forked from mindspore-Ecosystem/mindspore
!47299 add shape cpu kernel
Merge pull request !47299 from NaCN/add_shape_cpu_kernel
This commit is contained in:
commit
2952ee029a
|
@ -74,30 +74,6 @@ void InferShapeForNopNode(const AnfNodePtr &input_node) {
|
|||
}
|
||||
}
|
||||
|
||||
bool InferShapeForDefiniteOutputNode(const CNodePtr &cnode) {
|
||||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
if (!common::AnfAlgo::CheckPrimitiveType(cnode, prim::kPrimShape)) {
|
||||
return false;
|
||||
}
|
||||
auto input_size = common::AnfAlgo::GetInputTensorNum(cnode);
|
||||
if (input_size != 1) {
|
||||
MS_LOG(EXCEPTION) << "Node only has one input: " << cnode->fullname_with_scope();
|
||||
}
|
||||
auto cur_shape = dynamic_cast<mindspore::abstract::Shape *>(cnode->Shape().get())->shape();
|
||||
if (std::any_of(cur_shape.begin(), cur_shape.end(), [](int64_t x) { return x == kInvalidShape; })) {
|
||||
return false;
|
||||
}
|
||||
std::vector<int64_t> output_shape = {static_cast<int64_t>(cur_shape.size())};
|
||||
mindspore::abstract::BaseShapePtr shape = std::make_shared<mindspore::abstract::Shape>(output_shape);
|
||||
|
||||
// cppcheck-suppress unreadVariable
|
||||
auto lock = AnfUtils::GetAbstractLock(cnode.get());
|
||||
auto abstract = cnode->abstract();
|
||||
MS_EXCEPTION_IF_NULL(abstract);
|
||||
abstract->set_shape(shape);
|
||||
return true;
|
||||
}
|
||||
|
||||
TypeId GetSequenceType(const abstract::AbstractSequencePtr &seq_abs) {
|
||||
auto elems = seq_abs->elements();
|
||||
if (!elems[0]->isa<abstract::AbstractScalar>()) {
|
||||
|
@ -265,10 +241,6 @@ void InferShape(const CNodePtr &cnode, std::map<uint32_t, tensor::TensorPtr> *de
|
|||
MS_EXCEPTION_IF_NULL(depend_tensor_map);
|
||||
MS_LOG(DEBUG) << "InferShape start, node:" << cnode->fullname_with_scope();
|
||||
std::set<int64_t> depend_list = abstract::GetValueDependArgIndices(cnode);
|
||||
auto ret = InferShapeForDefiniteOutputNode(cnode);
|
||||
if (ret) {
|
||||
return;
|
||||
}
|
||||
|
||||
depend_tensor_map->clear();
|
||||
auto &inputs = cnode->inputs();
|
||||
|
|
|
@ -460,14 +460,14 @@ BACKEND_EXPORT int64_t CalOutputTupleSize(const AnfNodePtr &node);
|
|||
BACKEND_EXPORT void SetDynamicInputSizeAttr(const CNodePtr &cnode);
|
||||
BACKEND_EXPORT bool IsDynamicParamKernel(const std::string &op_name);
|
||||
|
||||
template <typename Derived>
|
||||
template <typename Derived, typename AddressType = AddressPtr>
|
||||
class MatchKernelHelper {
|
||||
public:
|
||||
MatchKernelHelper() = default;
|
||||
virtual ~MatchKernelHelper() = default;
|
||||
|
||||
using KernelRunFunc = std::function<bool(Derived *, const std::vector<AddressPtr> &, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &)>;
|
||||
using KernelRunFunc = std::function<bool(Derived *, const std::vector<AddressType> &,
|
||||
const std::vector<AddressType> &, const std::vector<AddressPtr> &)>;
|
||||
virtual const std::vector<std::pair<KernelAttr, KernelRunFunc>> &GetFuncList() const = 0;
|
||||
|
||||
protected:
|
||||
|
|
|
@ -0,0 +1,86 @@
|
|||
/**
|
||||
* Copyright 2019-2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "plugin/device/cpu/kernel/shape_cpu_kernel.h"
|
||||
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
constexpr size_t kShapeInputsNum = 1;
|
||||
constexpr size_t kShapeOutputsNum = 1;
|
||||
} // namespace
|
||||
|
||||
bool ShapeCpuKernelMod::Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) {
|
||||
MS_EXCEPTION_IF_NULL(base_operator);
|
||||
kernel_name_ = base_operator->name();
|
||||
CHECK_KERNEL_INPUTS_NUM(inputs.size(), kShapeInputsNum, kernel_name_);
|
||||
CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kShapeOutputsNum, kernel_name_);
|
||||
return MatchKernelFunc(base_operator, inputs, outputs);
|
||||
}
|
||||
|
||||
int ShapeCpuKernelMod::Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs,
|
||||
const std::map<uint32_t, tensor::TensorPtr> &) {
|
||||
