forked from mindspore-Ecosystem/mindspore
!126 resolve some issues in nn comments
Merge pull request !126 from zhongligeng/master
This commit is contained in:
commit
32017f6da3
|
@ -65,7 +65,7 @@ class Dropout(Cell):
|
|||
Tensor, output tensor with the same shape as the input.
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.ones([20, 16, 50]), mindspore.float32)
|
||||
>>> x = Tensor(np.ones([20, 16, 50]), mindspore.float32)
|
||||
>>> net = nn.Dropout(keep_prob=0.8)
|
||||
>>> net(x)
|
||||
"""
|
||||
|
@ -111,7 +111,7 @@ class Flatten(Cell):
|
|||
|
||||
Examples:
|
||||
>>> net = nn.Flatten()
|
||||
>>> input = mindspore.Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
|
||||
>>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
|
||||
>>> input.shape()
|
||||
(2, 2, 2)
|
||||
>>> net(input)
|
||||
|
@ -149,9 +149,6 @@ class Dense(Cell):
|
|||
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
|
||||
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Raises:
|
||||
ValueError: If weight_init or bias_init shape is incorrect.
|
||||
|
||||
|
@ -163,7 +160,7 @@ class Dense(Cell):
|
|||
|
||||
Examples:
|
||||
>>> net = nn.Dense(3, 4)
|
||||
>>> input = mindspore.Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
|
||||
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
|
||||
>>> net(input)
|
||||
[[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
|
||||
[ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
|
||||
|
@ -243,8 +240,8 @@ class ClipByNorm(Cell):
|
|||
|
||||
Examples:
|
||||
>>> net = nn.ClipByNorm()
|
||||
>>> input = mindspore.Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
|
||||
>>> clip_norm = mindspore.Tensor(np.array([100]).astype(np.float32))
|
||||
>>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
|
||||
>>> clip_norm = Tensor(np.array([100]).astype(np.float32))
|
||||
>>> net(input, clip_norm)
|
||||
|
||||
"""
|
||||
|
@ -290,9 +287,6 @@ class Norm(Cell):
|
|||
keep_dims (bool): If True, the axis indicated in `axis` are kept with size 1. Otherwise,
|
||||
the dimensions in `axis` are removed from the output shape. Default: False.
|
||||
|
||||
Returns:
|
||||
Tensor, a Tensor of the same type as input, containing the vector or matrix norms.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - Tensor which is not empty.
|
||||
|
||||
|
@ -302,7 +296,7 @@ class Norm(Cell):
|
|||
|
||||
Examples:
|
||||
>>> net = nn.Norm(axis=0)
|
||||
>>> input = mindspore.Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
|
||||
>>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
|
||||
>>> net(input)
|
||||
"""
|
||||
def __init__(self, axis=(), keep_dims=False):
|
||||
|
@ -344,7 +338,8 @@ class OneHot(Cell):
|
|||
when indices[j] = i. Default: 1.0.
|
||||
off_value (float): A scalar defining the value to fill in output[i][j]
|
||||
when indices[j] != i. Default: 0.0.
|
||||
dtype (:class:`mindspore.dtype`): Default: mindspore.float32.
|
||||
dtype (:class:`mindspore.dtype`): Data type of 'on_value' and 'off_value', not the
|
||||
data type of indices. Default: mindspore.float32.
|
||||
|
||||
Inputs:
|
||||
- **indices** (Tensor) - A tensor of indices of data type mindspore.int32 and arbitrary shape.
|
||||
|
@ -355,7 +350,7 @@ class OneHot(Cell):
|
|||
|
||||
Examples:
|
||||
>>> net = nn.OneHot(depth=4, axis=1)
|
||||
>>> indices = mindspore.Tensor([[1, 3], [0, 2]], dtype=mindspore.int32)
|
||||
>>> indices = Tensor([[1, 3], [0, 2]], dtype=mindspore.int32)
|
||||
>>> net(indices)
|
||||
[[[0. 0.]
|
||||
[1. 0.]
|
||||
|
|
|
@ -86,7 +86,7 @@ class SequentialCell(Cell):
|
|||
>>> relu = nn.ReLU()
|
||||
>>> seq = nn.SequentialCell([conv, bn, relu])
|
||||
>>>
|
||||
>>> x = mindspore.Tensor(np.random.random((1, 3, 4, 4)), dtype=mindspore.float32)
|
||||
>>> x = Tensor(np.random.random((1, 3, 4, 4)), dtype=mindspore.float32)
|
||||
>>> seq(x)
|
||||
[[[[0.02531557 0. ]
|
||||
[0.04933941 0.04880078]]
|
||||
|
@ -138,7 +138,6 @@ class SequentialCell(Cell):
|
|||
return len(self._cells)
|
||||
|
||||
def construct(self, input_data):
|
||||
"""Processes the input with the defined sequence of Cells."""
