph[" << from_graph_id << "]to node["
|
||||
<< backend_parameter->DebugString() << "] of graph[" << AnfAlgo::GetGraphId(backend_parameter.get())
|
||||
<< "]";
|
||||
// a node should not assign to itself
|
||||
|
@ -697,26 +697,27 @@ void AscendSession::SetChildGraphParameter(const AnfNodePtr &front_anf, const An
|
|||
if (!AnfAlgo::OutputAddrExist(backend_arg, 0)) {
|
||||
// set parameter's addr in child graph to parameter in final graph
|
||||
AnfAlgo::SetOutputAddr(AnfAlgo::GetMutableOutputAddr(backend_parameter, 0), 0, backend_arg.get());
|
||||
MS_LOG(INFO) << "assign mem of node" << backend_parameter->DebugString() << " of graph "
|
||||
MS_LOG(INFO) << "Assign mem of node" << backend_parameter->DebugString() << " of graph "
|
||||
<< AnfAlgo::GetGraphId(backend_parameter.get()) << " to node" << backend_arg->DebugString()
|
||||
<< "of graph " << AnfAlgo::GetGraphId(backend_arg.get());
|
||||
return;
|
||||
}
|
||||
}
|
||||
InsertMultipleAssignToGraph(from_graph_id, backend_arg, backend_parameter);
|
||||
// if front anf is a parameter,we can assign the value back,because backend_parameter won't be change in it's graph
|
||||
// unless it's a weigth.If backend_parameter is a weight,we do should assign the value back
|
||||
// if front anf is a parameter, we can assign the value back, because backend_parameter
|
||||
// won't be changed in it's graph unless it's a weight. If backend_parameter is a weight,
|
||||
// we do should assign the value back.
|
||||
auto to_graph_id = AnfAlgo::GetGraphId(backend_parameter.get());
|
||||
auto to_graph = GetGraph(to_graph_id);
|
||||
MS_EXCEPTION_IF_NULL(to_graph);
|
||||
if (backend_arg->isa<Parameter>() && !to_graph->execution_order().empty()) {
|
||||
InsertMultipleAssignToGraph(to_graph_id, backend_parameter, backend_arg);
|
||||
}
|
||||
MS_LOG(INFO) << "end";
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
void AscendSession::SetChildGraphParameter(const tensor::TensorPtr &front_tensor, const AnfNodePtr &backend_parameter) {
|
||||
MS_LOG(INFO) << "start";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
// sync data from host to device
|
||||
MS_EXCEPTION_IF_NULL(front_tensor);
|
||||
size_t tensor_size = front_tensor->data().nbytes();
|
||||
|
@ -724,9 +725,9 @@ void AscendSession::SetChildGraphParameter(const tensor::TensorPtr &front_tensor
|
|||
MS_EXCEPTION_IF_NULL(addr);
|
||||
if (!addr->SyncHostToDevice(front_tensor->shape(), tensor_size, front_tensor->data_type(),
|
||||
front_tensor->data_c(false))) {
|
||||
MS_LOG(EXCEPTION) << "tensor SyncHostToDevice fail!";
|
||||
MS_LOG(EXCEPTION) << "Tensor SyncHostToDevice fail!";
|
||||
}
|
||||
MS_LOG(INFO) << "end";
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
void AscendSession::UpdateGraphOrder(GraphId to_graph_id) {
|
||||
|
@ -743,7 +744,7 @@ void AscendSession::UpdateGraphOrder(GraphId to_graph_id) {
|
|||
graph_order.push_back(to_graph_id);
|
||||
graph_type.push_back(COMMON_GRAPH);
|
||||
for (size_t i = 0; i < graph_order.size(); i++) {
|
||||
MS_LOG(INFO) << "index " << i << ",graph_id " << graph_order[i] << ",graph_type" << graph_type[i];
|
||||
MS_LOG(INFO) << "Index " << i << ",graph_id " << graph_order[i] << ",graph_type" << graph_type[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -775,10 +776,10 @@ void AscendSession::SetChildGraphInput(GraphId g, const VectorRef &args) {
|
|||
SetChildGraphParameter(value->cast<TensorPtr>(), graph_inputs[input_index]);
|
||||
input_index++;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Unxpected arg type " << args[i].ToString();
|
||||
MS_LOG(EXCEPTION) << "Unexpected arg type " << args[i].ToString();
|
||||
}
|
||||
}
|
||||
MS_LOG(INFO) << "end";
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
GraphId AscendSession::GetGraphIdByNode(const AnfNodePtr &front_anf) const {
|
||||
|
@ -796,7 +797,7 @@ GraphId AscendSession::GetGraphIdByNode(const AnfNodePtr &front_anf) const {
|
|||
}
|
||||
|
||||
void AscendSession::MergeGraphExecOrder() {
|
||||
MS_LOG(INFO) << "start";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
// insert switch to graph
|
||||
MergeSwitchCompile();
|
||||
// merge graph order
|
||||
|
@ -805,7 +806,7 @@ void AscendSession::MergeGraphExecOrder() {
|
|||
auto final_graph = GetGraph(final_graph_id_);
|
||||
MS_EXCEPTION_IF_NULL(final_graph);
|
||||
if (graph_order.empty()) {
|
||||
MS_LOG(WARNING) << "graph output is a lonely variable not linked to any op!";
|
||||
MS_LOG(WARNING) << "Graph output is a lonely variable not linked to any op!";
|
||||
return;
|
||||
}
|
||||
// if first graph is common,the final graph has no label,then set the stream of final graph same with the first graph
|
||||
|
@ -821,7 +822,7 @@ void AscendSession::MergeGraphExecOrder() {
|
|||
last_graph = child_graph;
|
||||
MS_EXCEPTION_IF_NULL(child_graph);
|
||||
auto exec_order = child_graph->execution_order();
|
||||
MS_LOG(INFO) << "merge graph,graph_id " << graph_id;
|
||||
MS_LOG(INFO) << "Merge graph,graph_id " << graph_id;
|
||||
(void)std::copy(exec_order.begin(), exec_order.end(), std::back_inserter(final_exec_order));
|
||||
// add all value nodes of child graphs to final graph
|
||||
for (auto &value_node : child_graph->graph_value_nodes()) {
|
||||
|
@ -875,11 +876,11 @@ void AscendSession::InsertAssignToGraph(GraphId graph_id, const AnfNodePtr &from
|
|||
void AscendSession::InsertMultipleAssignToGraph(GraphId graph_id, const AnfNodePtr &from, const AnfNodePtr &to) {
|
||||
std::vector<AnfNodePtr> from_outputs = AnfAlgo::GetAllOutput(from, {prim::kPrimTupleGetItem});
|
||||
std::vector<AnfNodePtr> to_outputs = AnfAlgo::GetAllOutput(to, {prim::kPrimTupleGetItem});
|
||||
MS_LOG(INFO) << "insert assigns from [" << AnfAlgo::GetGraphId(from.get()) << "] to ["
|
||||
MS_LOG(INFO) << "Insert assigns from [" << AnfAlgo::GetGraphId(from.get()) << "] to ["
|
||||
<< AnfAlgo::GetGraphId(to.get()) << "]";
|
||||
if (from_outputs.size() != to_outputs.size()) {
|
||||
MS_LOG(INFO) << "from[" << from->DebugString(5) << "] to[" << to->DebugString(5) << "]";
|
||||
MS_LOG(EXCEPTION) << "from outputs size[" << from_outputs.size() << "] is not equal to to outputs size["
|
||||
MS_LOG(INFO) << "From[" << from->DebugString(5) << "] to[" << to->DebugString(5) << "]";
|
||||
MS_LOG(EXCEPTION) << "From outputs size[" << from_outputs.size() << "] is not equal to to outputs size["
|
||||
<< to_outputs.size() << "]";
|
||||
}
|
||||
for (size_t i = 0; i < from_outputs.size(); i++) {
|
||||
|
@ -898,7 +899,7 @@ void AscendSession::InsertStreamActiveToGraph(GraphId graph_id, uint32_t actived
|
|||
auto kernel_build_info_builder = std::make_shared<kernel::KernelBuildInfo::KernelBuildInfoBuilder>();
|
||||
kernel_build_info_builder->SetKernelType(KernelType::RT_KERNEL);
|
||||
AnfAlgo::SetSelectKernelBuildInfo(kernel_build_info_builder->Build(), active_node.get());
|
||||
// set the actived stream id into the attr of active node
|
||||
// set the active stream id into the attr of active node
|
||||
std::vector<uint32_t> active_index_value = {};
