edit loss_scale for gpu

This commit is contained in:
VectorSL 2020-04-03 16:55:37 +08:00
parent 2c3c1577b1
commit 2ff6f0de46
3 changed files with 117 additions and 12 deletions

View File

@ -25,6 +25,7 @@ from ...ops import operations as P
from ...ops.operations import NPUGetFloatStatus, NPUAllocFloatStatus, NPUClearFloatStatus, ReduceSum, LessEqual, \ from ...ops.operations import NPUGetFloatStatus, NPUAllocFloatStatus, NPUClearFloatStatus, ReduceSum, LessEqual, \
ControlDepend ControlDepend
from ...common import dtype as mstype from ...common import dtype as mstype
import mindspore.context as context
_grad_scale = C.MultitypeFuncGraph("grad_scale") _grad_scale = C.MultitypeFuncGraph("grad_scale")
reciprocal = P.Reciprocal() reciprocal = P.Reciprocal()
@ -34,6 +35,12 @@ reciprocal = P.Reciprocal()
def tensor_grad_scale(scale, grad): def tensor_grad_scale(scale, grad):
return grad * F.cast(reciprocal(scale), F.dtype(grad)) return grad * F.cast(reciprocal(scale), F.dtype(grad))
_grad_overflow = C.MultitypeFuncGraph("_grad_overflow")
grad_overflow = P.FloatStatus()
@_grad_overflow.register("Tensor")
def _tensor_grad_overflow(grad):
return grad_overflow(grad)
class DynamicLossScaleUpdateCell(Cell): class DynamicLossScaleUpdateCell(Cell):
r""" r"""
@ -195,6 +202,12 @@ class TrainOneStepWithLossScaleCell(Cell):
self.optimizer = optimizer self.optimizer = optimizer
self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
self.hyper_map = C.HyperMap() self.hyper_map = C.HyperMap()
if context.get_context("device_target") == "GPU":
self.gpu_target = True
self.float_status = P.FloatStatus()
self.addn = P.AddN()
else:
self.gpu_target = False
self.alloc_status = NPUAllocFloatStatus() self.alloc_status = NPUAllocFloatStatus()
self.get_status = NPUGetFloatStatus() self.get_status = NPUGetFloatStatus()
self.clear_status = NPUClearFloatStatus() self.clear_status = NPUClearFloatStatus()
@ -222,6 +235,7 @@ class TrainOneStepWithLossScaleCell(Cell):
def construct(self, data, label, sens=None): def construct(self, data, label, sens=None):
weights = self.weights weights = self.weights
loss = self.network(data, label) loss = self.network(data, label)
if not self.gpu_target:
# init overflow buffer # init overflow buffer
init = self.alloc_status() init = self.alloc_status()
# clear overflow buffer # clear overflow buffer
@ -235,10 +249,14 @@ class TrainOneStepWithLossScaleCell(Cell):
if self.reducer_flag: if self.reducer_flag:
# apply grad reducer on grads # apply grad reducer on grads
grads = self.grad_reducer(grads) grads = self.grad_reducer(grads)
if not self.gpu_target:
# get the overflow buffer # get the overflow buffer
self.get_status(init) self.get_status(init)
# sum overflow buffer elements, 0:not overflow , >0:overflow # sum overflow buffer elements, 0:not overflow , >0:overflow
flag_sum = self.reduce_sum(init, (0,)) flag_sum = self.reduce_sum(init, (0,))
else:
flag_sum = self.hyper_map(F.partial(_grad_overflow), grads)
flag_sum = self.addn(flag_sum)
if self.is_distributed: if self.is_distributed:
# sum overflow flag over devices # sum overflow flag over devices
flag_reduce = self.allreduce(flag_sum) flag_reduce = self.allreduce(flag_sum)

View File

@ -44,7 +44,7 @@ from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul
LogicalNot, LogicalOr, MatMul, Maximum, LogicalNot, LogicalOr, MatMul, Maximum,
Minimum, Mul, Neg, NMSWithMask, NotEqual, Minimum, Mul, Neg, NMSWithMask, NotEqual,
NPUAllocFloatStatus, NPUClearFloatStatus, NPUAllocFloatStatus, NPUClearFloatStatus,
NPUGetFloatStatus, Pow, RealDiv, NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus,
Reciprocal, CumSum, Reciprocal, CumSum,
Sin, Sqrt, Rsqrt, Sin, Sqrt, Rsqrt,
Square, Sub, TensorAdd, Sign, Round) Square, Sub, TensorAdd, Sign, Round)
@ -151,6 +151,10 @@ __all__ = [
'Neg', 'Neg',
'Slice', 'Slice',
'DType', 'DType',
'IsNan',
'IsInf',
'IsFinite',
'FloatStatus',
'NPUAllocFloatStatus', 'NPUAllocFloatStatus',
'NPUGetFloatStatus', 'NPUGetFloatStatus',
'NPUClearFloatStatus', 'NPUClearFloatStatus',

View File

@ -1557,6 +1557,89 @@ class LogicalOr(_LogicBinaryOp):
def infer_dtype(self, x_dtype, y_dtype): def infer_dtype(self, x_dtype, y_dtype):
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,)) return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,))
class IsNan(PrimitiveWithInfer):
"""
Judging which elements are nan for each position
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the same shape of input.
"""
@prim_attr_register
def __init__(self):
"""init IsNan"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
return mstype.bool_
class IsInf(PrimitiveWithInfer):
"""
Judging which elements are inf or -inf for each position
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the same shape of input.
"""
@prim_attr_register
def __init__(self):
"""init IsInf"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
return mstype.bool_
class IsFinite(PrimitiveWithInfer):
"""
Judging which elements are finite for each position
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the same shape of input.
"""
@prim_attr_register
def __init__(self):
"""init IsFinite"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
return mstype.bool_
class FloatStatus(PrimitiveWithInfer):
"""
Determine if the elements contains nan, inf or -inf
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the shape of `(1,)`.
"""
@prim_attr_register
def __init__(self):
"""init FloatStatus"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return [1]
def infer_dtype(self, x_dtype):
return x_dtype
class NPUAllocFloatStatus(PrimitiveWithInfer): class NPUAllocFloatStatus(PrimitiveWithInfer):
""" """