forked from mindspore-Ecosystem/mindspore
commit
2538f0ba79
|
@ -17,6 +17,7 @@ from mindspore.ops import operations as P
|
|||
from mindspore.ops import functional as F
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.ops.primitive import constexpr
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.context as context
|
||||
|
@ -166,6 +167,10 @@ class _BatchNorm(Cell):
|
|||
return 'num_features={}, eps={}, momentum={}, gamma={}, beta={}, moving_mean={}, moving_variance={}'.format(
|
||||
self.num_features, self.eps, self.momentum, self.gamma, self.beta, self.moving_mean, self.moving_variance)
|
||||
|
||||
@constexpr
|
||||
def _channel_check(channel, num_channel):
|
||||
if channel != num_channel:
|
||||
raise ValueError("the input channel is not equal with num_channel")
|
||||
|
||||
class BatchNorm1d(_BatchNorm):
|
||||
r"""
|
||||
|
@ -324,7 +329,7 @@ class GlobalBatchNorm(_BatchNorm):
|
|||
|
||||
Args:
|
||||
num_features (int): `C` from an expected input of size (N, C, H, W).
|
||||
device_num_each_group (int): The number of device in each group.
|
||||
device_num_each_group (int): The number of devices in each group.
|
||||
eps (float): A value added to the denominator for numerical stability. Default: 1e-5.
|
||||
momentum (float): A floating hyperparameter of the momentum for the
|
||||
running_mean and running_var computation. Default: 0.9.
|
||||
|
@ -350,7 +355,7 @@ class GlobalBatchNorm(_BatchNorm):
|
|||
Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
||||
|
||||
Examples:
|
||||
>>> global_bn_op = nn.GlobalBatchNorm(num_features=3, group=4)
|
||||
>>> global_bn_op = nn.GlobalBatchNorm(num_features=3, device_num_each_group=4)
|
||||
>>> input = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32)
|
||||
>>> global_bn_op(input)
|
||||
"""
|
||||
|
@ -507,6 +512,7 @@ class GroupNorm(Cell):
|
|||
|
||||
def construct(self, x):
|
||||
batch, channel, height, width = self.shape(x)
|
||||
_channel_check(channel, self.num_channels)
|
||||
x = self.reshape(x, (batch, self.num_groups, channel*height*width/self.num_groups))
|
||||
mean = self.reduce_mean(x, 2)
|
||||
var = self.reduce_sum(self.square(x - mean), 2) / (channel * height * width / self.num_groups - 1)
|
||||
|
|
Loading…
Reference in New Issue