|
||||
active_index_value.push_back(actived_stream);
|
||||
AnfAlgo::SetNodeAttr(kAttrActiveStreamList, MakeValue<std::vector<uint32_t>>(active_index_value), active_node);
|
||||
|
@ -922,7 +923,7 @@ size_t AscendSession::ExecOrderOfChildGraph(GraphId final_graph, GraphId child_g
|
|||
std::vector<GraphId> &AscendSession::GetGraphOrder(GraphId final_graph_id) {
|
||||
auto graph_order_iter = graph_execute_orders_.find(final_graph_id);
|
||||
if (graph_order_iter == graph_execute_orders_.end()) {
|
||||
MS_LOG(EXCEPTION) << "final graph" << final_graph_id << "has no child graph";
|
||||
MS_LOG(EXCEPTION) << "Final graph" << final_graph_id << "has no child graph";
|
||||
}
|
||||
return graph_order_iter->second;
|
||||
}
|
||||
|
@ -931,7 +932,7 @@ std::vector<GraphId> &AscendSession::GetGraphOrder(GraphId final_graph_id) {
|
|||
std::vector<GraphType> &AscendSession::GetGraphOrderType(GraphId final_graph_id) {
|
||||
auto graph_type_iter = graph_order_types_.find(final_graph_id);
|
||||
if (graph_type_iter == graph_order_types_.end()) {
|
||||
MS_LOG(EXCEPTION) << "final graph" << final_graph_id << "has no graph_order_types_";
|
||||
MS_LOG(EXCEPTION) << "Final graph" << final_graph_id << "has no graph_order_types_";
|
||||
}
|
||||
return graph_type_iter->second;
|
||||
}
|
||||
|
|
|
@ -48,13 +48,14 @@ class AscendSession : public SessionBasic {
|
|||
GraphId SetFinalGraphInput(const std::vector<AnfNodePtr> &args) override;
|
||||
// set output of final graph
|
||||
void SetFinalGraphOutput(const BaseRef &output) override;
|
||||
// insert switch and set the relative acitve ops
|
||||
// insert switch and set the relative active ops
|
||||
void SwitchCompile(GraphId cond_g, GraphId true_g, GraphId false_g) override;
|
||||
// set args of child graph.the arg maybe come from a output of other child graphs,or from final graph's parameter
|
||||
// set args of child graph. the arg maybe come from a output of other child graphs,
|
||||
// or from final graph's parameter
|
||||
void SetChildGraphInput(GraphId g, const VectorRef &args) override;
|
||||
// get graph id in child graphs by ME front anf node pointer
|
||||
GraphId GetGraphIdByNode(const AnfNodePtr &front_anf) const override;
|
||||
// get grpah id of final graph
|
||||
// get graph id of final graph
|
||||
GraphId GetFinalRunGraph() const override { return final_graph_id_; }
|
||||
// insert active to graph
|
||||
void SetActive(GraphId, GraphId) override;
|
||||
|
@ -112,9 +113,9 @@ class AscendSession : public SessionBasic {
|
|||
// key is final_graph_id,value is the graph types of child graphs
|
||||
std::unordered_map<GraphId, std::vector<GraphType>> graph_order_types_;
|
||||
// record condition graph of while
|
||||
std::unordered_map<GraphId, GraphId> while_condtion_graphs_;
|
||||
// record all conditons
|
||||
std::unordered_map<GraphId, std::pair<GraphId, GraphId>> switchs_;
|
||||
std::unordered_map<GraphId, GraphId> while_condition_graphs_;
|
||||
// record all conditions
|
||||
std::unordered_map<GraphId, std::pair<GraphId, GraphId>> switches_;
|
||||
// final_graph_id is used in every root graph has it's own session situation
|
||||
GraphId final_graph_id_;
|
||||
};
|
||||
|
|
|
@ -83,7 +83,7 @@ void GPUSession::Execute(const std::shared_ptr<KernelGraph> &kernel_graph) const
|
|||
}
|
||||
|
||||
GraphId GPUSession::CompileGraph(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) {
|
||||
// Construct graph, if construct successs, graph_sum_ + 1
|
||||