|
||||
for cell in self.cell_list:
|
||||
input_data = cell(input_data)
|
||||
return input_data
|
||||
|
@ -161,7 +160,7 @@ class CellList(_CellListBase, Cell):
|
|||
>>> cell_ls = nn.CellList([bn])
|
||||
>>> cell_ls.insert(0, conv)
|
||||
>>> cell_ls.append(relu)
|
||||
>>> x = mindspore.Tensor(np.random.random((1, 3, 4, 4)), dtype=mindspore.float32)
|
||||
>>> x = Tensor(np.random.random((1, 3, 4, 4)), dtype=mindspore.float32)
|
||||
>>> # not same as nn.SequentialCell, `cell_ls(x)` is not correct
|
||||
>>> cell_ls
|
||||
CellList< (0): Conv2d<input_channels=100, ..., bias_init=None>
|
||||
|
|
|
@ -146,9 +146,6 @@ class Conv2d(_Conv):
|
|||
Initializer and string are the same as 'weight_init'. Refer to the values of
|
||||
Initializer for more details. Default: 'zeros'.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||
|
||||
|
@ -157,7 +154,7 @@ class Conv2d(_Conv):
|
|||
|
||||
Examples:
|
||||
>>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal')
|
||||
>>> input = mindspore.Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
|
||||
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
|
||||
>>> net(input).shape()
|
||||
(1, 240, 1024, 640)
|
||||
"""
|
||||
|
@ -277,7 +274,7 @@ class Conv2dTranspose(_Conv):
|
|||
|
||||
Examples:
|
||||
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal')
|
||||
>>> input = Tensor(np.ones([1, 3, 16, 50]), mstype.float32)
|
||||
>>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32)
|
||||
>>> net(input)
|
||||
"""
|
||||
def __init__(self,
|
||||
|
|
|
@ -50,7 +50,7 @@ class Embedding(Cell):
|
|||
|
||||
Examples:
|
||||
>>> net = nn.Embedding(20000, 768, True)
|
||||
>>> input_data = mindspore.Tensor(np.ones([8, 128]), mindspore.int32)
|
||||
>>> input_data = Tensor(np.ones([8, 128]), mindspore.int32)
|
||||
>>>
|
||||
>>> # Maps the input word IDs to word embedding.
|
||||
>>> output = net(input_data)
|
||||
|
|
|
@ -96,9 +96,9 @@ class LSTM(Cell):
|
|||
>>> return self.lstm(inp, (h0, c0))
|
||||
>>>
|
||||
>>> net = LstmNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False)
|
||||
>>> input = mindspore.Tensor(np.ones([3, 5, 10]).astype(np.float32))
|
||||
>>> h0 = mindspore.Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
|
||||
>>> c0 = mindspore.Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
|
||||
>>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32))
|
||||
>>> h0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
|
||||
>>> c0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
|
||||
>>> output, (hn, cn) = net(input, h0, c0)
|
||||
"""
|
||||
def __init__(self,
|
||||
|
|
|
@ -159,7 +159,7 @@ class BatchNorm1d(_BatchNorm):
|
|||
|
||||
Examples:
|
||||
>>> net = nn.BatchNorm1d(num_features=16)
|
||||
>>> input = mindspore.Tensor(np.random.randint(0, 255, [3, 16]), mindspore.float32)
|
||||
>>> input = Tensor(np.random.randint(0, 255, [3, 16]), mindspore.float32)
|
||||
>>> net(input)
|
||||
"""
|
||||
def _check_data_dim(self, x):
|
||||
|
@ -258,7 +258,7 @@ class LayerNorm(Cell):
|
|||
Examples:
|
||||
>>> x = Tensor(np.ones([20, 5, 10, 10], np.float32))
|
||||
>>> shape1 = x.shape()[1:]
|
||||
>>> m = LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
|
||||
>>> m = nn.LayerNorm(shape1, begin_norm_axis=1, begin_params_axis=1)
|
||||
>>> m(x)
|
||||
"""
|
||||
def __init__(self,
|
||||
|
|
|
@ -63,8 +63,8 @@ class MaxPool2d(_PoolNd):
|
|||
pad_mode for training only supports "same" and "valid".
|
||||
|
||||
Args:
|
||||
kernel_size (int): Size of the window to take a max over.
|
||||
stride (int): Stride size of the window. Default: None.
|
||||
kernel_size (int): Size of the window to take a max over. Default 1.
|
||||
stride (int): Stride size of the window. Default: 1.
|
||||
pad_mode (str): Select the mode of the pad. The optional values are
|
||||
"same" and "valid". Default: "valid".