if (auto ret = KernelMod::Resize(base_operator, inputs, outputs); ret != KRET_OK) {
|
||||
return ret;
|
||||
}
|
||||
input_shape_ = inputs.at(kIndex0)->GetShapeVector();
|
||||
output_shape_ = outputs.at(kIndex0)->GetShapeVector();
|
||||
if (output_shape_.size() != 1) {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_
|
||||
<< "', the dimension of output must be 1-D, but got: " << output_shape_.size();
|
||||
}
|
||||
if (output_shape_[0] != SizeToLong(input_shape_.size())) {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_
|
||||
<< "', 'output_shape[0]' must be equal to the dimension of input, but got 'output_shape[0]': "
|
||||
<< output_shape_[0] << " and the dimension of input: " << input_shape_.size();
|
||||
}
|
||||
return KRET_OK;
|
||||
}
|
||||
|
||||
bool ShapeCpuKernelMod::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
auto output_addr = reinterpret_cast<int64_t *>(outputs[0]->addr);
|
||||
for (size_t i = 0; i < LongToSize(output_shape_[0]); ++i) {
|
||||
output_addr[i] = input_shape_[i];
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
const std::vector<std::pair<KernelAttr, ShapeCpuKernelMod::KernelRunFunc>> &ShapeCpuKernelMod::GetFuncList() const {
|
||||
static const std::vector<std::pair<KernelAttr, ShapeCpuKernelMod::KernelRunFunc>> func_list = {
|
||||
{KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kObjectTypeTuple, kNumberTypeInt64),
|
||||
&ShapeCpuKernelMod::LaunchKernel},
|
||||
{KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kObjectTypeTuple, kNumberTypeInt64),
|
||||
&ShapeCpuKernelMod::LaunchKernel},
|
||||
{KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kObjectTypeTuple, kNumberTypeInt64),
|
||||
&ShapeCpuKernelMod::LaunchKernel},
|
||||
{KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kObjectTypeTuple, kNumberTypeInt64),
|
||||
&ShapeCpuKernelMod::LaunchKernel},
|
||||
{KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kObjectTypeTuple, kNumberTypeInt64),
|
||||
&ShapeCpuKernelMod::LaunchKernel},
|
||||
{KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kObjectTypeTuple, kNumberTypeInt64),
|
||||
&ShapeCpuKernelMod::LaunchKernel},
|
||||
{KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kObjectTypeTuple, kNumberTypeInt64),
|
||||
&ShapeCpuKernelMod::LaunchKernel}};
|
||||
return func_list;
|
||||
}
|
||||
|
||||
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, Shape, ShapeCpuKernelMod);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,60 @@
|
|||
/**
|
||||
* Copyright 2019-2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_SHAPE_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_SHAPE_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <map>
|
||||
#include "plugin/device/cpu/kernel/cpu_kernel.h"
|
||||
#include "plugin/factory/ms_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class ShapeCpuKernelMod : public NativeCpuKernelMod, public MatchKernelHelper<ShapeCpuKernelMod> {
|
||||
public:
|
||||
ShapeCpuKernelMod() = default;
|
||||
~ShapeCpuKernelMod() override = default;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override {
|
||||
MS_EXCEPTION_IF_NULL(kernel_func_);
|
||||
return kernel_func_(this, inputs, workspace, outputs);
|
||||
}
|
||||
int Resize(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs, const std::map<uint32_t, tensor::TensorPtr> &) override;
|
||||
|
||||
bool Init(const BaseOperatorPtr &base_operator, const std::vector<KernelTensorPtr> &inputs,
|
||||
const std::vector<KernelTensorPtr> &outputs) override;
|
||||
|
||||
const std::vector<std::pair<KernelAttr, KernelRunFunc>> &GetFuncList() const override;
|
||||
|
||||
protected:
|
||||
std::vector<KernelAttr> GetOpSupport() override { return OpSupport(); }
|
||||
|
||||
bool LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
ShapeVector input_shape_;
|
||||
ShapeVector output_shape_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_PLUGIN_DEVICE_CPU_KERNEL_SHAPE_CPU_KERNEL_H_
|
Loading…
Reference in New Issue