// Construct graph, if successfully, graph_sum_ + 1
|
||||
auto graph_id = graph_sum_;
|
||||
auto graph = ConstructKernelGraph(lst, outputs);
|
||||
// Select kernel build info
|
||||
|
@ -100,7 +100,7 @@ GraphId GPUSession::CompileGraph(const AnfNodePtrList &lst, const AnfNodePtrList
|
|||
auto execution_order = graph->execution_order();
|
||||
Reorder(&execution_order);
|
||||
graph->set_execution_order(execution_order);
|
||||
// Alloc memeory, include static memory and dynamic memory
|
||||
// Alloc memory, including static memory and dynamic memory
|
||||
AllocateMemory(graph.get());
|
||||
// Reset memory resource
|
||||
auto runtime_instance = device::KernelRuntimeManager::Instance().GetSingleKernelRuntime(kGPUDevice, device_id_);
|
||||
|
|
|
@ -34,7 +34,7 @@ void PushNoVisitedNode(const AnfNodePtr &node, std::queue<AnfNodePtr> *que,
|
|||
if (visited_nodes->find(node) == visited_nodes->end()) {
|
||||
que->push(node);
|
||||
(void)visited_nodes->insert(node);
|
||||
MS_LOG(DEBUG) << "push que:" << node->DebugString();
|
||||
MS_LOG(DEBUG) << "Push que:" << node->DebugString();
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
@ -58,7 +58,7 @@ void KernelGraph::SetExecOrderByDefault() {
|
|||
auto clear_output = [&zero_output_nodes, &allreduce_nodes, &visited_nodes, this](const AnfNodePtr &input) -> void {
|
||||
if (node_output_num_[input] == 0 && visited_nodes.find(input) == visited_nodes.end()) {
|
||||
MS_EXCEPTION_IF_NULL(input);
|
||||
MS_LOG(DEBUG) << "clear output num:" << input->DebugString();
|
||||
MS_LOG(DEBUG) << "Clear output num:" << input->DebugString();
|
||||
(void)visited_nodes.insert(input);
|
||||
if (input->isa<CNode>() && AnfAlgo::GetCNodeName(input) == kAllReduceOpName) {
|
||||
allreduce_nodes.push(input);
|
||||
|
@ -85,21 +85,21 @@ void KernelGraph::SetExecOrderByDefault() {
|
|||
if (it == node_input_edges_.end()) {
|
||||
// value node and parameter has no input,no need to print log
|
||||
if (node->isa<CNode>()) {
|
||||
MS_LOG(DEBUG) << "can not find node [" << node->DebugString() << "]";
|
||||
MS_LOG(DEBUG) << "Can not find node [" << node->DebugString() << "]";
|
||||
}
|
||||
continue;
|
||||
}
|
||||
for (const auto &input_edge : it->second) {
|
||||
if (node_output_num_.find(input_edge.first) == node_output_num_.end()) {
|
||||
MS_EXCEPTION_IF_NULL(input_edge.first);
|
||||
MS_LOG(EXCEPTION) << "can't find node[" << input_edge.first->DebugString() << "]";
|
||||
MS_LOG(EXCEPTION) << "Can't find node[" << input_edge.first->DebugString() << "]";
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(input_edge.first);
|
||||
MS_LOG(DEBUG) << "decrese input:" << input_edge.first->DebugString() << ",node:" << node->DebugString()
|
||||
MS_LOG(DEBUG) << "Decrease input:" << input_edge.first->DebugString() << ",node:" << node->DebugString()
|
||||
<< ",num: " << node_output_num_[input_edge.first] << ",decrease num:" << input_edge.second;
|
||||
if (node_output_num_[input_edge.first] < input_edge.second) {
|
||||
MS_LOG(EXCEPTION) << "input node:" << input_edge.first->DebugString() << ",node_output_num"
|
||||
<< node_output_num_[input_edge.first] << "depend edege:" << input_edge.second;
|
||||
MS_LOG(EXCEPTION) << "Input node:" << input_edge.first->DebugString() << ",node_output_num"
|
||||
<< node_output_num_[input_edge.first] << "depend edge:" << input_edge.second;
|
||||
}
|
||||
node_output_num_[input_edge.first] = node_output_num_[input_edge.first] - input_edge.second;
|
||||
clear_output(input_edge.first);
|
||||
|