|
||||
|
||||
|
@ -75,7 +75,7 @@ class MaxPool2d(_PoolNd):
|
|||
|
||||
- valid: Adopts the way of discarding. The possibly largest height and width of output will be return
|
||||
without padding. Extra pixels will be discarded.
|
||||
padding (int): Now is not supported, mplicit zero padding to be added on both sides. Default: 0.
|
||||
padding (int): Implicit zero padding to be added on both sides. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||
|
@ -85,7 +85,7 @@ class MaxPool2d(_PoolNd):
|
|||
|
||||
Examples:
|
||||
>>> pool = MaxPool2d(kernel_size=3, stride=1)
|
||||
>>> x = mindspore.Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
|
||||
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
|
||||
[[[[1. 5. 5. 1.]
|
||||
[0. 3. 4. 8.]
|
||||
[4. 2. 7. 6.]
|
||||
|
@ -149,8 +149,8 @@ class AvgPool2d(_PoolNd):
|
|||
pad_mode for training only supports "same" and "valid".
|
||||
|
||||
Args:
|
||||
kernel_size (int): Size of the window to take a max over.
|
||||
stride (int): Stride size of the window. Default: None.
|
||||
kernel_size (int): Size of the window to take a max over. Default: 1.
|
||||
stride (int): Stride size of the window. Default: 1.
|
||||
pad_mode (str): Select the mode of the pad. The optional values are
|
||||
"same", "valid". Default: "valid".
|
||||
|
||||
|
@ -161,7 +161,7 @@ class AvgPool2d(_PoolNd):
|
|||
|
||||
- valid: Adopts the way of discarding. The possibly largest height and width of output will be return
|
||||
without padding. Extra pixels will be discarded.
|
||||
padding (int): Now is not supported, implicit zero padding to be added on both sides. Default: 0.
|
||||
padding (int): Implicit zero padding to be added on both sides. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||
|
@ -171,7 +171,7 @@ class AvgPool2d(_PoolNd):
|
|||
|
||||
Examples:
|
||||
>>> pool = AvgPool2d(kernel_size=3, stride=1)
|
||||
>>> x = mindspore.Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
|
||||
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
|
||||
[[[[5. 5. 9. 9.]
|
||||
[8. 4. 3. 0.]
|
||||
[2. 7. 1. 2.]
|
||||
|
|
|
@ -86,9 +86,9 @@ class L1Loss(_Loss):
|
|||
Tensor, loss float tensor.
|
||||
|
||||
Examples:
|
||||
>>> loss = L1Loss()
|
||||
>>> input_data = Tensor(np.array([1, 2, 3]), mstype.float32)
|
||||
>>> target_data = Tensor(np.array([1, 2, 2]), mstype.float32)
|
||||
>>> loss = nn.L1Loss()
|
||||
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
|
||||
>>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32)
|
||||
>>> loss(input_data, target_data)
|
||||
"""
|
||||
def __init__(self, reduction='mean'):
|
||||
|
@ -126,9 +126,9 @@ class MSELoss(_Loss):
|
|||
Tensor, weighted loss float tensor.
|
||||
|
||||
Examples:
|
||||
>>> loss = MSELoss()
|
||||
>>> input_data = Tensor(np.array([1, 2, 3]), mstype.float32)
|
||||
>>> target_data = Tensor(np.array([1, 2, 2]), mstype.float32)
|
||||
>>> loss = nn.MSELoss()
|
||||
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
|
||||
>>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32)
|
||||
>>> loss(input_data, target_data)
|
||||
"""
|
||||
def construct(self, base, target):
|
||||
|
@ -171,9 +171,9 @@ class SmoothL1Loss(_Loss):
|
|||
Tensor, loss float tensor.
|
||||
|
||||
Examples:
|
||||
>>> loss = SmoothL1Loss()
|
||||
>>> input_data = Tensor(np.array([1, 2, 3]), mstype.float32)
|
||||
>>> target_data = Tensor(np.array([1, 2, 2]), mstype.float32)
|
||||
>>> loss = nn.SmoothL1Loss()
|
||||
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
|
||||
>>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32)
|
||||
>>> loss(input_data, target_data)
|
||||
"""
|
||||
def __init__(self, sigma=1.0):
|
||||
|
@ -219,17 +219,16 @@ class SoftmaxCrossEntropyWithLogits(_Loss):
|
|||
Inputs:
|
||||
- **logits** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`.
|
||||
- **labels** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_S)`. If `sparse` is True, The type of
|
||||
`labels` is mstype.int32. If `sparse` is False, the type of `labels` is same as the type of `logits`.
|
||||
`labels` is mindspore.int32. If `sparse` is False, the type of `labels` is same as the type of `logits`.
|
||||
|
||||
Outputs:
|
||||
Tensor, a tensor of the same shape as logits with the component-wise
|
||||
logistic losses.
|
||||
|
||||
Examples:
|
||||
>>> loss = SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
>>> logits = Tensor(np.random.randint(0, 9, [1, 10]), mstype.float32)
|
||||
>>> labels_np = np.zeros([1, 10]).astype(np.int32)
|
||||
>>> labels_np[0][0] = 1
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
>>> logits = Tensor(np.random.randint(0, 9, [1, 10]), mindspore.float32)
|
||||
>>> labels_np = np.ones([1,]).astype(np.int32)
|
||||
>>> labels = Tensor(labels_np)
|
||||
>>> loss(logits, labels)
|
||||
"""
|
||||
|
@ -286,8 +285,8 @@ class SoftmaxCrossEntropyExpand(Cell):
|
|||
|
||||
Examples:
|
||||
>>> loss = SoftmaxCrossEntropyExpand(sparse=True)
|
||||
>>> input_data = Tensor(np.ones([64, 512]), dtype=mstype.float32)
|
||||
>>> label = Tensor(np.ones([64]), dtype=mstype.int32)
|
||||
>>> input_data = Tensor(np.ones([64, 512]), dtype=mindspore.float32)
|
||||
>>> label = Tensor(np.ones([64]), dtype=mindspore.int32)
|
||||
>>> loss(input_data, label)
|
||||
"""
|
||||
def __init__(self, sparse=False):
|
||||
|
|
|
@ -35,8 +35,8 @@ class Accuracy(EvaluationBase):
|
|||
Default: 'classification'.
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mindspore.float32)
|
||||
>>> y = mindspore.Tensor(np.array([1, 0, 1]), mindspore.float32)
|
||||
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([1, 0, 1]), mindspore.float32)
|
||||
>>> metric = nn.Accuracy('classification')
|
||||
>>> metric.clear()
|
||||
>>> metric.update(x, y)
|
||||
|
@ -58,13 +58,14 @@ class Accuracy(EvaluationBase):
|
|||
|
||||
Args:
|
||||
inputs: Input `y_pred` and `y`. `y_pred` and `y` are a `Tensor`, a list or an array.
|
||||
`y_pred` is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]`
|
||||
For 'classification' evaluation type, `y_pred` is in most cases (not strictly) a list
|
||||
of floating numbers in range :math:`[0, 1]`
|
||||
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
|
||||
is the number of categories. For 'multilabel' evaluation type, `y_pred` can only be one-hot
|
||||
encoding with values 0 or 1. Indices with 1 indicate positive category. `y` contains values
|
||||
of integers. The shape is :math:`(N, C)` if one-hot encoding is used. One-hot encoding
|
||||
should be used when 'eval_type' is 'multilabel'. Shape can also be :math:`(N, 1)` if category
|
||||
index is used in 'classification' evaluation type.
|
||||
is the number of categories. Shape of `y` can be :math:`(N, C)` with values 0 and 1 if one-hot
|
||||
encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
|
||||
For 'multilabel' evaluation type, `y_pred` and `y` can only be one-hot encoding with
|
||||
values 0 or 1. Indices with 1 indicate positive category. The shape of `y_pred` and `y`
|
||||
are both :math:`(N, C)`.
|
||||
|
||||
Raises:
|
||||
ValueError: If the number of the input is not 2.
|
||||
|
|
|
@ -33,8 +33,8 @@ class MAE(Metric):
|
|||
The method `update` must be called with the form `update(y_pred, y)`.
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([0.1, 0.2, 0.6, 0.9]), mindspore.float32)
|
||||
>>> y = mindspore.Tensor(np.array([0.1, 0.25, 0.7, 0.9]), mindspore.float32)
|
||||
>>> x = Tensor(np.array([0.1, 0.2, 0.6, 0.9]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([0.1, 0.25, 0.7, 0.9]), mindspore.float32)
|
||||
>>> error = nn.MAE()
|
||||
>>> error.clear()
|
||||
>>> error.update(x, y)
|
||||
|
@ -95,8 +95,8 @@ class MSE(Metric):
|
|||
where :math:`n` is batch size.
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([0.1, 0.2, 0.6, 0.9]), mindspore.float32)
|
||||
>>> y = mindspore.Tensor(np.array([0.1, 0.25, 0.5, 0.9]), mindspore.float32)
|
||||
>>> x = Tensor(np.array([0.1, 0.2, 0.6, 0.9]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([0.1, 0.25, 0.5, 0.9]), mindspore.float32)
|
||||
>>> error = MSE()
|
||||
>>> error.clear()
|
||||
>>> error.update(x, y)
|
||||
|
|
|
@ -33,12 +33,11 @@ class Fbeta(Metric):
|
|||
beta (float): The weight of precision.
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||
>>> y = mindspore.Tensor(np.array([1, 0, 1]))
|
||||
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||
>>> y = Tensor(np.array([1, 0, 1]))
|
||||
>>> metric = nn.Fbeta(1)
|
||||
>>> metric.update(x, y)
|
||||
>>> fbeta = metric.eval()
|
||||
[0.66666667 0.66666667]
|
||||
"""
|
||||
def __init__(self, beta):
|
||||
super(Fbeta, self).__init__()
|
||||
|
@ -64,7 +63,7 @@ class Fbeta(Metric):
|
|||
`y_pred` is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]`
|
||||
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
|
||||
is the number of categories. y contains values of integers. The shape is :math:`(N, C)`
|
||||
if one-hot encoding is used. Shape can also be :math:`(N, 1)` if category index is used.
|
||||
if one-hot encoding is used. Shape can also be :math:`(N,)` if category index is used.
|
||||
"""
|
||||
if len(inputs) != 2:
|
||||
raise ValueError('Fbeta need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
|
||||
|
@ -126,8 +125,8 @@ class F1(Fbeta):
|
|||
F_\beta=\frac{2\cdot true\_positive}{2\cdot true\_positive + false\_negative + false\_positive}
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||
>>> y = mindspore.Tensor(np.array([1, 0, 1]))
|
||||
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||
>>> y = Tensor(np.array([1, 0, 1]))
|
||||
>>> metric = nn.F1()
|
||||
>>> metric.update(x, y)
|
||||
>>> fbeta = metric.eval()
|
||||
|
|
|
@ -25,12 +25,11 @@ class Loss(Metric):
|
|||
loss = \frac{\sum_{k=1}^{n}loss_k}{n}
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array(0.2), mindspore.float32)
|
||||
>>> x = Tensor(np.array(0.2), mindspore.float32)
|
||||
>>> loss = nn.Loss()
|
||||
>>> loss.clear()
|
||||
>>> loss.update(x)
|
||||
>>> result = loss.eval()
|
||||
0.20000000298023224
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Loss, self).__init__()
|
||||
|
|
|
@ -41,13 +41,12 @@ class Precision(EvaluationBase):
|
|||
multilabel. Default: 'classification'.
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||
>>> y = mindspore.Tensor(np.array([1, 0, 1]))
|
||||
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||
>>> y = Tensor(np.array([1, 0, 1]))
|
||||
>>> metric = nn.Precision('classification')
|
||||
>>> metric.clear()
|
||||
>>> metric.update(x, y)
|
||||
>>> precision = metric.eval()
|
||||
[0.5 1. ]
|
||||
"""
|
||||
def __init__(self, eval_type='classification'):
|
||||
super(Precision, self).__init__(eval_type)
|
||||
|
@ -72,13 +71,14 @@ class Precision(EvaluationBase):
|
|||
|
||||
Args:
|
||||
inputs: Input `y_pred` and `y`. `y_pred` and `y` are Tensor, list or numpy.ndarray.
|
||||
`y_pred` is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]`
|
||||
For 'classification' evaluation type, `y_pred` is in most cases (not strictly) a list
|
||||
of floating numbers in range :math:`[0, 1]`
|
||||
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
|
||||
is the number of categories. For 'multilabel' evaluation type, `y_pred` can only be one-hot
|
||||
encoding with values 0 or 1. Indices with 1 indicate positive category. `y` contains values
|
||||
of integers. The shape is :math:`(N, C)` if one-hot encoding is used. One-hot encoding
|
||||
should be used when 'eval_type' is 'multilabel'. Shape can also be :math:`(N, 1)` if category
|
||||
index is used in 'classification' evaluation type.
|
||||
is the number of categories. Shape of `y` can be :math:`(N, C)` with values 0 and 1 if one-hot
|
||||
encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
|
||||
For 'multilabel' evaluation type, `y_pred` and `y` can only be one-hot encoding with
|
||||
values 0 or 1. Indices with 1 indicate positive category. The shape of `y_pred` and `y`
|
||||
are both :math:`(N, C)`.
|
||||
|
||||
Raises:
|
||||
ValueError: If the number of input is not 2.
|
||||
|
|
|
@ -41,13 +41,12 @@ class Recall(EvaluationBase):
|
|||
multilabel. Default: 'classification'.
