add weight decay in RMSProp optimizer

This commit is contained in:
zhaoting 2020-04-03 11:45:49 +08:00
parent 0c81759ae6
commit 1b4041a8f1
1 changed files with 12 additions and 2 deletions

View File

@ -18,7 +18,8 @@ from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore._checkparam import ParamValidator as validator
import mindspore.common.dtype as mstype
from .optimizer import Optimizer, grad_scale
from mindspore.common import Tensor
from .optimizer import Optimizer, grad_scale, apply_decay
rmsprop_opt = C.MultitypeFuncGraph("rmsprop_opt")
centered_rmsprop_opt = C.MultitypeFuncGraph("rmsprop_opt")
@ -118,6 +119,9 @@ class RMSProp(Optimizer):
use_locking (bool): Enable a lock to protect the update of variable and accumlation tensors. Default: False.
centered (bool): If True, gradients are normalized by the estimated variance of the gradient. Default: False
loss_scale (float): A floating point value for the loss scale. Default: 1.0.
weight_decay (float): Weight decay (L2 penalty). Default: 0.0.
decay_filter (Function): A function to determine whether to apply weight decay on parameters. Default:
lambda x: 'beta' not in x.name and 'gamma' not in x.name.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
@ -132,7 +136,8 @@ class RMSProp(Optimizer):
>>> model = Model(net, loss, opt)
"""
def __init__(self, params, learning_rate=0.1, decay=0.9, momentum=0.0, epsilon=1e-10,
use_locking=False, centered=False, loss_scale=1.0):
use_locking=False, centered=False, loss_scale=1.0, weight_decay=0.0,
decay_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name):
super(RMSProp, self).__init__(learning_rate, params)
if isinstance(momentum, float) and momentum < 0.0:
@ -159,6 +164,7 @@ class RMSProp(Optimizer):
self.assignadd = P.AssignAdd()
self.global_step = Parameter(initializer(0, [1], mstype.int32), name="global_step")
self.axis = 0
self.one = Tensor(1, mstype.int32)
self.momentum = momentum
@ -167,10 +173,14 @@ class RMSProp(Optimizer):
self.hyper_map = C.HyperMap()
self.decay = decay
self.decay_tf = tuple(decay_filter(x) for x in self.parameters)
self.reciprocal_scale = 1.0 / loss_scale
self.weight_decay = weight_decay * loss_scale
def construct(self, gradients):
params = self.parameters
if self.weight_decay > 0:
gradients = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_tf, params, gradients)
if self.reciprocal_scale != 1.0:
gradients = self.hyper_map(F.partial(grad_scale, self.reciprocal_scale), gradients)
if self.dynamic_lr: