!126 resolve some issues in nn comments

Merge pull request !126 from zhongligeng/master
This commit is contained in:
mindspore-ci-bot 2020-04-06 10:14:50 +08:00 committed by Gitee
commit 32017f6da3
25 changed files with 128 additions and 150 deletions

View File

@ -65,7 +65,7 @@ class Dropout(Cell):
Tensor, output tensor with the same shape as the input.
Examples:
>>> x = mindspore.Tensor(np.ones([20, 16, 50]), mindspore.float32)
>>> x = Tensor(np.ones([20, 16, 50]), mindspore.float32)
>>> net = nn.Dropout(keep_prob=0.8)
>>> net(x)
"""
@ -111,7 +111,7 @@ class Flatten(Cell):
Examples:
>>> net = nn.Flatten()
>>> input = mindspore.Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
>>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
>>> input.shape()
(2, 2, 2)
>>> net(input)
@ -149,9 +149,6 @@ class Dense(Cell):
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
Returns:
Tensor, output tensor.
Raises:
ValueError: If weight_init or bias_init shape is incorrect.
@ -163,7 +160,7 @@ class Dense(Cell):
Examples:
>>> net = nn.Dense(3, 4)
>>> input = mindspore.Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
>>> net(input)
[[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
[ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
@ -243,8 +240,8 @@ class ClipByNorm(Cell):
Examples:
>>> net = nn.ClipByNorm()
>>> input = mindspore.Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
>>> clip_norm = mindspore.Tensor(np.array([100]).astype(np.float32))
>>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
>>> clip_norm = Tensor(np.array([100]).astype(np.float32))
>>> net(input, clip_norm)
"""
@ -290,9 +287,6 @@ class Norm(Cell):
keep_dims (bool): If True, the axis indicated in `axis` are kept with size 1. Otherwise,
the dimensions in `axis` are removed from the output shape. Default: False.
Returns:
Tensor, a Tensor of the same type as input, containing the vector or matrix norms.
Inputs:
- **input** (Tensor) - Tensor which is not empty.
@ -302,7 +296,7 @@ class Norm(Cell):
Examples:
>>> net = nn.Norm(axis=0)
>>> input = mindspore.Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
>>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
>>> net(input)
"""
def __init__(self, axis=(), keep_dims=False):
@ -344,7 +338,8 @@ class OneHot(Cell):
when indices[j] = i. Default: 1.0.
off_value (float): A scalar defining the value to fill in output[i][j]
when indices[j] != i. Default: 0.0.
dtype (:class:`mindspore.dtype`): Default: mindspore.float32.
dtype (:class:`mindspore.dtype`): Data type of 'on_value' and 'off_value', not the
data type of indices. Default: mindspore.float32.
Inputs:
- **indices** (Tensor) - A tensor of indices of data type mindspore.int32 and arbitrary shape.
@ -355,7 +350,7 @@ class OneHot(Cell):
Examples:
>>> net = nn.OneHot(depth=4, axis=1)
>>> indices = mindspore.Tensor([[1, 3], [0, 2]], dtype=mindspore.int32)
>>> indices = Tensor([[1, 3], [0, 2]], dtype=mindspore.int32)
>>> net(indices)
[[[0. 0.]
[1. 0.]

View File

@ -86,7 +86,7 @@ class SequentialCell(Cell):
>>> relu = nn.ReLU()
>>> seq = nn.SequentialCell([conv, bn, relu])
>>>
>>> x = mindspore.Tensor(np.random.random((1, 3, 4, 4)), dtype=mindspore.float32)
>>> x = Tensor(np.random.random((1, 3, 4, 4)), dtype=mindspore.float32)
>>> seq(x)
[[[[0.02531557 0. ]
[0.04933941 0.04880078]]
@ -138,7 +138,6 @@ class SequentialCell(Cell):
return len(self._cells)
def construct(self, input_data):
"""Processes the input with the defined sequence of Cells."""
for cell in self.cell_list:
input_data = cell(input_data)
return input_data
@ -161,7 +160,7 @@ class CellList(_CellListBase, Cell):
>>> cell_ls = nn.CellList([bn])
>>> cell_ls.insert(0, conv)
>>> cell_ls.append(relu)
>>> x = mindspore.Tensor(np.random.random((1, 3, 4, 4)), dtype=mindspore.float32)
>>> x = Tensor(np.random.random((1, 3, 4, 4)), dtype=mindspore.float32)
>>> # not same as nn.SequentialCell, `cell_ls(x)` is not correct
>>> cell_ls
CellList< (0): Conv2d<input_channels=100, ..., bias_init=None>

View File

@ -146,9 +146,6 @@ class Conv2d(_Conv):
Initializer and string are the same as 'weight_init'. Refer to the values of
Initializer for more details. Default: 'zeros'.
Returns:
Tensor, output tensor.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
@ -157,7 +154,7 @@ class Conv2d(_Conv):
Examples:
>>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal')
>>> input = mindspore.Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> net(input).shape()
(1, 240, 1024, 640)
"""
@ -277,7 +274,7 @@ class Conv2dTranspose(_Conv):
Examples:
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal')
>>> input = Tensor(np.ones([1, 3, 16, 50]), mstype.float32)
>>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32)
>>> net(input)
"""
def __init__(self,

View File

@ -50,7 +50,7 @@ class Embedding(Cell):
Examples:
>>> net = nn.Embedding(20000, 768, True)
>>> input_data = mindspore.Tensor(np.ones([8, 128]), mindspore.int32)
>>> input_data = Tensor(np.ones([8, 128]), mindspore.int32)
>>>
>>> # Maps the input word IDs to word embedding.
>>> output = net(input_data)

View File

@ -96,9 +96,9 @@ class LSTM(Cell):
>>> return self.lstm(inp, (h0, c0))
>>>
>>> net = LstmNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False)
>>> input = mindspore.Tensor(np.ones([3, 5, 10]).astype(np.float32))
>>> h0 = mindspore.Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
>>> c0 = mindspore.Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
>>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32))
>>> h0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
>>> c0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
>>> output, (hn, cn) = net(input, h0, c0)
"""
def __init__(self,

View File

@ -159,7 +159,7 @@ class BatchNorm1d(_BatchNorm):
Examples:
>>> net = nn.BatchNorm1d(num_features=16)
>>> input = mindspore.Tensor(np.random.randint(0, 255, [3, 16]), mindspore.float32)
>>> input = Tensor(np.random.randint(0, 255, [3, 16]), mindspore.float32)
>>> net(input)
"""
def _check_data_dim(self, x):
@ -258,7 +258,7 @@ class LayerNorm(Cell):
Examples:
>>> x = Tensor(np.ones([20, 5, 10, 10], np.float32))
>>> shape1 = x.shape()[1:]
>>> m = LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
>>> m(x)
"""
def __init__(self,

View File

@ -63,8 +63,8 @@ class MaxPool2d(_PoolNd):
pad_mode for training only supports "same" and "valid".
Args:
kernel_size (int): Size of the window to take a max over.
stride (int): Stride size of the window. Default: None.
kernel_size (int): Size of the window to take a max over. Default 1.
stride (int): Stride size of the window. Default: 1.
pad_mode (str): Select the mode of the pad. The optional values are
"same" and "valid". Default: "valid".
@ -75,7 +75,7 @@ class MaxPool2d(_PoolNd):
- valid: Adopts the way of discarding. The possibly largest height and width of output will be return
without padding. Extra pixels will be discarded.
padding (int): Now is not supported, mplicit zero padding to be added on both sides. Default: 0.
padding (int): Implicit zero padding to be added on both sides. Default: 0.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
@ -85,7 +85,7 @@ class MaxPool2d(_PoolNd):
Examples:
>>> pool = MaxPool2d(kernel_size=3, stride=1)
>>> x = mindspore.Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
[[[[1. 5. 5. 1.]
[0. 3. 4. 8.]
[4. 2. 7. 6.]
@ -149,8 +149,8 @@ class AvgPool2d(_PoolNd):
pad_mode for training only supports "same" and "valid".
Args:
kernel_size (int): Size of the window to take a max over.
stride (int): Stride size of the window. Default: None.
kernel_size (int): Size of the window to take a max over. Default: 1.
stride (int): Stride size of the window. Default: 1.
pad_mode (str): Select the mode of the pad. The optional values are
"same", "valid". Default: "valid".
@ -161,7 +161,7 @@ class AvgPool2d(_PoolNd):
- valid: Adopts the way of discarding. The possibly largest height and width of output will be return
without padding. Extra pixels will be discarded.
padding (int): Now is not supported, implicit zero padding to be added on both sides. Default: 0.
padding (int): Implicit zero padding to be added on both sides. Default: 0.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
@ -171,7 +171,7 @@ class AvgPool2d(_PoolNd):
Examples:
>>> pool = AvgPool2d(kernel_size=3, stride=1)
>>> x = mindspore.Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
[[[[5. 5. 9. 9.]
[8. 4. 3. 0.]
[2. 7. 1. 2.]

View File

@ -86,9 +86,9 @@ class L1Loss(_Loss):
Tensor, loss float tensor.
Examples:
>>> loss = L1Loss()
>>> input_data = Tensor(np.array([1, 2, 3]), mstype.float32)
>>> target_data = Tensor(np.array([1, 2, 2]), mstype.float32)
>>> loss = nn.L1Loss()
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> loss(input_data, target_data)
"""
def __init__(self, reduction='mean'):
@ -126,9 +126,9 @@ class MSELoss(_Loss):
Tensor, weighted loss float tensor.
Examples:
>>> loss = MSELoss()
>>> input_data = Tensor(np.array([1, 2, 3]), mstype.float32)
>>> target_data = Tensor(np.array([1, 2, 2]), mstype.float32)
>>> loss = nn.MSELoss()
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> loss(input_data, target_data)
"""
def construct(self, base, target):
@ -171,9 +171,9 @@ class SmoothL1Loss(_Loss):
Tensor, loss float tensor.
Examples:
>>> loss = SmoothL1Loss()
>>> input_data = Tensor(np.array([1, 2, 3]), mstype.float32)
>>> target_data = Tensor(np.array([1, 2, 2]), mstype.float32)
>>> loss = nn.SmoothL1Loss()
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> loss(input_data, target_data)
"""
def __init__(self, sigma=1.0):
@ -219,17 +219,16 @@ class SoftmaxCrossEntropyWithLogits(_Loss):
Inputs:
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`.
- **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_S)`. If `sparse` is True, The type of
`labels` is mstype.int32. If `sparse` is False, the type of `labels` is same as the type of `logits`.
`labels` is mindspore.int32. If `sparse` is False, the type of `labels` is same as the type of `logits`.
Outputs:
Tensor, a tensor of the same shape as logits with the component-wise
logistic losses.
Examples:
>>> loss = SoftmaxCrossEntropyWithLogits(sparse=True)
>>> logits = Tensor(np.random.randint(0, 9, [1, 10]), mstype.float32)
>>> labels_np = np.zeros([1, 10]).astype(np.int32)
>>> labels_np[0][0] = 1
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> logits = Tensor(np.random.randint(0, 9, [1, 10]), mindspore.float32)
>>> labels_np = np.ones([1,]).astype(np.int32)
>>> labels = Tensor(labels_np)
>>> loss(logits, labels)
"""
@ -286,8 +285,8 @@ class SoftmaxCrossEntropyExpand(Cell):
Examples:
>>> loss = SoftmaxCrossEntropyExpand(sparse=True)
>>> input_data = Tensor(np.ones([64, 512]), dtype=mstype.float32)
>>> label = Tensor(np.ones([64]), dtype=mstype.int32)
>>> input_data = Tensor(np.ones([64, 512]), dtype=mindspore.float32)
>>> label = Tensor(np.ones([64]), dtype=mindspore.int32)
>>> loss(input_data, label)
"""
def __init__(self, sparse=False):

View File

@ -35,8 +35,8 @@ class Accuracy(EvaluationBase):
Default: 'classification'.
Examples:
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mindspore.float32)
>>> y = mindspore.Tensor(np.array([1, 0, 1]), mindspore.float32)
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mindspore.float32)
>>> y = Tensor(np.array([1, 0, 1]), mindspore.float32)
>>> metric = nn.Accuracy('classification')
>>> metric.clear()
>>> metric.update(x, y)
@ -58,13 +58,14 @@ class Accuracy(EvaluationBase):
Args:
inputs: Input `y_pred` and `y`. `y_pred` and `y` are a `Tensor`, a list or an array.
`y_pred` is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]`
For 'classification' evaluation type, `y_pred` is in most cases (not strictly) a list
of floating numbers in range :math:`[0, 1]`
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
is the number of categories. For 'multilabel' evaluation type, `y_pred` can only be one-hot
encoding with values 0 or 1. Indices with 1 indicate positive category. `y` contains values
of integers. The shape is :math:`(N, C)` if one-hot encoding is used. One-hot encoding
should be used when 'eval_type' is 'multilabel'. Shape can also be :math:`(N, 1)` if category
index is used in 'classification' evaluation type.
is the number of categories. Shape of `y` can be :math:`(N, C)` with values 0 and 1 if one-hot
encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
For 'multilabel' evaluation type, `y_pred` and `y` can only be one-hot encoding with
values 0 or 1. Indices with 1 indicate positive category. The shape of `y_pred` and `y`
are both :math:`(N, C)`.
Raises:
ValueError: If the number of the input is not 2.