@ -120,20 +120,20 @@ void KernelGraph::CheckLoop() {
|
|||
string str;
|
||||
auto node_output_it = node_output_edges_.find(it.first);
|
||||
if (node_output_it == node_output_edges_.end()) {
|
||||
MS_LOG(EXCEPTION) << "can't find node [" << it.first->DebugString() << "]";
|
||||
MS_LOG(EXCEPTION) << "Can't find node [" << it.first->DebugString() << "]";
|
||||
}
|
||||
for (const auto &output_edge : node_output_edges_[it.first]) {
|
||||
MS_EXCEPTION_IF_NULL(output_edge.first);
|
||||
str = str.append(output_edge.first->DebugString()).append("|");
|
||||
}
|
||||
if (it.second != 0) {
|
||||
MS_LOG(WARNING) << "node:" << it.first->DebugString() << ",outputs:" << str << ",output num:" << it.second;
|
||||
MS_LOG(WARNING) << "Node:" << it.first->DebugString() << ",outputs:" << str << ",output num:" << it.second;
|
||||
none_zero_output[it.first] = it.second;
|
||||
}
|
||||
}
|
||||
// if don't consider control depend and loop exit,a exception will be throw
|
||||
if (!none_zero_output.empty()) {
|
||||
MS_LOG(EXCEPTION) << "nodes have loop,left node num:" << none_zero_output.size();
|
||||
MS_LOG(EXCEPTION) << "Nodes have loop, left node num:" << none_zero_output.size();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -152,7 +152,7 @@ CNodePtr KernelGraph::NewCNode(const CNodePtr &cnode) {
|
|||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
auto new_cnode = std::make_shared<CNode>(*cnode);
|
||||
// if a cnode is created not from front,this cnode won't be in map,so when replace it,we shouldn't update map
|
||||
if (BakcendNodeExistInFrontBackendMap(cnode)) {
|
||||
if (BackendNodeExistInFrontBackendMap(cnode)) {
|
||||
FrontBackendlMapUpdate(cnode, new_cnode);
|
||||
}
|
||||
AnfAlgo::SetGraphId(graph_id_, cnode.get());
|
||||
|
@ -299,7 +299,7 @@ AnfNodePtr KernelGraph::GetBackendAnfByFrontAnf(const AnfNodePtr &front_anf) {
|
|||
return front_backend_anf_map_[front_anf];
|
||||
}
|
||||
|
||||
bool KernelGraph::BakcendNodeExistInFrontBackendMap(const AnfNodePtr &backend_anf) {
|
||||
bool KernelGraph::BackendNodeExistInFrontBackendMap(const AnfNodePtr &backend_anf) {
|
||||
return backend_front_anf_map_.find(backend_anf) != backend_front_anf_map_.end();
|
||||
}
|
||||
|
||||
|
@ -317,9 +317,9 @@ void KernelGraph::TensorValueNodeMapAdd(const tensor::TensorPtr &tensor, const V
|
|||
}
|
||||
|
||||
void KernelGraph::AddDependEdge(const AnfNodePtr &node, const AnfNodePtr &input, size_t depend_edge_num) {
|
||||
MS_LOG(DEBUG) << "input:" << input->DebugString() << ", node:" << node->DebugString() << ",num:" << depend_edge_num;
|
||||
MS_LOG(DEBUG) << "Input:" << input->DebugString() << ", node:" << node->DebugString() << ",num:" << depend_edge_num;
|
||||
auto output_depend_edge = std::pair<AnfNodePtr, size_t>(node, depend_edge_num);
|
||||
// add output depend eddge of input
|
||||
// add output depend edge of input
|
||||
auto output_it = node_output_edges_.find(input);
|
||||
if (output_it == node_output_edges_.end()) {
|
||||
node_output_edges_[input] = std::vector<std::pair<AnfNodePtr, size_t>>{output_depend_edge};
|
||||
|
@ -346,7 +346,7 @@ std::vector<AnfNodePtr> KernelGraph::GetOutputNodes(const AnfNodePtr &node) {
|
|||
MS_EXCEPTION_IF_NULL(node);
|
||||
auto it = node_output_edges_.find(node);
|
||||
if (it == node_output_edges_.end()) {
|
||||
MS_LOG(EXCEPTION) << "can'f find node[" << node->DebugString() << "]";
|
||||
MS_LOG(EXCEPTION) << "Can't find node[" << node->DebugString() << "]";
|
||||
}
|
||||
std::vector<AnfNodePtr> output_nodes;