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||
>>> y = mindspore.Tensor(np.array([1, 0, 1]))
|
||||
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
|
||||
>>> y = Tensor(np.array([1, 0, 1]))
|
||||
>>> metric = nn.Recall('classification')
|
||||
>>> metric.clear()
|
||||
>>> metric.update(x, y)
|
||||
>>> recall = metric.eval()
|
||||
[1. 0.5]
|
||||
"""
|
||||
def __init__(self, eval_type='classification'):
|
||||
super(Recall, self).__init__(eval_type)
|
||||
|
@ -72,13 +71,14 @@ class Recall(EvaluationBase):
|
|||
|
||||
Args:
|
||||
inputs: Input `y_pred` and `y`. `y_pred` and `y` are a `Tensor`, a list or an array.
|
||||
`y_pred` is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]`
|
||||
For 'classification' evaluation type, `y_pred` is in most cases (not strictly) a list
|
||||
of floating numbers in range :math:`[0, 1]`
|
||||
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
|
||||
is the number of categories. For 'multilabel' evaluation type, `y_pred` can only be one-hot
|
||||
encoding with values 0 or 1. Indices with 1 indicate positive category. `y` contains values
|
||||
of integers. The shape is :math:`(N, C)` if one-hot encoding is used. One-hot encoding
|
||||
should be used when 'eval_type' is 'multilabel'. Shape can also be :math:`(N, 1)` if category
|
||||
index is used in 'classification' evaluation type.
|
||||
is the number of categories. Shape of `y` can be :math:`(N, C)` with values 0 and 1 if one-hot
|
||||
encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
|
||||
For 'multilabel' evaluation type, `y_pred` and `y` can only be one-hot encoding with
|
||||
values 0 or 1. Indices with 1 indicate positive category. The shape of `y_pred` and `y`
|
||||
are both :math:`(N, C)`.
|
||||
|
||||
|
||||
Raises:
|
||||
|
|
|
@ -33,14 +33,13 @@ class TopKCategoricalAccuracy(Metric):
|
|||
ValueError: If `k` is less than 1.
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
|
||||
>>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
|
||||
>>> [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
|
||||
>>> y = mindspore.Tensor(np.array([2, 0, 1]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([2, 0, 1]), mindspore.float32)
|
||||
>>> topk = nn.TopKCategoricalAccuracy(3)
|
||||
>>> topk.clear()
|
||||
>>> topk.update(x, y)
|
||||
>>> result = topk.eval()
|
||||
0.6666666666666666
|
||||
"""
|
||||
def __init__(self, k):
|
||||
super(TopKCategoricalAccuracy, self).__init__()
|
||||
|
@ -65,7 +64,7 @@ class TopKCategoricalAccuracy(Metric):
|
|||
y_pred is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]`
|
||||
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
|
||||
is the number of categories. y contains values of integers. The shape is :math:`(N, C)`
|
||||
if one-hot encoding is used. Shape can also be :math:`(N, 1)` if category index is used.
|
||||
if one-hot encoding is used. Shape can also be :math:`(N,)` if category index is used.
|
||||
"""
|
||||
if len(inputs) != 2:
|
||||
raise ValueError('Topk need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
|
||||
|
@ -98,9 +97,9 @@ class Top1CategoricalAccuracy(TopKCategoricalAccuracy):
|
|||
Refer to class 'TopKCategoricalAccuracy' for more details.
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
|
||||
>>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
|
||||
>>> [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
|
||||
>>> y = mindspore.Tensor(np.array([2, 0, 1]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([2, 0, 1]), mindspore.float32)
|
||||
>>> topk = nn.Top1CategoricalAccuracy()
|
||||
>>> topk.clear()
|
||||
>>> topk.update(x, y)
|
||||
|
@ -116,9 +115,9 @@ class Top5CategoricalAccuracy(TopKCategoricalAccuracy):
|
|||
Refer to class 'TopKCategoricalAccuracy' for more details.