View File

@ -33,8 +33,8 @@ class MAE(Metric):
The method `update` must be called with the form `update(y_pred, y)`.
Examples:
>>> x = mindspore.Tensor(np.array([0.1, 0.2, 0.6, 0.9]), mindspore.float32)
>>> y = mindspore.Tensor(np.array([0.1, 0.25, 0.7, 0.9]), mindspore.float32)
>>> x = Tensor(np.array([0.1, 0.2, 0.6, 0.9]), mindspore.float32)
>>> y = Tensor(np.array([0.1, 0.25, 0.7, 0.9]), mindspore.float32)
>>> error = nn.MAE()
>>> error.clear()
>>> error.update(x, y)
@ -95,8 +95,8 @@ class MSE(Metric):
where :math:`n` is batch size.
Examples:
>>> x = mindspore.Tensor(np.array([0.1, 0.2, 0.6, 0.9]), mindspore.float32)
>>> y = mindspore.Tensor(np.array([0.1, 0.25, 0.5, 0.9]), mindspore.float32)
>>> x = Tensor(np.array([0.1, 0.2, 0.6, 0.9]), mindspore.float32)
>>> y = Tensor(np.array([0.1, 0.25, 0.5, 0.9]), mindspore.float32)
>>> error = MSE()
>>> error.clear()
>>> error.update(x, y)

View File

@ -33,12 +33,11 @@ class Fbeta(Metric):
beta (float): The weight of precision.
Examples:
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = mindspore.Tensor(np.array([1, 0, 1]))
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = Tensor(np.array([1, 0, 1]))
>>> metric = nn.Fbeta(1)
>>> metric.update(x, y)
>>> fbeta = metric.eval()
[0.66666667 0.66666667]
"""
def __init__(self, beta):
super(Fbeta, self).__init__()
@ -64,7 +63,7 @@ class Fbeta(Metric):
`y_pred` is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]`
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
is the number of categories. y contains values of integers. The shape is :math:`(N, C)`
if one-hot encoding is used. Shape can also be :math:`(N, 1)` if category index is used.
if one-hot encoding is used. Shape can also be :math:`(N,)` if category index is used.
"""
if len(inputs) != 2:
raise ValueError('Fbeta need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
@ -126,8 +125,8 @@ class F1(Fbeta):
F_\beta=\frac{2\cdot true\_positive}{2\cdot true\_positive + false\_negative + false\_positive}
Examples:
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = mindspore.Tensor(np.array([1, 0, 1]))
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = Tensor(np.array([1, 0, 1]))
>>> metric = nn.F1()
>>> metric.update(x, y)
>>> fbeta = metric.eval()

View File

@ -25,12 +25,11 @@ class Loss(Metric):
loss = \frac{\sum_{k=1}^{n}loss_k}{n}
Examples:
>>> x = mindspore.Tensor(np.array(0.2), mindspore.float32)
>>> x = Tensor(np.array(0.2), mindspore.float32)
>>> loss = nn.Loss()
>>> loss.clear()
>>> loss.update(x)
>>> result = loss.eval()
0.20000000298023224
"""
def __init__(self):
super(Loss, self).__init__()