|
||||
auto trans = [](const std::pair<AnfNodePtr, size_t> &pair) -> AnfNodePtr { return pair.first; };
|
||||
|
@ -372,7 +372,7 @@ void KernelGraph::UpdateControlDependRelations(const std::vector<AnfNodePtr> &de
|
|||
MS_EXCEPTION_IF_NULL(depend_node);
|
||||
std::vector<AnfNodePtr> prior_nodes = {prior_node};
|
||||
std::vector<AnfNodePtr> depend_nodes = {depend_node};
|
||||
MS_LOG(INFO) << "prior node[" << prior_node->DebugString() << "],depend node[" << depend_node->DebugString()
|
||||
MS_LOG(INFO) << "Prior node[" << prior_node->DebugString() << "],depend node[" << depend_node->DebugString()
|
||||
<< "],depend_mode=[" << AnfAlgo::GetNodeAttr<int>(cnode, "depend_mode") << "]";
|
||||
if (prior_node->isa<Parameter>()) {
|
||||
prior_nodes = GetOutputNodes(prior_node);
|
||||
|
@ -384,7 +384,7 @@ void KernelGraph::UpdateControlDependRelations(const std::vector<AnfNodePtr> &de
|
|||
for (auto &second_node : depend_nodes) {
|
||||
MS_EXCEPTION_IF_NULL(first_node);
|
||||
MS_EXCEPTION_IF_NULL(second_node);
|
||||
MS_LOG(INFO) << "add first node:" << first_node->DebugString() << ",second node:" << second_node->DebugString();
|
||||
MS_LOG(INFO) << "Add first node:" << first_node->DebugString() << ",second node:" << second_node->DebugString();
|
||||
AddDependEdge(second_node, first_node, 1);
|
||||
}
|
||||
}
|
||||
|
@ -437,18 +437,18 @@ void KernelGraph::BfsToUpdateNodeOutput() {
|
|||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
// handle data links
|
||||
for (const auto &input : cnode->inputs()) {
|
||||
size_t dpend_edge_num = 1;
|
||||
size_t depend_edge_num = 1;
|
||||
// handle control depend,all inputs of control depend has no depend edge
|
||||
if (HandleControlDependNode(input, &que, &visited_nodes)) {
|
||||
control_depends.push_back(input);
|
||||
dpend_edge_num = 0;
|
||||
depend_edge_num = 0;
|
||||
}
|
||||
// the 2rd input of depend is no depend edge
|
||||
if (AnfAlgo::CheckPrimitiveType(node, prim::kPrimDepend) && input == cnode->input(kDependAttachNodeIndex)) {
|
||||
dpend_edge_num = 0;
|
||||
depend_edge_num = 0;
|
||||
}
|
||||
PushNoVisitedNode(input, &que, &visited_nodes);
|
||||
AddDependEdge(node, input, dpend_edge_num);
|
||||
AddDependEdge(node, input, depend_edge_num);
|
||||
}
|
||||
}
|
||||
UpdateControlDependRelations(control_depends);
|
||||
|
|
|
@ -62,8 +62,8 @@ class KernelGraph : public FuncGraph {
|
|||
void FrontBackendlMapUpdate(const AnfNodePtr &old_backend_anf, const AnfNodePtr &new_backend_anf);
|
||||
// get backend anf by front anf
|
||||
AnfNodePtr GetBackendAnfByFrontAnf(const AnfNodePtr &front_anf);
|
||||
// check backend node wheteher exist in map
|
||||
bool BakcendNodeExistInFrontBackendMap(const AnfNodePtr &backend_anf);
|
||||
// check backend node whether exist in map
|
||||
bool BackendNodeExistInFrontBackendMap(const AnfNodePtr &backend_anf);
|
||||
// get value node by tensor
|
||||
ValueNodePtr GetValueNodeByTensor(const tensor::TensorPtr &tensor);
|
||||
// add value node tensor relation map
|
||||
|
|
|
@ -281,7 +281,7 @@ std::vector<AnfNodePtr> CreateParameterFromTuple(const AnfNodePtr &node, KernelG
|
|||
}
|
||||
continue;
|
||||
}
|
||||
// creata single parameter if is a abstract real kernel
|
||||
// create single parameter if is a abstract real kernel
|
||||
create_parameter(out_node->abstract());
|
||||
}
|
||||
return parameters;
|
||||
|
@ -413,7 +413,7 @@ CNodePtr SessionBasic::CreateNewCNode(const CNodePtr &cnode, KernelGraph *graph)
|
|||