|
||||
|
||||
Examples:
|
||||
>>> x = mindspore.Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
|
||||
>>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
|
||||
>>> [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
|
||||
>>> y = mindspore.Tensor(np.array([2, 0, 1]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([2, 0, 1]), mindspore.float32)
|
||||
>>> topk = nn.Top5CategoricalAccuracy()
|
||||
>>> topk.clear()
|
||||
>>> topk.update(x, y)
|
||||
|
|
|
@ -161,7 +161,7 @@ class Adam(Optimizer):
|
|||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> optim = Adam(params=net.trainable_params())
|
||||
>>> optim = nn.Adam(params=net.trainable_params())
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
"""
|
||||
|
||||
|
@ -252,7 +252,7 @@ class AdamWeightDecay(Optimizer):
|
|||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> optim = AdamWeightDecay(params=net.trainable_params())
|
||||
>>> optim = nn.AdamWeightDecay(params=net.trainable_params())
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
"""
|
||||
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0):
|
||||
|
@ -306,7 +306,7 @@ class AdamWeightDecayDynamicLR(Optimizer):
|
|||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> optim = AdamWeightDecayDynamicLR(params=net.trainable_params(), decay_steps=10)
|
||||
>>> optim = nn.AdamWeightDecayDynamicLR(params=net.trainable_params(), decay_steps=10)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
"""
|
||||
def __init__(self,
|
||||
|
|
|
@ -87,7 +87,7 @@ class FTRL(Optimizer):
|
|||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> opt = FTRL(net.trainable_params())
|
||||
>>> opt = nn.FTRL(net.trainable_params())
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=opt, metrics=None)
|
||||
"""
|
||||
def __init__(self, params, initial_accum=0.1, learning_rate=0.001, lr_power=-0.5, l1=0.0, l2=0.0,
|
||||
|
|
|
@ -163,7 +163,7 @@ class Lamb(Optimizer):
|
|||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> optim = Lamb(params=net.trainable_params(), decay_steps=10)
|
||||
>>> optim = nn.Lamb(params=net.trainable_params(), decay_steps=10)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
"""
|
||||
|
||||
|
|
|
@ -90,8 +90,8 @@ class LARS(Cell):
|
|||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> opt = Momentum(net.trainable_params(), 0.1, 0.9)
|
||||
>>> opt_lars = LARS(opt, epsilon=1e-08, hyperpara=0.02)
|
||||
>>> opt = nn.Momentum(net.trainable_params(), 0.1, 0.9)
|
||||
>>> opt_lars = nn.LARS(opt, epsilon=1e-08, hyperpara=0.02)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=opt_lars, metrics=None)
|
||||
"""
|
||||
|
||||
|
|
|
@ -83,7 +83,7 @@ class Momentum(Optimizer):
|
|||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
"""
|
||||
def __init__(self, params, learning_rate, momentum, weight_decay=0.0, loss_scale=1.0,
|
||||
|
|
|
@ -132,7 +132,7 @@ class RMSProp(Optimizer):
|
|||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> opt = RMSProp(params=net.trainable_params(), learning_rate=lr)
|
||||
>>> opt = nn.RMSProp(params=net.trainable_params(), learning_rate=lr)
|
||||
>>> model = Model(net, loss, opt)
|
||||
"""
|
||||
def __init__(self, params, learning_rate=0.1, decay=0.9, momentum=0.0, epsilon=1e-10,
|
||||
|
|
|
@ -77,7 +77,7 @@ class SGD(Optimizer):
|
|||
Examples:
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> optim = SGD(params=net.trainable_params())
|
||||
>>> optim = nn.SGD(params=net.trainable_params())
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
"""
|
||||
def __init__(self, params, learning_rate=0.1, momentum=0.0, dampening=0.0, weight_decay=0.0, nesterov=False,
|
||||
|
|
|
@ -50,8 +50,8 @@ class WithLossCell(Cell):
|
|||
>>> net_with_criterion = nn.WithLossCell(net, loss_fn)
|
||||
>>>
|
||||
>>> batch_size = 2
|
||||
>>> data = mindspore.Tensor(np.ones([batch_size, 3, 64, 64]).astype(np.float32) * 0.01)
|
||||
>>> label = mindspore.Tensor(np.ones([batch_size, 1, 1, 1]).astype(np.int32))
|
||||
>>> data = Tensor(np.ones([batch_size, 3, 64, 64]).astype(np.float32) * 0.01)
|
||||
>>> label = Tensor(np.ones([batch_size, 1, 1, 1]).astype(np.int32))
|
||||
>>>
|
||||
>>> net_with_criterion(data, label)
|
||||
"""
|
||||
|
@ -62,16 +62,6 @@ class WithLossCell(Cell):
|
|||
self._loss_fn = loss_fn
|
||||
|
||||
def construct(self, data, label):
|
||||
"""
|
||||
Computes loss based on the wrapped loss cell.
|
||||
|
||||
Args:
|
||||
data (Tensor): Tensor data to train.
|
||||
label (Tensor): Tensor label data.
|
||||
|
||||
Returns:
|
||||
Tensor, compute result.
|
||||
"""
|
||||
out = self._backbone(data)
|
||||
return self._loss_fn(out, label)
|
||||
|
||||
|
@ -137,19 +127,6 @@ class WithGradCell(Cell):
|
|||
self.network_with_loss.set_train()
|
||||
|
||||
def construct(self, data, label):
|
||||
"""
|
||||
Computes gradients based on the wrapped gradients cell.
|
||||
|
||||
Note:
|
||||
Run in PyNative mode.
|
||||
|
||||
Args:
|
||||
data (Tensor): Tensor data to train.
|
||||
label (Tensor): Tensor label data.
|
||||
|
||||
Returns:
|
||||
Tensor, return compute gradients.