View File

@ -41,13 +41,12 @@ class Precision(EvaluationBase):
multilabel. Default: 'classification'.
Examples:
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = mindspore.Tensor(np.array([1, 0, 1]))
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = Tensor(np.array([1, 0, 1]))
>>> metric = nn.Precision('classification')
>>> metric.clear()
>>> metric.update(x, y)
>>> precision = metric.eval()
[0.5 1. ]
"""
def __init__(self, eval_type='classification'):
super(Precision, self).__init__(eval_type)
@ -72,13 +71,14 @@ class Precision(EvaluationBase):
Args:
inputs: Input `y_pred` and `y`. `y_pred` and `y` are Tensor, list or numpy.ndarray.
`y_pred` is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]`
For 'classification' evaluation type, `y_pred` is in most cases (not strictly) a list
of floating numbers in range :math:`[0, 1]`
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
is the number of categories. For 'multilabel' evaluation type, `y_pred` can only be one-hot
encoding with values 0 or 1. Indices with 1 indicate positive category. `y` contains values
of integers. The shape is :math:`(N, C)` if one-hot encoding is used. One-hot encoding
should be used when 'eval_type' is 'multilabel'. Shape can also be :math:`(N, 1)` if category
index is used in 'classification' evaluation type.
is the number of categories. Shape of `y` can be :math:`(N, C)` with values 0 and 1 if one-hot
encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
For 'multilabel' evaluation type, `y_pred` and `y` can only be one-hot encoding with
values 0 or 1. Indices with 1 indicate positive category. The shape of `y_pred` and `y`
are both :math:`(N, C)`.
Raises:
ValueError: If the number of input is not 2.

View File

@ -41,13 +41,12 @@ class Recall(EvaluationBase):
multilabel. Default: 'classification'.
Examples:
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = mindspore.Tensor(np.array([1, 0, 1]))
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = Tensor(np.array([1, 0, 1]))
>>> metric = nn.Recall('classification')
>>> metric.clear()
>>> metric.update(x, y)
>>> recall = metric.eval()
[1. 0.5]
"""
def __init__(self, eval_type='classification'):
super(Recall, self).__init__(eval_type)
@ -72,13 +71,14 @@ class Recall(EvaluationBase):
Args:
inputs: Input `y_pred` and `y`. `y_pred` and `y` are a `Tensor`, a list or an array.
`y_pred` is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]`
For 'classification' evaluation type, `y_pred` is in most cases (not strictly) a list
of floating numbers in range :math:`[0, 1]`
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
is the number of categories. For 'multilabel' evaluation type, `y_pred` can only be one-hot
encoding with values 0 or 1. Indices with 1 indicate positive category. `y` contains values
of integers. The shape is :math:`(N, C)` if one-hot encoding is used. One-hot encoding
should be used when 'eval_type' is 'multilabel'. Shape can also be :math:`(N, 1)` if category
index is used in 'classification' evaluation type.
is the number of categories. Shape of `y` can be :math:`(N, C)` with values 0 and 1 if one-hot
encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
For 'multilabel' evaluation type, `y_pred` and `y` can only be one-hot encoding with
values 0 or 1. Indices with 1 indicate positive category. The shape of `y_pred` and `y`
are both :math:`(N, C)`.
Raises:

View File

@ -33,14 +33,13 @@ class TopKCategoricalAccuracy(Metric):
ValueError: If `k` is less than 1.
Examples:
>>> x = mindspore.Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
>>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
>>> [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
>>> y = mindspore.Tensor(np.array([2, 0, 1]), mindspore.float32)
>>> y = Tensor(np.array([2, 0, 1]), mindspore.float32)
>>> topk = nn.TopKCategoricalAccuracy(3)
>>> topk.clear()
>>> topk.update(x, y)
>>> result = topk.eval()
0.6666666666666666
"""
def __init__(self, k):
super(TopKCategoricalAccuracy, self).__init__()
@ -65,7 +64,7 @@ class TopKCategoricalAccuracy(Metric):
y_pred is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]`
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
is the number of categories. y contains values of integers. The shape is :math:`(N, C)`
if one-hot encoding is used. Shape can also be :math:`(N, 1)` if category index is used.
if one-hot encoding is used. Shape can also be :math:`(N,)` if category index is used.
"""
if len(inputs) != 2:
raise ValueError('Topk need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
@ -98,9 +97,9 @@ class Top1CategoricalAccuracy(TopKCategoricalAccuracy):
Refer to class 'TopKCategoricalAccuracy' for more details.
Examples:
>>> x = mindspore.Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
>>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
>>> [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
>>> y = mindspore.Tensor(np.array([2, 0, 1]), mindspore.float32)
>>> y = Tensor(np.array([2, 0, 1]), mindspore.float32)
>>> topk = nn.Top1CategoricalAccuracy()
>>> topk.clear()
>>> topk.update(x, y)
@ -116,9 +115,9 @@ class Top5CategoricalAccuracy(TopKCategoricalAccuracy):
Refer to class 'TopKCategoricalAccuracy' for more details.
Examples:
>>> x = mindspore.Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
>>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
>>> [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
>>> y = mindspore.Tensor(np.array([2, 0, 1]), mindspore.float32)
>>> y = Tensor(np.array([2, 0, 1]), mindspore.float32)
>>> topk = nn.Top5CategoricalAccuracy()
>>> topk.clear()
>>> topk.update(x, y)