cnode_inputs.emplace_back(graph->GetBackendAnfByFrontAnf(anf));
|
||||
continue;
|
||||
} else if (anf->isa<ValueNode>() && !IsValueNode<FuncGraph>(anf)) {
|
||||
// if input is a value ndoe,
|
||||
// if input is a value node,
|
||||
auto new_value_node = CreateNewValueNode(anf, graph);
|
||||
if (new_value_node != nullptr) {
|
||||
cnode_inputs.emplace_back(new_value_node);
|
||||
|
@ -549,7 +549,7 @@ void SessionBasic::Reorder(std::vector<CNodePtr> *node_list) {
|
|||
|
||||
for (const auto &node : *node_list) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
if (kOptOpeatorSet.find(AnfAlgo::GetCNodeName(node)) != kOptOpeatorSet.end()) {
|
||||
if (kOptOperatorSet.find(AnfAlgo::GetCNodeName(node)) != kOptOperatorSet.end()) {
|
||||
all_opt_list.emplace_back(node);
|
||||
} else {
|
||||
non_opt_list.emplace_back(node);
|
||||
|
@ -599,7 +599,7 @@ void SessionBasic::ToTensorPtr(const OpRunInfo &op_run_info, std::vector<tensor:
|
|||
MS_EXCEPTION_IF_NULL(inputs);
|
||||
MS_EXCEPTION_IF_NULL(tensor_mask);
|
||||
if (op_run_info.op_inputs.size() != op_run_info.inputs_mask.size()) {
|
||||
MS_LOG(EXCEPTION) << "op input size " << op_run_info.op_inputs.size() << " should be equal to op input mask size "
|
||||
MS_LOG(EXCEPTION) << "Op input size " << op_run_info.op_inputs.size() << " should be equal to op input mask size "
|
||||
<< op_run_info.inputs_mask.size();
|
||||
}
|
||||
size_t input_num = op_run_info.op_inputs.size();
|
||||
|
@ -636,7 +636,7 @@ CNodePtr SessionBasic::ConstructOutput(const AnfNodePtrList &outputs, const std:
|
|||
if (backend_anf != nullptr) {
|
||||
return backend_anf;
|
||||
}
|
||||
MS_LOG(EXCEPTION) << "did not find the node in the equiv map!";
|
||||
MS_LOG(EXCEPTION) << "Can not find the node in the equiv map!";
|
||||
};
|
||||
output_args.push_back(NewValueNode(prim::kPrimMakeTuple));
|
||||
(void)std::transform(outputs.begin(), outputs.end(), std::back_inserter(output_args),
|
||||
|
@ -645,7 +645,7 @@ CNodePtr SessionBasic::ConstructOutput(const AnfNodePtrList &outputs, const std:
|
|||
}
|
||||
|
||||
void SessionBasic::CreateOutputNode(const CNodePtr &cnode, const std::shared_ptr<KernelGraph> &graph) {
|
||||
MS_LOG(INFO) << "start";
|
||||
MS_LOG(INFO) << "Start!";
|
||||
std::vector<AnfNodePtr> make_tuple_inputs;
|
||||
make_tuple_inputs.push_back(NewValueNode(prim::kPrimMakeTuple));
|
||||
if (AnfRuntimeAlgorithm::GetOutputTensorNum(cnode) > 1) {
|
||||
|
@ -667,14 +667,14 @@ void SessionBasic::CreateOutputNode(const CNodePtr &cnode, const std::shared_ptr
|
|||
// create output
|
||||
auto g_output = graph->NewCNode(make_tuple_inputs);
|
||||
graph->set_output(g_output);
|
||||
// set graph manager,which now is only used to get valuendoes and hardware optimizing
|
||||
// set graph manager,which now is only used to get valuenodes and hardware optimizing
|
||||
MS_EXCEPTION_IF_NULL(context_);
|
||||
FuncGraphManagerPtr manager = context_->manager();
|
||||
if (manager != nullptr) {
|
||||
manager->AddFuncGraph(graph);
|
||||
graph->set_manager(manager);
|
||||
}
|
||||
MS_LOG(INFO) << "end";
|
||||
MS_LOG(INFO) << "Finish!";
|
||||
}
|
||||
|
||||
std::shared_ptr<KernelGraph> SessionBasic::ConstructSingleOpGraph(const OpRunInfo &op_run_info) {
|
||||
|
@ -694,9 +694,9 @@ std::shared_ptr<KernelGraph> SessionBasic::ConstructSingleOpGraph(const OpRunInf
|
|||
std::vector<tensor::TensorPtr> input_tensors;
|
||||
std::vector<bool> tensors_mask;
|
||||
ToTensorPtr(op_run_info, &input_tensors, &tensors_mask);
|
||||
MS_LOG(INFO) << "input tensor size" << input_tensors.size();