|
||||
"""
|
||||
weights = self.weights
|
||||
if self.sens is None:
|
||||
grads = self.grad(self.network_with_loss, weights)(data, label)
|
||||
|
@ -355,7 +332,7 @@ class ParameterUpdate(Cell):
|
|||
>>> param = network.parameters_dict()['learning_rate']
|
||||
>>> update = nn.ParameterUpdate(param)
|
||||
>>> update.phase = "update_param"
|
||||
>>> lr = mindspore.Tensor(0.001, mindspore.float32)
|
||||
>>> lr = Tensor(0.001, mindspore.float32)
|
||||
>>> update(lr)
|
||||
"""
|
||||
|
||||
|
|
|
@ -120,25 +120,36 @@ class DistributedGradReducer(Cell):
|
|||
ValueError: If degree is not a int or less than 0.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore.communication import get_group_size
|
||||
>>> from mindspore.communication import init, get_group_size
|
||||
>>> from mindspore.ops import composite as C
|
||||
>>> from mindspore.ops import operations as P
|
||||
>>> from mindspore.ops import functional as F
|
||||
>>> from mindspore import context
|
||||
>>> from mindspore import nn
|
||||
>>> from mindspore import ParallelMode, ParameterTuple
|
||||
>>>
|
||||
>>> device_id = int(os.environ["DEVICE_ID"])
|
||||
>>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True,
|
||||
>>> device_id=int(device_id), enable_hccl=True)
|
||||
>>> init()
|
||||
>>> context.reset_auto_parallel_context()
|
||||
>>> context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL)
|
||||
>>>
|
||||
>>>
|
||||
>>> class TrainingWrapper(nn.Cell):
|
||||
>>> def __init__(self, network, optimizer, sens=1.0):
|
||||
>>> super(TrainingWrapper, self).__init__(auto_prefix=False)
|
||||
>>> self.network = network
|
||||
>>> self.weights = mindspore.ParameterTuple(network.trainable_params())
|
||||
>>> self.network.add_flags(defer_inline=True)
|
||||
>>> self.weights = ParameterTuple(network.trainable_params())
|
||||
>>> self.optimizer = optimizer
|
||||
>>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
|
||||
>>> self.sens = sens
|
||||
>>> self.reducer_flag = False
|
||||
>>> self.grad_reducer = None
|
||||
>>> self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
||||
>>> if self.parallel_mode in [mindspore.ParallelMode.DATA_PARALLEL,
|
||||
>>> mindspore.ParallelMode.HYBRID_PARALLEL]:
|
||||
>>> if self.parallel_mode in [ParallelMode.DATA_PARALLEL,
|
||||
>>> ParallelMode.HYBRID_PARALLEL]:
|
||||
>>> self.reducer_flag = True
|
||||
>>> if self.reducer_flag:
|
||||
>>> mean = context.get_auto_parallel_context("mirror_mean")
|
||||
|
@ -161,8 +172,8 @@ class DistributedGradReducer(Cell):
|
|||
>>> network = Net()
|
||||
>>> optimizer = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> train_cell = TrainingWrapper(network, optimizer)
|
||||
>>> inputs = mindspore.Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
>>> label = mindspore.Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||
>>> grads = train_cell(inputs, label)
|
||||
"""
|
||||
|
||||
|
|
|
@ -65,9 +65,10 @@ class DynamicLossScaleUpdateCell(Cell):
|
|||
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager)
|
||||
>>> train_network.set_train()
|
||||
>>>
|
||||
>>> inputs = mindspore.Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
>>> label = mindspore.Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||
>>> output = train_network(inputs, label)
|
||||
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||
>>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
|
||||
>>> output = train_network(inputs, label, scaling_sens)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
@ -126,13 +127,14 @@ class FixedLossScaleUpdateCell(Cell):
|
|||
Examples:
|
||||
>>> net_with_loss = Net()
|
||||
>>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=2**12, scale_factor=2, scale_window=1000)
|
||||
>>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=2**12)
|
||||
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager)
|
||||
>>> train_network.set_train()
|
||||
>>>
|
||||
>>> inputs = mindspore.Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
>>> label = mindspore.Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||
>>> output = train_network(inputs, label)
|
||||
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||
>>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
|
||||
>>> output = train_network(inputs, label, scaling_sens)
|
||||
"""
|
||||
|
||||
def __init__(self, loss_scale_value):
|
||||
|
@ -181,9 +183,9 @@ class TrainOneStepWithLossScaleCell(Cell):
|
|||
>>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager)
|
||||
>>> train_network.set_train()
|
||||
>>>
|
||||
>>> inputs = mindspore.Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
>>> label = mindspore.Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||
>>> scaling_sens = mindspore.Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
|
||||
>>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
>>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||
>>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32)
|
||||
>>> output = train_network(inputs, label, scaling_sens)
|
||||
"""
|
||||
|
||||
|
|
Loading…
Reference in New Issue