View File

@ -161,7 +161,7 @@ class Adam(Optimizer):
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = Adam(params=net.trainable_params())
>>> optim = nn.Adam(params=net.trainable_params())
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
"""
@ -252,7 +252,7 @@ class AdamWeightDecay(Optimizer):
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = AdamWeightDecay(params=net.trainable_params())
>>> optim = nn.AdamWeightDecay(params=net.trainable_params())
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
"""
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0):
@ -306,7 +306,7 @@ class AdamWeightDecayDynamicLR(Optimizer):
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = AdamWeightDecayDynamicLR(params=net.trainable_params(), decay_steps=10)
>>> optim = nn.AdamWeightDecayDynamicLR(params=net.trainable_params(), decay_steps=10)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
"""
def __init__(self,

View File

@ -87,7 +87,7 @@ class FTRL(Optimizer):
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> opt = FTRL(net.trainable_params())
>>> opt = nn.FTRL(net.trainable_params())
>>> model = Model(net, loss_fn=loss, optimizer=opt, metrics=None)
"""
def __init__(self, params, initial_accum=0.1, learning_rate=0.001, lr_power=-0.5, l1=0.0, l2=0.0,

View File

@ -163,7 +163,7 @@ class Lamb(Optimizer):
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = Lamb(params=net.trainable_params(), decay_steps=10)
>>> optim = nn.Lamb(params=net.trainable_params(), decay_steps=10)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
"""

View File

@ -90,8 +90,8 @@ class LARS(Cell):
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> opt = Momentum(net.trainable_params(), 0.1, 0.9)
>>> opt_lars = LARS(opt, epsilon=1e-08, hyperpara=0.02)
>>> opt = nn.Momentum(net.trainable_params(), 0.1, 0.9)
>>> opt_lars = nn.LARS(opt, epsilon=1e-08, hyperpara=0.02)
>>> model = Model(net, loss_fn=loss, optimizer=opt_lars, metrics=None)
"""

View File

@ -83,7 +83,7 @@ class Momentum(Optimizer):
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
"""
def __init__(self, params, learning_rate, momentum, weight_decay=0.0, loss_scale=1.0,

View File

@ -132,7 +132,7 @@ class RMSProp(Optimizer):
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> opt = RMSProp(params=net.trainable_params(), learning_rate=lr)
>>> opt = nn.RMSProp(params=net.trainable_params(), learning_rate=lr)
>>> model = Model(net, loss, opt)
"""
def __init__(self, params, learning_rate=0.1, decay=0.9, momentum=0.0, epsilon=1e-10,

View File

@ -77,7 +77,7 @@ class SGD(Optimizer):
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = SGD(params=net.trainable_params())
>>> optim = nn.SGD(params=net.trainable_params())
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
"""
def __init__(self, params, learning_rate=0.1, momentum=0.0, dampening=0.0, weight_decay=0.0, nesterov=False,

View File

@ -50,8 +50,8 @@ class WithLossCell(Cell):
>>> net_with_criterion = nn.WithLossCell(net, loss_fn)
>>>
>>> batch_size = 2
>>> data = mindspore.Tensor(np.ones([batch_size, 3, 64, 64]).astype(np.float32) * 0.01)
>>> label = mindspore.Tensor(np.ones([batch_size, 1, 1, 1]).astype(np.int32))
>>> data = Tensor(np.ones([batch_size, 3, 64, 64]).astype(np.float32) * 0.01)
>>> label = Tensor(np.ones([batch_size, 1, 1, 1]).astype(np.int32))
>>>
>>> net_with_criterion(data, label)
"""
@ -62,16 +62,6 @@ class WithLossCell(Cell):
self._loss_fn = loss_fn
def construct(self, data, label):
"""
Computes loss based on the wrapped loss cell.
Args:
data (Tensor): Tensor data to train.
label (Tensor): Tensor label data.
Returns:
Tensor, compute result.
"""
out = self._backbone(data)
return self._loss_fn(out, label)
@ -137,19 +127,6 @@ class WithGradCell(Cell):
self.network_with_loss.set_train()
def construct(self, data, label):
"""
Computes gradients based on the wrapped gradients cell.
Note:
Run in PyNative mode.
Args:
data (Tensor): Tensor data to train.
label (Tensor): Tensor label data.
Returns:
Tensor, return compute gradients.
"""
weights = self.weights
if self.sens is None:
grads = self.grad(self.network_with_loss, weights)(data, label)
@ -355,7 +332,7 @@ class ParameterUpdate(Cell):
>>> param = network.parameters_dict()['learning_rate']
>>> update = nn.ParameterUpdate(param)
>>> update.phase = "update_param"
>>> lr = mindspore.Tensor(0.001, mindspore.float32)
>>> lr = Tensor(0.001, mindspore.float32)
>>> update(lr)
"""