|
||||
MS_LOG(INFO) << "Input tensor size" << input_tensors.size();
|
||||
if (input_tensors.size() != tensors_mask.size()) {
|
||||
MS_LOG(EXCEPTION) << "input tensors size " << input_tensors.size() << " should be equal to tensors mask size "
|
||||
MS_LOG(EXCEPTION) << "Input tensors size " << input_tensors.size() << " should be equal to tensors mask size "
|
||||
<< tensors_mask.size();
|
||||
}
|
||||
for (size_t i = 0; i < input_tensors.size(); ++i) {
|
||||
|
@ -711,7 +711,7 @@ std::shared_ptr<KernelGraph> SessionBasic::ConstructSingleOpGraph(const OpRunInf
|
|||
cnode->set_abstract(op_run_info.abstract);
|
||||
// set const input to attr if value is not a tensor,such as scalar or tuple
|
||||
RunOpConvertConstInputToAttr(op_run_info, cnode);
|
||||
// set exectuion order
|
||||
// set execution order
|
||||
std::vector<CNodePtr> exe_order = {cnode};
|
||||
graph->set_execution_order(exe_order);
|
||||
// set output
|
||||
|
@ -734,14 +734,14 @@ BaseRef SessionBasic::TransformBaseRefListToTuple(const BaseRef &base_ref) {
|
|||
py::tuple tensor_tuple = py::cast<py::tuple>(obj);
|
||||
output_tensors[i] = tensor_tuple;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "The output is not a base ref list or a tensor !";
|
||||
MS_LOG(EXCEPTION) << "The output is not a base ref list or a tensor!";
|
||||
}
|
||||
}
|
||||
return output_tensors; // turn tuple to py::object and store in PyObjectRef
|
||||
} else if (utils::isa<tensor::TensorPtr>(base_ref)) {
|
||||
return base_ref;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "The output is not a base ref list or a tensor !";
|
||||
MS_LOG(EXCEPTION) << "The output is not a base ref list or a tensor!";
|
||||
}
|
||||
}
|
||||
} // namespace session
|
||||
|
|
|
@ -56,7 +56,7 @@ class SessionBasic {
|
|||
virtual ~SessionBasic() { summary_callback_ = nullptr; }
|
||||
|
||||
virtual GraphId CompileGraph(const AnfNodePtrList &lst, const AnfNodePtrList &outputs) = 0;
|
||||
// build graph ,used to handle mupltiple child graphs
|
||||
// build graph, used to handle multiple child graphs
|
||||
virtual void BuildGraph(GraphId) {}
|
||||
|
||||
virtual void RunGraph(const GraphId &graph_id, const std::vector<tensor::TensorPtr> &inputs, VectorRef *outputs) = 0;
|
||||
|
@ -75,7 +75,7 @@ class SessionBasic {
|
|||
virtual GraphId SetFinalGraphInput(const std::vector<AnfNodePtr> &) { return kInvalidGraphId; }
|
||||
// set output of final graph
|
||||
virtual void SetFinalGraphOutput(const BaseRef &) {}
|
||||
// insert switch and set the relative acitve ops
|
||||
// insert switch and set the relative active ops
|
||||
virtual void SwitchCompile(GraphId, GraphId, GraphId) {}
|
||||
// set args of child graph.the arg maybe come from a output of other child graphs,or from final graph's parameter
|
||||
virtual void SetChildGraphInput(GraphId, const VectorRef &) {}
|
||||
|
|
|
@ -186,7 +186,7 @@ const std::vector<std::set<std::string>> kShapeSupportFormatMap = {k1DSupportFor
|
|||
k4DSupportFormat};
|
||||
const std::set<std::string> kDefaultCompatibleFormat = {kOpFormat_ND, kOpFormat_NCHW, kOpFormat_NHWC, kOpFormat_HWCN};
|
||||
|
||||
const std::set<std::string> kOptOpeatorSet = {
|
||||
const std::set<std::string> kOptOperatorSet = {
|
||||
kMomentumOpName, kApplyMomentumOpName, kApplyAdadeltaOpName,
|
||||
kApplyAdagradOpName, kApplyAdagradDAName, kApplyAdamOpName,
|
||||
kApplyAdaMaxOpName, kApplyAddSignOpName, kApplyCenteredRMSPOpName,
|
||||
|
|
Loading…
Reference in New Issue