View File

@ -120,25 +120,36 @@ class DistributedGradReducer(Cell):
ValueError: If degree is not a int or less than 0.
Examples:
>>> from mindspore.communication import get_group_size
>>> from mindspore.communication import init, get_group_size
>>> from mindspore.ops import composite as C
>>> from mindspore.ops import operations as P
>>> from mindspore.ops import functional as F
>>> from mindspore import context
>>> from mindspore import nn
>>> from mindspore import ParallelMode, ParameterTuple
>>>
>>> device_id = int(os.environ["DEVICE_ID"])
>>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True,
>>> device_id=int(device_id), enable_hccl=True)
>>> init()
>>> context.reset_auto_parallel_context()
>>> context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL)
>>>
>>>
>>> class TrainingWrapper(nn.Cell):
>>> def __init__(self, network, optimizer, sens=1.0):
>>> super(TrainingWrapper, self).__init__(auto_prefix=False)
>>> self.network = network
>>> self.weights = mindspore.ParameterTuple(network.trainable_params())
>>> self.network.add_flags(defer_inline=True)
>>> self.weights = ParameterTuple(network.trainable_params())
>>> self.optimizer = optimizer
>>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
>>> self.sens = sens
>>> self.reducer_flag = False
>>> self.grad_reducer = None
>>> self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
>>> if self.parallel_mode in [mindspore.ParallelMode.DATA_PARALLEL,
>>> mindspore.ParallelMode.HYBRID_PARALLEL]:
>>> if self.parallel_mode in [ParallelMode.DATA_PARALLEL,
>>> ParallelMode.HYBRID_PARALLEL]:
>>> self.reducer_flag = True
>>> if self.reducer_flag:
>>> mean = context.get_auto_parallel_context("mirror_mean")
@ -161,8 +172,8 @@ class DistributedGradReducer(Cell):
>>> network = Net()
>>> optimizer = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> train_cell = TrainingWrapper(network, optimizer)
>>> inputs = mindspore.Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = mindspore.Tensor(np.zeros([16, 16]).astype(np.float32))
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
>>> grads = train_cell(inputs, label)
"""

View File

@ -65,9 +65,10 @@ class DynamicLossScaleUpdateCell(Cell):
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager)
>>> train_network.set_train()
>>>
>>> inputs = mindspore.Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = mindspore.Tensor(np.zeros([16, 16]).astype(np.float32))
>>> output = train_network(inputs, label)
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
>>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
>>> output = train_network(inputs, label, scaling_sens)
"""
def __init__(self,
@ -126,13 +127,14 @@ class FixedLossScaleUpdateCell(Cell):
Examples:
>>> net_with_loss = Net()
>>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=2**12, scale_factor=2, scale_window=1000)
>>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=2**12)
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager)
>>> train_network.set_train()
>>>
>>> inputs = mindspore.Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = mindspore.Tensor(np.zeros([16, 16]).astype(np.float32))
>>> output = train_network(inputs, label)
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
>>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
>>> output = train_network(inputs, label, scaling_sens)
"""
def __init__(self, loss_scale_value):
@ -181,9 +183,9 @@ class TrainOneStepWithLossScaleCell(Cell):
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager)
>>> train_network.set_train()
>>>
>>> inputs = mindspore.Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = mindspore.Tensor(np.zeros([16, 16]).astype(np.float32))
>>> scaling_sens = mindspore.Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
>>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
>>> output = train_network(inputs, label, scaling_sens)
"""